Mutual Influence of Some Flavonoids and Classical Nonionic Surfactants on Their Adsorption and Volumetric Properties at Different Temperatures
Abstract
:1. Introduction
2. Results
2.1. Some Physicochemical Properties of Quercetin, Rutin, TX114 and T80
2.2. Surface Tension of the Aqueous Solution of Flavonoids with Nonionic Surfactant Mixtures
2.3. Composition and Concentration of the Mixed Monolayer at the Water-Air Interface
2.4. CMC
2.5. Thermodynamic Parameters of the Adsorption and Micellization
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: Role in genome stability. J. Nutr. Biochem. 2017, 45, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.I.; Jain, P.; Khan, Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 2019, 8, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravishankar, D.; Rajora, A.K.; Greco, F.; Osborn, H.M.I. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell. Biol. 2013, 12, 2821–2831. [Google Scholar] [CrossRef]
- Kawai, M.; Hirano, T.; Higa, S.; Arimitsu, J.; Maruta, M.; Kuwahara, Y.; Ohkawara, T.; Hagihara, K.; Yamadori, T.; Shima, Y.; et al. Flavonoids and related compounds as anti-allergic substances. Allergol. Int. 2017, 56, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, M.F.; Hussain, A.; Sameen, A.; Sahar, A.; Khan, S.; Siddique, R.; Aadil, R.M.; Xu, B. Novel extraction, rapid assessment and bioavailability improvement of quercetin: A review. Ultrason. Sonochem. 2021, 78, 105686–105701. [Google Scholar] [CrossRef]
- da Silva, A.B.; Coelho, P.L.C.; das Neves Oliveira, M.; Oliveira, J.L.; Amparo, J.A.O.; da Silva, K.C.; Soares, J.R.P.; Pitanga, B.P.S.; Dos Santos Souza, C.; de Faria Lopes, G.P.; et al. The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain Behav. Immun. 2020, 85, 170–185. [Google Scholar] [CrossRef]
- Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega 2020, 5, 11849–11872. [Google Scholar] [CrossRef]
- Yang, H.; Yang, T.; Heng, C.; Zhou, Y.; Jiang, Z.; Qian, X.; Du, L.; Mao, S.; Yin, X.; Lu, Q. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother. Res. PTR 2019, 33, 3140–3152. [Google Scholar] [CrossRef]
- Di Petrillo, A.; Orrù, G.; Fais, A.; Fantini, M.C. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res. PTR 2022, 36, 266–278. [Google Scholar] [CrossRef]
- Ben Sghaier, M.; Pagano, A.; Mousslim, M.; Ammari, Y.; Kovacic, H.; Luis, J. Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomed. Pharmacother. 2016, 84, 1972–1978. [Google Scholar] [CrossRef] [PubMed]
- Imani, A.; Maleki, N.; Bohlouli, S.; Kouhsoltani, M.; Sharifi, S.; Dizaj, S.M. Molecular mechanisms of anticancer effect of rutin. Phytother. Res. 2021, 35, 2500–2513. [Google Scholar] [CrossRef] [PubMed]
- Luthria, D.L. Optimization of extraction of phenolic acids from a vegetable waste product using a pressurized liquid extractor. J. Funct. Foods 2012, 4, 842–850. [Google Scholar] [CrossRef]
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M.; Bordbar, S.; Serjouie, A. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity and oxidation stability. Food Chem. 2015, 172, 7–17. [Google Scholar] [CrossRef]
- Neto, A.O.W.; da Silva, D.C.; Arruda, G.M.; da Hora, L.F.; Rodrigues, M.A.F. Chemical study of the application of nonionic surfactants nonylphenol in delaying the acidizing reaction of carbonate matrices. J. Dispers. Sci. Technol. 2021, 1, 1–8. [Google Scholar] [CrossRef]
- Ravichandran, V.; Lee, M.; Nguyen Cao, T.G.; Shim, M.S. Polysorbate-based drug formulations for brain-targeted drug delivery and anticancer therapy. Appl. Sci. 2021, 11, 9336. [Google Scholar] [CrossRef]
- Abbot, V.; Sharma, P. Investigation of interactions between quercetin and Tween 80 through electrolyte induced thermodynamic approach. Mat. Today: Proc. 2020, 28, 61–64. [Google Scholar] [CrossRef]
- Dwivedi, M.; Blech, M.; Presser, I.; Garidel, P. Polysorbate degradation in biotherapeutic formulations: Identification and discussion of current root causes. Int. J. Pharm. 2018, 552, 422–436. [Google Scholar] [CrossRef]
- Kerwin, B.A. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: Structure and degradation pathways. J. Pharm. Sci. 2008, 97, 2924–2935. [Google Scholar] [CrossRef]
- Thoduvayil, S.; Dhandapani, G.; Brahma, R.; Balaya, R.D.A.; Mangalaparthi, K.K.; Patel, K.; Kumar, M.; Tennyson, J.; Satheeshkumar, P.K.; Kulkarni, M.J.; et al. Triton X-114 fractionated subcellular proteome of leptospira interrogans shows selective enrichment of pathogenic and outer membrane proteins in the detergent fraction. Proteomics 2020, 20, 2000170. [Google Scholar] [CrossRef]
- Alibrahim, M. Removal of toxic Eosin Y dye from water samples by cloud point extraction using Triton X-114 as nonionic surfactant. Tensid. Surf. Deterg. 2020, 57, 326–331. [Google Scholar]
- Katsoyannos, E.; Gortzi, O.; Chatzilazarou, A.; Athanasiadis, V.; Tsaknis, J.; Lalas, S. Evaluation of the suitability of low hazard surfactants for the separation of phenols and carotenoids from red-flesh orange juice and olive mill wastewater using cloud point extraction. J. Sep. Sci. 2012, 35, 2665–2670. [Google Scholar] [CrossRef] [PubMed]
- Zdziennicka, A.; Szymczyk, K.; Krawczyk, J.; Jańczuk, B. Activity and thermodynamic parameters of some surfactants adsorption at the water–air interface. Fluid Phase Equilib. 2012, 318, 25–33. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Szymczyk, K.; Krawczyk, J.; Jańczuk, B. Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization. Fluid Phase Equilib. 2012, 322–323, 126–134. [Google Scholar] [CrossRef]
- Szymczyk, K.; Zdziennicka, A.; Jańczuk, B. Adsorption and aggregation properties of some Polysorbates at different temperatures. J. Sol. Chem. 2018, 47, 1824–1840. [Google Scholar] [CrossRef] [Green Version]
- Jańczuk, B.; Szymczyk, K.; Zdziennicka, A. Adsorption properties of hydrocarbon and fluorocarbon surfactants ternary mixture at the water-air interface. Molecules 2021, 26, 4313. [Google Scholar] [CrossRef]
- Jańczuk, B.; Zdziennicka, A.; Szymczyk, K.; González-Martin, M.L. Prediction of aqueous solution surface tension of some surfactant mixtures and composition of their monolayers at the solution-air interface. Coll. Interfaces 2022, 5, 53. [Google Scholar] [CrossRef]
- Pérez-Rosés, A.; Risco, E.; Vila, R.; Peñalver, P.; Cañigueral, S. Antioxidant activity of Tween-20 and Tween-80 evaluatedthrough different in-vitro tests. J. Pharm. Pharmacol. 2014, 67, 666–672. [Google Scholar] [CrossRef]
- Taraba, A.; Szymczyk, K. Aggregation behavior of Triton X-114 and Tween 80 at various temperatures and concentrations studied by density and viscosity measurements. J. Therm. Anal. Calorim. 2016, 126, 315–326. [Google Scholar]
- Taraba, A.; Szymczyk, K. Properties of aqueous solutions of nonionic surfactants, Triton X-114 and Tween 80, at temperatures from 293 to 318K: Spectroscopic and ultrasonic studies. Chem. Phys. 2017, 483–484, 96–102. [Google Scholar]
- Zdziennicka, A.; Krawczyk, J.; Szymczyk, K.; Jańczuk, B. Macroscopic and microscopic properties of some surfactants and biosurfactants. Int. J. Mol. Sci. 2018, 19, 1934. [Google Scholar] [CrossRef] [Green Version]
- van Oss, C.J.; Constanzo, P.M. Adhesion of anionic surfactants to polymer surfaces and low-energy materials. J. Adhes. Sci. Technol. 1992, 4, 477–487. [Google Scholar] [CrossRef]
- Jańczuk, B.; MéndezSierra, A.M.; González-Martín, M.L.; Bruque, J.M.; Wójcik, W. Properties of Decylammonium Chloride and Cesium Perfluorooctanoate at interfaces and standard free energy of their adsorption. J. Coll. Interface Sci. 1997, 192, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.chemicalbook.com/ChemicalProductProperty_US_CB8153566.aspx (accessed on 5 April 2022).
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5280343 (accessed on 5 April 2022).
- Aizawa, H. Morphology of polysorbate 80 (Tween 80) micelles in aqueous 1,4-dioxane solutions. J. Appl. Cryst. 2009, 42, 592–596. [Google Scholar] [CrossRef] [Green Version]
- Amani, A.; York, P.; de Waard, H.; Anwar, J. Molecular dynamics simulation of a polysorbate 80 micelle in water. Soft Matter 2011, 7, 2900–2908. [Google Scholar] [CrossRef] [Green Version]
- Rosen, M.J. Surfactants and Interfacial Phenomena, 3rd ed.; Wiley-Interscience: New York, NY, USA, 2004; pp. 34–178. [Google Scholar]
- Joos, P. Thermodynamics of mixed monolayers. Bull. Soc. Chim. Belg. 1967, 76, 591–600. [Google Scholar] [CrossRef]
- van Oss, C.J. Interfacial Forces in Aqueous Media; Marcel Dekker: New York, NY, USA, 1994. [Google Scholar]
- van Oss, C.J.; Good, R.J. Surface tension and the solubility of polymers and biopolymers: The role of polar and apolar interfacial free energies. J. Macromol. Sci. Chem. 1989, 26, 1183–1203. [Google Scholar] [CrossRef]
- van Oss, C.J.; Chaudhury, M.K.; Good, R.J. Monopolar surfaces. Adv. Coll. Interface Sci. 1987, 28, 35–64. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Szymczyk, K.; Krawczyk, J.; Jańczuk, B. Some remarks on the solid surface tension determination from contact angle measurements. Appl. Surf. Sci. 2017, 405, 88–101. [Google Scholar] [CrossRef]
- Szaniawska, M.; Szymczyk, K.; Zdziennicka, A.; Jańczuk, B. Adsorption properties and composition of binary Kolliphor mixtures at the water–air interface at different temperatures. Molecules 2022, 27, 877. [Google Scholar] [CrossRef]
- Fainerman, V.B.; Miller, R.; Aksenenko, E.V. Simple model for prediction of surface tension of mixed surfactant solutions. Adv. Colloid Interface Sci. 2002, 96, 339–359. [Google Scholar] [CrossRef]
- Fainerman, V.B.; Miller, R. Simple method to estimate surface tension of mixed surfactant solutions. J. Phys. Chem. B 2001, 105, 11432–11438. [Google Scholar] [CrossRef]
- Rosen, J.M.; Hua, X.Y. Surface concentrations and molecular interactions in binary mixtures of surfactants. J. Colloid Interface Sci. 1982, 86, 164–172. [Google Scholar] [CrossRef]
- Adamson, W.; Gast, A.P. Physical Chemistry of Surfaces, 6th ed.; Wiley Interscience: New York, NY, USA, 1997. [Google Scholar]
- Djeradi, H.; Rahmouni, A.; Cheriti, A. Antioxidant activity of flavonoids: A QSAR modeling using Fukui indices descriptors. J. Mol. Model. 2014, 20, 2476. [Google Scholar] [CrossRef] [PubMed]
- Zdziennicka, A.; Jańczuk, B. Modification of adsorption, aggregation and wetting properties of surfactants by short chain alcohols. Adv. Colloid Interface Sci. 2020, 284, 102249. [Google Scholar] [CrossRef] [PubMed]
Quercetin | Rutin | TX114 | T80 | |
---|---|---|---|---|
(×10−6 mol/m2) | ||||
T = 293 K | 4.40 | 4.30 | 2.52 | 3.94 |
T = 303 K | 4.30 | 4.15 | 2.45 | 3.81 |
T = 313 K | 4.10 | 3.90 | 2.39 | 3.68 |
(Å2) | ||||
T = 293 K | 37.73 | 38.61 | 65.89 | 42.14 |
T = 303 K | 38.61 | 40.01 | 67.77 | 43.58 |
T = 313 K | 40.50 | 42.57 | 69.47 | 45.12 |
(×10−6 mol/m2) | ||||
4.77 | 4.70 | 4.65 | 4.04 | |
(Å2) | ||||
34.81 | 35.33 | 35.71 | 41.10 | |
0.9224 | 0.9149 | 0.5419 | 0.9752 | |
Occupied area (Å2) | ||||
24.42–131.65 | 35.33–240.4 | 35.70–115.73 35.70–51.12 | 41.10–475.10 41.10–96.05 | |
Volume of one molecule (Å3) | ||||
456.15 | 832.99 | 856.10 | 1978.98 | |
Molar volume (cm3/mole) | ||||
274.74 | 501.70 | 515.63 | 1192.54 | |
Density (g/cm3) | ||||
1.1000 1.1100 | 1.2169 1.3881 | 1.0953 1.0580 | 1.0985 1.0600 | |
Components and parameters of surface tension (mN/m) | ||||
36.53 | 38.02 | 22.00 21.00 | 26.90 42.49 | |
0.186 | 0.132 | 1.51 | 0.03 | |
10.57 | 13.26 | 48.75 | 55.71 | |
2.80 | 22.65 | 17.16 | 2.59 | |
39.33 | 40.67 | 39.16 | 45.08 | |
Water-surfactant interfacial tension (mN/m) | ||||
Water-tail | - | - | 51.00 | 51.00 |
Water-head | 18.50 | 15.45 | −13.75 | −20.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taraba, A.; Szymczyk, K.; Zdziennicka, A.; Jańczuk, B. Mutual Influence of Some Flavonoids and Classical Nonionic Surfactants on Their Adsorption and Volumetric Properties at Different Temperatures. Molecules 2022, 27, 2842. https://doi.org/10.3390/molecules27092842
Taraba A, Szymczyk K, Zdziennicka A, Jańczuk B. Mutual Influence of Some Flavonoids and Classical Nonionic Surfactants on Their Adsorption and Volumetric Properties at Different Temperatures. Molecules. 2022; 27(9):2842. https://doi.org/10.3390/molecules27092842
Chicago/Turabian StyleTaraba, Anna, Katarzyna Szymczyk, Anna Zdziennicka, and Bronisław Jańczuk. 2022. "Mutual Influence of Some Flavonoids and Classical Nonionic Surfactants on Their Adsorption and Volumetric Properties at Different Temperatures" Molecules 27, no. 9: 2842. https://doi.org/10.3390/molecules27092842
APA StyleTaraba, A., Szymczyk, K., Zdziennicka, A., & Jańczuk, B. (2022). Mutual Influence of Some Flavonoids and Classical Nonionic Surfactants on Their Adsorption and Volumetric Properties at Different Temperatures. Molecules, 27(9), 2842. https://doi.org/10.3390/molecules27092842