Improving Performance of an Integrated Solar Flow Battery by Cr- and Cu-Doped TiO2 Photoelectrodes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Half−Cell Analysis
2.2. Full−Cell Testing
2.3. XRD Analysis
2.4. XPS Analysis
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of TiO2 Sol, TiO2 Sol−Doped Cu2+ and TiO2 Sol−Doped Cr3+
3.3. Preparation of Electrodes
3.4. Half−Cell and Full−Cell Testing
4. Conclusions
- (1)
- The charging currents of Cu-TiO2 and Cr-TiO2 electrodes were, respectively, increased from 224.28 to 384.21 and 450.75, with an increase of 71.23% and 100.97%.
- (2)
- The performance of the Cr-TiO2 electrode is significantly better than that of the Cu- TiO2 electrode and the TiO2 electrode. Its superior performance is not only reflected in the charging current but also in the carrier concentration and flat-band potential.
- (3)
- In the XRD spectrum, at the diffraction peak (2θ = 25°), the doping of metal ions makes the absorption peak shape on the (101) crystal plane sharper, which promotes the formation of anatase-phase TiO2 and improves the crystallinity of the sample. This improves the carrier concentration of the photoelectrode and further reduces the recombination rate of photogenerated carriers. This explains why the electrochemical properties of the Cr-TiO2 electrode are better than those of the TiO2 electrode.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cui, H.; Zhao, W.; Yang, C.; Yin, H.; Lin, T.; Shan, Y.; Xie, Y.; Gu, H.; Huang, F. Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J. Mater. Chem. A 2014, 2, 8612–8616. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Ohno, T.; Mitsui, T.; Matsumura, M. Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light. Chem. Lett. 2003, 32, 364–365. [Google Scholar] [CrossRef] [Green Version]
- Akpan, U.G.; Hameed, B.H. The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl. Catal. A Gen. 2010, 375, 1–11. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Butburee, T.; Bai, Y.; Wang, H.; Chen, H.; Wang, Z.; Liu, G.; Zou, J.; Khemthong, P.; Lu, G.Q.M.; Wang, L. 2D Porous TiO2 Single-Crystalline Nanostructure Demonstrating High Photo-Electrochemical Water Splitting Performance. Adv. Mater. 2018, 30, 1705666. [Google Scholar] [CrossRef] [PubMed]
- Whitley, S.; Bae, D. Perspective-Insights into Solar-Rechargeable Redox Flow Cell Design: A Practical Perspective for Lab-Scale Experiments. J. Electrochem. Soc. 2021, 168, 120517. [Google Scholar] [CrossRef]
- Cao, L.Y.; Skyllas-Kazacos, M.; Wang, D.W. Solar Redox Flow Batteries: Mechanism, Design, and Measurement. Adv. Sustain. Syst. 2018, 2, 1800031. [Google Scholar] [CrossRef]
- Li, W.J.; Jin, S. Design Principles and Developments of Integrated Solar Flow Batteries. Acc. Chem. Res. 2020, 53, 2611–2621. [Google Scholar] [CrossRef]
- Li, W.J.; Zheng, J.H.; Hu, B.; Fu, H.C.; Hu, M.W.; Veyssal, A.; Zhao, Y.Z.; He, J.H.; Liu, T.L.; Ho-Baillie, A.; et al. High-performance solar flow battery powered by a perovskite/silicon tandem solar cell. Nat. Mater. 2020, 19, 1326. [Google Scholar] [CrossRef] [PubMed]
- Bae, D.; Faasse, G.M.; Smith, W.A. Hidden figures of photo-charging: A thermo-electrochemical approach for a solar-rechargeable redox flow cell system. Sustain. Energy Fuels 2020, 4, 2650–2655. [Google Scholar] [CrossRef]
- Hu, S.; Shaner, M.R.; Beardslee, J.A.; Lichterman, M.; Brunschwig, B.S.; Lewis, N.S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katta, V.S.; Velpandian, M.; Challapalli, S.; Meduri, P.; Raavi, S.S.K. Defect engineered (Er3+/Nd3+) codoped TiO2 photoanodes for enhanced photoelectrochemical and photovoltaic applications. Sustain. Energy Fuels 2022, 6, 5539–5556. [Google Scholar] [CrossRef]
- Li, J.W.; Lin, Y.Y.; Chen, R.; Zhu, X.; Ye, D.D.; Yang, Y.; Yu, Y.X.; Wang, D.C.; Liao, Q. Solar energy storage by a microfluidic all-vanadium photoelectrochemical flow cell with self-doped TiO2 photoanode. J. Energy Storage 2021, 43, 103228. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, Y.Y.; Chen, R.; Zhu, X.; Ye, D.D.; Yang, Y.; Li, J.W.; Yu, Y.X.; Liao, Q. Self-doped TiO2 nanotube array photoanode for microfluidic all-vanadium photoelectrochemical flow battery. J. Electroanal. Chem. 2021, 897, 115598. [Google Scholar] [CrossRef]
- Chahid, S.; de los Santos, D.M.; Alcantara, R. The effect of Cu-doped TiO2 photoanode on photovoltaic performance of dye-sensitized solar cells. In Proceedings of the ACM 3rd International Conference on Smart City Applications (SCA’), Tetouan, Morocco, 10–11 October 2018. [Google Scholar]
- Ünlü, B.; Özacar, M. Effect of Cu and Mn amounts doped to TiO2 on the performance of DSSCs. Sol. Energy 2020, 196, 448–456. [Google Scholar] [CrossRef]
- Venumbaka, M.R.; Akkala, N.; Duraisamy, S.; Sigamani, S.; Poola, P.K.; Subba, R.D.; Marepally, B.C. Performance of TiO2, Cu-TiO2, and N-TiO2 nanoparticles sensitization with natural dyes for dye sensitized solar cells. Mater. Today Proc. 2022, 49, 2747–2751. [Google Scholar] [CrossRef]
- Dhonde, M.; Sahu, K.; Murty, V.V.S.; Nemala, S.S.; Bhargava, P. Surface plasmon resonance effect of Cu nanoparticles in a dye sensitized solar cell. Electrochim. Acta 2017, 249, 89–95. [Google Scholar] [CrossRef]
- Javed, H.M.A.; Sarfaraz, M.; Mustafa, M.S.; Que, W.X.; ur Ateeq, R.; Awais, M.; Hussain, S.; Qureshi, A.A.; Iqbal, M.Z.; Khan, M.A. Efficient Cu/rGO/TiO2 nanocomposite-based photoanode for highly-optimized plasmonic dye-sensitized solar cells. Appl. Nanosci. 2020, 10, 2419–2427. [Google Scholar] [CrossRef]
- Khan, M.I.; Rehman, M.A.; Saleem, M.; Baig, M.R.; Rehman, S.; Farooq, W.A.; Atif, M.; Hanif, A. Synthesis and characterization of nanostructured photoanodes for dye sensitized solar cells. Ceram. Int. 2019, 45, 20589–20592. [Google Scholar] [CrossRef]
- Park, J.-Y.; Kim, C.-S.; Okuyama, K.; Lee, H.-M.; Jang, H.-D.; Lee, S.-E.; Kim, T.-O. Copper and nitrogen doping on TiO2 photoelectrodes and their functions in dye-sensitized solar cells. J. Power Sources 2016, 306, 764–771. [Google Scholar] [CrossRef]
- Zatirostami, A. A dramatic improvement in the efficiency of TiO2-based DSSCs by simultaneous incorporation of Cu and Se into its lattice. Opt. Mater. 2021, 117, 111110. [Google Scholar] [CrossRef]
- Gayathri, V.; John Peter, I.; Rajamanickam, N.; Ramachandran, K. Improved performance of dye-sensitized solar cells by Cr doped TiO2 nanoparticles. Mater. Today Proc. 2021, 35, 23–26. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Gyawali, G.; Hoon, J.S.; Sekino, T.; Lee, S.W. Cr-doped TiO2 nanotubes with a double-layer model: An effective way to improve the efficiency of dye-sensitized solar cells. Appl. Surf. Sci. 2018, 458, 523–528. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, N.; You, S.; Liu, Y.; Sebo, B.; Liang, L.; Fang, X.; Liu, W.; Guo, S.; Zhao, X.-Z. Improved performance of dye-sensitized solar cells by trace amount Cr-doped TiO2 photoelectrodes. J. Power Sources 2013, 224, 168–173. [Google Scholar] [CrossRef]
- Kim, C.; Kim, K.S.; Kim, H.Y.; Han, Y.S. Modification of a TiO2 photoanode by using Cr-doped TiO2 with an influence on the photovoltaic efficiency of a dye-sensitized solar cell. J. Mater. Chem. 2008, 18, 5809–5814. [Google Scholar] [CrossRef]
- Asemi, M.; Maleki, S.; Ghanaatshoar, M. Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer. J. Sol−Gel Sci. Technol. 2017, 81, 645–651. [Google Scholar] [CrossRef]
- Chae, J.; Kim, D.Y.; Kim, S.; Kang, M. Photovoltaic efficiency on dye-sensitized solar cells (DSSC) assembled using Ga-incorporated TiO2 materials. J. Ind. Eng. Chem. 2010, 16, 906–911. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Tan, W.; Zhou, X.; Lin, Y. Photovoltaic performance improvement of dye-sensitized solar cells based on tantalum-doped TiO2 thin films. Electrochim. Acta 2010, 56, 396–400. [Google Scholar] [CrossRef]
- Tian, G.; Jervis, R.; Briscoe, J.; Titirici, M.; Jorge Sobrido, A. Efficient harvesting and storage of solar energy of an all-vanadium solar redox flow battery with a MoS2@TiO2 photoelectrode. J. Mater. Chem. A 2022, 10, 10484–10492. [Google Scholar] [CrossRef]
- Liao, S.; Zong, X.; Seger, B.; Pedersen, T.; Yao, T.; Ding, C.; Shi, J.; Chen, J.; Li, C. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nat. Commun. 2016, 7, 11474. [Google Scholar] [CrossRef] [PubMed]
Electrode | Electrolytes | Current Density (mA) |
TiO2 | Fe2+ | −1.1893 |
TiO2 Cu-TiO2 Cu-TiO2 Cr-TiO2 Cr-TiO2 | Fe2+-Cr3+ Fe2+ Fe2+-Cr3+ Fe2+ Fe2+-Cr3+ | −0.0052 −0.0788 −0.2635 −3.6027 −0.1196 |
Electrode | Electrolytes | Current Density (mA) |
TiO2 | Fe2+ | 2.1843 |
TiO2 Cu-TiO2 Cu-TiO2 Cr-TiO2 Cr-TiO2 | Fe2+-Cr3+ Fe2+ Fe2+-Cr3+ Fe2+ Fe2+-Cr3+ | 7.5290 2.7923 6.2000 6.9306 8.9176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Lu, P.; Zhao, T.; Su, H.; Xu, Q. Improving Performance of an Integrated Solar Flow Battery by Cr- and Cu-Doped TiO2 Photoelectrodes. Molecules 2023, 28, 171. https://doi.org/10.3390/molecules28010171
Zhang Z, Lu P, Zhao T, Su H, Xu Q. Improving Performance of an Integrated Solar Flow Battery by Cr- and Cu-Doped TiO2 Photoelectrodes. Molecules. 2023; 28(1):171. https://doi.org/10.3390/molecules28010171
Chicago/Turabian StyleZhang, Zihan, Ping Lu, Tong Zhao, Huaneng Su, and Qian Xu. 2023. "Improving Performance of an Integrated Solar Flow Battery by Cr- and Cu-Doped TiO2 Photoelectrodes" Molecules 28, no. 1: 171. https://doi.org/10.3390/molecules28010171
APA StyleZhang, Z., Lu, P., Zhao, T., Su, H., & Xu, Q. (2023). Improving Performance of an Integrated Solar Flow Battery by Cr- and Cu-Doped TiO2 Photoelectrodes. Molecules, 28(1), 171. https://doi.org/10.3390/molecules28010171