Next Article in Journal
Identification of Non-Volatile Compounds Generated during Storage That Impact Flavor Stability of Ready-to-Drink Coffee
Next Article in Special Issue
Desorption of Coffee Pulp Used as an Adsorbent Material for Cr(III and VI) Ions in Synthetic Wastewater: A Preliminary Study
Previous Article in Journal
Design, Synthesis, and Evaluation of Novel 2H-Benzo[b][1,4]thiazin-3(4H)-one Derivatives as New Acetylcholinesterase Inhibitors
Previous Article in Special Issue
In-Situ Formation of Modified Nickel–Zinc-Layered Double Hydroxide Followed by HPLC Determination of Neonicotinoid Insecticide Residues
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Fruit Peels as a Sustainable Waste for the Biosorption of Heavy Metals in Wastewater: A Review

by
Dora Luz Gómez-Aguilar
1,*,
Juan Pablo Rodríguez-Miranda
2 and
Octavio José Salcedo-Parra
3
1
Departamento de Química, Universidad Pedagógica Nacional, Bogotá 110231, Colombia
2
Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
3
Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Universidad Nacional de Colombia, Bogotá 110231, Colombia
*
Author to whom correspondence should be addressed.
Molecules 2022, 27(7), 2124; https://doi.org/10.3390/molecules27072124
Submission received: 11 February 2022 / Revised: 10 March 2022 / Accepted: 14 March 2022 / Published: 25 March 2022
(This article belongs to the Special Issue Residues of Organic Pollutants in Environmental Samples)

Abstract

:
One of the environmental challenges that is currently negatively affecting the ecosystem is the continuous discharge of untreated industrial waste into both water sources and soils. For this reason, one of the objectives of this qualitative study of exploratory-descriptive scope was the review of scientific articles in different databases—Scopus, Web of Science, and Science Direct—published from 2010 to 2021 on the use of fruit peels as a sustainable waste in the removal of heavy metals present in industrial wastewater. For the selection of articles, the authors used the PRISMA guide as a basis, with which 210 publications were found and 93 were compiled. Considering the reported work, a content analysis was carried out using NVivo 12 Plus and VOSviewer 1.6.17 software. The results show that the fruits mentioned in these publications are lemon, banana, mango, tree tomato, pineapple, passion fruit, orange, coconut, avocado, apple, lulo, and tangerine. However, no studies were found with lulo and tree tomato peels. On the other hand, the heavy metals removed with the selected fruit peels were Pb+2, Cr+3, Cr+6, Ni+2, Cd+2, As+5, Cu+2, and Zn+2.

1. Introduction

Rapid population growth has led to an increase in industrial activities that have generated different types of wastewater that must be treated before being discharged into water sources in order to avoid a negative impact on the ecosystem due to the different substances of organic and inorganic nature and microorganisms present in this type of water [1].
In relation to the above, the World Water Development Report 2017 states that more than 80% of wastewater is discharged without any treatment, causing dead areas without oxygen in the seas and oceans, affecting the fishing industry sector and the food cycle derived from it [2].
The United Nations World Water Development Report 2020 [3] specifies that the detriment of water sources puts at risk the fulfillment of Sustainable Development Goal (SDG) number 6 of the 2030 Agenda, whose purpose is to provide basic sanitation for the entire population in the next 10 years, given that, at present, 4.2 billion people lack access to these safe systems.
On the other hand, in Latin America, 70% of wastewater is discharged without any treatment into rivers, generating problems for the environment and public health. Likewise, 80% of the inhabitants live in cities, and the remaining 20% are located near contaminated surface water sources [4].
This statement is corroborated by a review carried out for heavy metals in 40 estuaries in Latin America located between the Atlantic and Pacific coasts where six metals were found in sediments and in some surface water samples [5]: Ni, Hg, Cu, Pb, Cr, Cd. The six referenced metals, with the exception of Ni, (Hg, Cu, Pb, Cr, and Cd) are considered by the United States Environmental Protection Agency (USEPA) as the most relevant in terms of their impact on public health [6]. In Colombia, there is the presence of mercury in the sediments of the Ciénaga Grande de Santa Marta, with concentrations of 129 mg Hg Kg−1, and in the tissues of some fish species such as Eugerres plumieri and Mugil incilis [5]. Regarding the concentration of Hg in sediments, it is observed that it exceeds the maximum limits established for this metal by the international regulations of Canada, Holland, and the United States, which are: 0.13 mg Hg Kg−1, 0.3 mg Hg Kg−1, and 0.7 mg Hg Kg−1, respectively. It is important to highlight that the Hg concentration is above the 0.7 mg Hg Kg−1 probable effect level (PEL) of the United States and “may have probable effects on biota”. Therefore, the sediments of the Ciénaga Grande de Santa Marta could represent a risk to the ecosystem, including the population [7].
Additionally, the epicenter located 137 km away from the Ciénaga is the Bay of Cartagena, which is considered by a group of scientists in Colombia as a “terminal patient” due to the high concentration of heavy metals (Hg, Cr, Cr, Cd, Ni, and Pb), garbage, and fecal coliforms, causing various diseases in the digestive system, dermatological lesions, and altered metabolic profiles in the population [8]. It is also worth mentioning that an analysis of mercury in the blood of the inhabitants of Baru found an alert level for the presence of this metal. Among some of the pathologies associated with the presence of heavy metals in humans are renal failure, liver damage, hepatitis, heart failure, asthma, birth defects, respiratory failure, mental disorders, hypertension, and cancer [9].
Mining, textile, electroplating, metallurgy, foundry, alloys, steel, metallic corrosion, paints, batteries, electronics, tanneries, agriculture, livestock activities, landfills, and energy production are among the industries that generate heavy metals discharges [6,10]. According to a report by the Superintendence of Domiciliary Public Services, it is observed that there was an increase in the percentage from 25.0% to 42.8% in wastewater treatment from 2010 to 2018. Consequently, Colombia is ranked fourth among Latin American countries, below Chile (99.9%), Mexico (57%), and Brazil (43%) [11]. In Colombia, the most prevalent wastewater treatment is secondary, in which stabilization ponds are used at 44%, extended aeration systems at 9.4%, and biological filters at 7% [12].
On the other hand, heavy metals as inorganic pollutants mostly present in wastewater require technologies such as conventional, advanced, and non-conventional methods. For the first, there are adsorption methods (activated carbon and carbon nanotubes) and chemical precipitation using alkaline solutions; for the second, there are ion exchange and membrane filtration methods (microfiltration, nanofiltration, ultrafiltration, reverse osmosis, and electrodialysis), among others. The advantage of conventional and advanced methods is their high efficiency, but among the disadvantages are their high cost of implementation and the high volume of sludge that can be generated, especially in the chemical precipitation method [10].
Non-conventional methods for the removal of heavy metals include bioremediation, phytoremediation, hydrogels, and fly ash. For living and non-living organisms, biomass is used, which allows the sorption of various types of contaminants, such as those mentioned above. Additionally, a series of investigations have been reported in the literature which have sought to reevaluate lignocellulosic materials or agricultural residues as non-living biomasses (shells, bark, stems, leaves, seeds, etc.); likewise, the use of by-products from the tannery sector, such as hair, shavings, among others, has been reported as a technology used in sorption phenomena [13].
This article socializes the findings of scientific studies published from 2010 to 2021 on the fruit peels used in Colombia (introduced and native) as a sustainable waste for the removal of heavy metals, which represents an opportunity to be used in industries. The analysis was made because there have not yet been published reports that condense the research on this type of material in order to specify the optimal adsorption conditions, the percentage of inedible biomass based on the fruit, efficiency percentages against different heavy metals in synthetic and/or real wastewater matrices, selectivity of the peels in relation to the mitigation of metals, lignocellulosic composition of the selected fruit peels, and the comparison between different fruit peels based on their efficiency for the mitigation of heavy metals in real water.
Finally, it is proposed that in industries worldwide, particularly in Colombia, companies implement sorption technology with fruit peels in their wastewater so that they generate a reuse of the same complying with the requirements demanded in Resolution 1207 of 2014 by the Ministry of Environment and Sustainable Development (MESD), which states that this type of water could be used for agricultural or industrial use [14]. This will allow our country and others to not be lagging behind in terms of this application, given that, at this moment, Colombia appears to have 0% with respect to wastewater reuse, compared with Israel (87%), Mexico (60%), South Africa (24%), Peru (4%), and Chile (0.7%) [15]. The advantage of reusing this type of water is that it allows dealing with its scarcity in the medium term due to the decrease in pressure on the extraction of surface and groundwater sources. This also allows countries to acquire a circular economy.

2. Materials and Methods

2.1. Documentary Analysis

The study is qualitative and exploratory-descriptive in scope [16]. A review of scientific articles from 2010 to 2021 was conducted in the databases of Scopus, Web of Science, and Science Direct. A list of keywords or thesauri in English and Spanish languages (e.g., heavy metals, bioadsorption, removal, wastewater, and fruit peels) was configured. Additionally, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [17] guide was used as a basis to select articles related to the topic under investigation, duplication of documents, and probable gray literature.

2.2. Content Analysis

With respect to the research products found and selected, the titles, keywords, abstracts, and content were read, choosing those related to fruit peels as sorbents for treating industrial wastewater contaminated with heavy metals. Once selected, NVivo 12 Plus (trial version) and VOSviewer 1.6 software (free to use) were used to perform the analysis. The content analysis was carried out using the free 17 software, focusing on the co-occurrence of terms, journals, countries, paper specifications (author, country, institution/organization), years of publication, and optimal sorption conditions. Therefore, parameters such as absorbent dose, temperature, particle size, and speed of agitation were considered, as well as gaps and future research in this perspective.

3. Results and Discussion

3.1. Selected Fruit Peels

First, several documents related to nutritional information on the most consumed foods by the national population were reviewed. A study conducted by the National Survey of Nutritional Status ENSIN [18] on the feeding practices of people with an interest in nutrition and public health in the population between 5 and 64 years of age shows that the first group of foods is the consumption of fruits, 66.8%, followed by dairy and meats, with percentages of 61.0% and 57.3%, respectively (see Figure 1).
With the selected product, we proceeded to identify those fruits with the highest domestic consumption at the national level. In Colombia (2007), 433 species of edible fruits were reported, positioning the country as the first in the world in biodiversity of these foods per square kilometer. This report was provided by the Colombian Corporation for Agricultural Research (CORPOICA), currently known as AGROSAVIA, since 1994 [19].
There are 54 fruits of high consumption in Colombia: lemon (Citrus limón), banana (Musa paradisiaca), mango (Mangifera indica), guava (Psidium guajava), tree tomato (Solanum betaceum), blackberry (Rubus ulmifolius), pineapple (Ananas comosus), passion fruit (Passiflora edulis), orange (Citrus sinensis), coconut (Cocos nucífera), avocado (Persea americana), papaya (Carica papaya), apple (Malus pumila), lulo (Solanum quitoense), tangerine (Citrus reticulata), soursop (Anona muricata), strawberry (Fragaria spp), curuba (Passiflora tarminiana), melon (Cucumis melo), watermelon (Citrullus lanatus), grape (Vitis vinifera), passion fruit (Passiflora ligularis), borojo (Alibertia patinoi), pear (Pyrus communis), plum (Prunus doméstica), papayuela (Vasconcellea pubescens), loquat (Achras sapote), peach (Prunus pérsica), mamoncillo (Melicoccus bijugatus), sapote (Pouteria sapota), uchuva (Physalis peruviana), chontaduro (Bactris gasipaes), bananito (Musa AA Si- monds), feijoa (Acca sellowiana), cherry (Prunus subg. Cerasus), carambolo (Averrhoa carambola), kiwi (Actinidia deliciosa), guama (Inga edulis), grapefruit (Citrus aurantium), badea (Passiflora quadrangularis), arazá (Azara), noni (Morinda citrifolia), fig (Ficus carica), cashew (Anacardium occidentale), mamey (Pouteria sapota), lime (Citrus aurantiifolia), custard apple (Annona cherimola), pomarrosa (Syzygium jambos), pitahaya (Selenicereus undatus), mangosteen (Garcinia mangostana), copoazú (Theobroma grandiflorum), anón (Annona squamosa), breadfruit (Artocarpus altilis), and currant (Ribes rubrum) [20]. From the report of this number of fruits, a selection was made regarding those with the highest domestic consumption at the national level, obtaining 15 fruits, which are the following: lemon, banana, mango, guava, tree tomato, blackberry, pineapple, passion fruit, orange, coconut, avocado, papaya, apple, lulo, and tangerine [20]. Subsequently, they were classified according to the inedible shell-to-seed ratio [21] (see Figure 2).
It should be noted that 12 out of the 15 fruits referenced in Figure 2 were selected since papaya, guava, and blackberry are those with the lowest inedible part value and also because the proportion of peel in these fruits is considered lower than that of seeds. In Colombia, there is a research gap that leads to determining the percentage of inedible parts separately between seed and peel per fruit based on its variety.
Therefore, fruits such as passion fruit, coconut, lemon, mango, pineapple, lulo, orange, tree tomato, avocado, banana, tangerine, and apple were selected for review in the mentioned databases since these are the ones that present a higher shell biomass in relation to the seeds. This is summarized in Figure 3.
From the three databases (Scopus, Web of Science, and Science Direct), the results presented in Figure 4 were obtained by considering the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
With respect to the compilation obtained in the three databases, Table 1 and Figure 5 were designed to show which of the 12 fruit peels are related, with the objective of identifying which of these have been the most researched and published, as well as those that have no publication and represent a research gap.
Table 1 and Figure 5 show that orange peels, followed by banana and coconut peels, are the ones that presented the highest number of publications, between 25.8%, 21.5%, and 15.05%, respectively, while lulo and tree tomato peels had no publications.
On the other hand, in the co-occurrence of the terms “heavy metals”, “wastewater”, “fruit peels”, and “adsorption”, using the metadata of Scopus/VOSviewer 1.6.17, Figure 6 was obtained, in which we can visualize the nodes representing the most used words by the authors. Thus, coconut, banana, and orange prevail from highest to lowest; also, some relationships between them can be visualized (agricultural waste, batch scale research with synthetic and/or real wastewater matrices). According to the color scale, publication predominance occurs from 2014 onwards.

3.2. Generalities of the Articles Found and Selected

Table 2 illustrates some generalities according to the origin and the type of major perennial fruits and transitory fruits introduced in Colombia with respect to the 12 fruits selected and described in numeral 3.1.
Table 2 shows that, of the 12 fruits selected, 11 have been introduced in Colombia, with the exception of lulo. This is a species of the Solanaceae family that is widely distributed in the Andes mountain range and that grows spontaneously in the undergrowth near streams. Its cultivation is prevalent in Peru, Ecuador, Colombia, Panama, Costa Rica, and Honduras. In addition, lulo is considered a promising crop due to its nutraceutical value, which makes it desirable in national and international markets [114].
Fruits such as lemon, mango, orange, coconut, avocado, and tangerine are considered major perennial fruits, i.e., they are permanent species that are economically and socially important. On the other hand, bananas, tree tomatoes, pineapples, passion fruit and lulo, are considered transient fruits, since the vegetative and productive cycle of these species does not exceed three years [19].
Regarding the countries where the terms “heavy metals” and “wastewater” and “fruit peels”, and “adsorption” have been published and mentioned, the co-occurrence of words is observed using Scopus/VOSviewer 1.6.17 metadata in Figure 7.
In Figure 7, it is observed that India is the country with the highest node, indicating that it has the highest number of publications related to the removal of heavy metals in wastewater using fruit peels from 2015 onwards. In turn, it is appreciated that there is a co-occurrence between Ghana and the Netherlands.
In the same way, co-occurrence between authors, organizations, and journals was specified, using for this purpose the search equation described above with Scopus/VOSviewer 1.6.17 metadata, obtaining Figure 8, Figure 9 and Figure 10, respectively.
Figure 8, Figure 9 and Figure 10, reference authors, organizations, and journals, respectively, and show the predominance of researchers such as Lens P.N.L. and Shiewer S; likewise, organizations such as the Department of Civil Engineering and the Department of Civil and Environmental Engineering are highlighted. Regarding the most mentioned journals, they are the Journal of Hazardous Materials and Bioresource Technology, according to the visualization of the nodes that stand out in the graphic. There are no relationships between authors or organizations among themselves, and in the journals, it is deduced that they have been published since 2012.

3.3. Colombian Solid Waste

In Bogotá, D.C., 0.87 kg/inhabit/day of solid waste is being generated; this value is within the range of 0.19 to 1.81 reported by Latin American countries [116]. It is important to clarify that 61% of this solid waste is generated by organic waste, as shown in Figure 11 [117].
Based on the analysis carried out, currently, 35.21% of the solid waste generated in Bogotá, D.C., is used, and 64.78% is deposited in sanitary landfills (see Figure 12). Based on a study conducted for Colombia on alternative techniques for the treatment, final disposal, or use of solid waste, these are being used for energy generation, recycling, mechanical treatment, landfilling, and composting. It should be noted that in other countries, waste is still discharged or disposed of by incineration or used as raw material for the extraction of active substances and animal feed, which leads to serious environmental contamination and a great waste of resources [118]. In Colombia, 83% of the solid household waste generated is discharged into sanitary landfills. For this reason, their use should be improved, given that in 2030 there could be sanitary emergencies and a high emission of greenhouse gases (GHG) such as methane, carbon dioxide, water vapor, and hydrogen [119].
It is also important to highlight that in order to avoid the abovementioned, countries could opt for some of the programs formulated at the Earth Summit (an event held in 1992 by the UN in Rio de Janeiro) and established for waste management: minimizing waste and maximizing its reuse and ecological recycling. These actions encourage sustainable development and a rational ecology for the 21st century [120].
This article proposes the use of a solid organic waste such as fruit peels, which is a lignocellulosic bioadsorbent composed of cellulose polymers, hemicellulose, and lignin for the removal of heavy metals [121]. Among the fruits selected in the documentary analysis from 2010 to 2021 are those referenced in numeral 3.1: passion fruit, coconut, lemon, mango, pineapple, lulo, orange, tree tomato, avocado, banana, tangerine, and apple. From this list of fruits, four are considered citrus, according to statistical data from the Food and Agriculture Organization of the United Nations (FAOSTAT), which states that world citrus production in 2010 exceeded 100 million tons [122]. It is also relevant to point out that this type of citrus waste can account for up to 50% of the weight of the fruit, as shown in Figure 2.
With respect to the content analysis, regarding the selected fruits, Figure 13 was obtained using scientific articles from Scopus, Web of Science, and Science Direct metadata collections from 2010 to 2021, in which the names of the authors, year of publication, institutions, countries, and journals that have published on the removal of heavy metals with fruit peels can be observed. Besides, some optimal adsorption conditions (pH, pHpzc, temperature, agitation, physical and/or chemical modifications, particle size), type of wastewater matrices, percentage of contaminant removal, initial concentration, desorption, bioadsorbent reuse cycles, selectivity, and explanation of adsorption processes (isotherms, kinetics, maximum adsorption capacity, and adsorption mechanisms) are specified in the nodes.
Subsequently, the qualitative analysis was performed with NVivo 12 plus software, with which the word cloud-adsorption-removal-heavy metals-wastewater was obtained, (see Figure 14). In this figure, some words such as adsorption, biosorption, removal, synthetic wastewater, heavy metals, orange, banana, coconut, chromium, cadmium, kinetics, isotherms, desorption, and concentration stand out. As a result, the authors used these words for the documentary analysis of each fruit peel in the mentioned databases.
Based on the information obtained in Figure 13 and Figure 14, the authors elaborated Figure 15, Figure 16, Figure 17, Figure 18 and Figure 19 in which the optimal adsorption parameters for each fruit peel selected in numeral 3.1 are established. Regarding the heavy metals removed from the synthetic wastewater matrices, these figures illustrate a range of particle size, adsorbent dosage, physical or chemical modification of the adsorbent, optimum pH, optimum temperature, contact times, desorption with the different extractive solutions used, and efficiency percentages.
Table 3 and Table 4 show the chemical characterization (organic and inorganic) of orange peel in terms of elemental composition (carbon, hydrogen, nitrogen, and sulfur); lignocellulosic composition (cellulose, lignin, pectin, and hemicellulose), highlighting that this bioadsorbent has 97.83% of organic matter and the remaining 2.17% of inorganic matter, where acid and basic oxides predominate.
Table 5 reports the functional groups present in orange peel [123], with the objective of determining the groups responsible for the interaction with heavy metals for their respective removal.
The efficiency reported in Figure 15, Figure 16, Figure 17, Figure 18 and Figure 19 of the selected fruit peels ranges from 75% to 100% due to the abundance of hydroxyl and carboxyl groups present in the composition of lignin, cellulose, hemicellulose, pectin, chlorophyll pigments, and low molecular weight hydrocarbons [118]. Some authors specify that the functional groups responsible for these interactions are carboxyl groups [125,126,127].
It is important to note that this type of non-conventional technology of bioadsorption with fruit peels is proposed as a technique that could be used by industries that discharge heavy metals in their wastewater (see Table 6).

3.4. Biorefinery of Fruit Peels

Fruit peels are being used as a source of bioactive compounds of interest because they have a greater potential to be reused in human food or in the pharmaceutical industry due to the presence of compounds such as carotenes, total polyphenols, flavonoids, and anthocyanins, which are characterized by their antioxidant activity. Among the products obtained are essential oils, edible oils, natural pigments, food additives, anticancer compounds, enzymes, bioethanol, and production of biodegradable plastic, among others [118,129] (see Figure 20).

4. Technoeconomic Aspects and Future Research

The information shown in Figure 15, Figure 16, Figure 17, Figure 18 and Figure 19 is relevant in order to be able to reproduce in the first instance, with pilot models, these experimental conditions with real wastewater matrices (see Table 6), industrial activities that generate heavy metals, which will allow us to know the possible interferences that may occur, and thus to estimate again efficiency and desorption parameters, which in the future could be replicated on an industrial scale, which requires “significant financial and technological effort to be able to really carry it out” [118].
In the literature, there are only reports of heavy metals removal with industrial wastewater from the electroplating and battery industries and tanneries in pilot-scale designs. Metals such as copper [130], molybdenum [131], and chrome (VI) [132] were removed from wastewater from electroplating plants [132] in the electroplating wastewater, while copper, cadmium, and lead were mitigated in the battery industry [100], and finally chrome (VI) [133] was removed in the wastewater from the tanning industry [133]. Therefore, further research is required with these lignocellulosic materials with real wastewaters other than those mentioned above, such as mining, metallurgy, glass, chemicals, wood protection, plastics, paper, rubber, alloys, and electronics.
In this section, it is also important to highlight the desorption process of the metals with respect to the bioadsorbent. Given that, as described in Figure 15, Figure 16, Figure 17, Figure 18 and Figure 19, the extracting solutions that have been used are HCl, HNO3, H2SO4, NaOH, and EDTA. This makes it possible to separate the metal ions from the bioadsorbent so that this lignocellulosic material is again incorporated into the removal cycle of the metals present in the wastewater, which has the advantage of making the removal process cheaper in industries. Therefore, research should specify the maximum number of reuse cycles of the bioadsorbent in order to obtain a high percentage of efficiency.
In addition, this will contribute to reducing organic solid waste in sanitary landfills, thus avoiding more GHG generation and resulting in less impact on global warming. At the same time, the use of this type of non-conventional technology on an industrial scale for industrial wastewater treatment has become an opportunity that will allow companies to implement sustainable development by improving their social, economic, and especially environmental aspects (see Figure 21).
The above is corroborated by the ideas outlined in the Figure 22 word tree, which was obtained from NVivo 12 plus software (https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/support-services/nvivo-downloads), accessed on 18 January 2021.
Figure 22 shows that it is a challenge to prepare new adsorbent materials that are better in terms of being efficient and environmentally friendly—in this case, the use of fruit peels. The aforementioned takes advantage of the properties of these lignocellulosic materials, as well as their low cost and zero toxicity [118].
On the other hand, the importance of reusing wastewater that is free of heavy metals in this type of water is highlighted, as shown in Figure 21, which will contribute to meeting target 6.3 of the Sustainable Development Goal (SDG 6) for water and sanitation of the 2030 Agenda.

5. Conclusions

The documentary analysis from 2010 to 2021 in the different databases mentioned in the document indicates that of the 12 selected fruits, orange peels, followed by bananas and coconut peels, are the peels with the highest number of publications, with 25.8%, 21.5%, and 15.05%, respectively, in relation to the removal of heavy metals in industrial wastewater, while lulo and tree tomato peels are not in the reported work. Considering the above information, it is inferred that it is necessary to develop research using these two species. The lulo is considered a native species of Colombia and is characterized by its high nutraceutical value, while the tree tomato is an introduced species from Peru. Both are classified as transitory species.
The use of this non-conventional technology—the bioadsorption of heavy metals with fruit peels for the treatment of industrial wastewater on an industrial scale—represents an opportunity that will allow companies to implement sustainable development by improving their social, economic, and environmental aspects. As proposed in the challenges at the research level, the shells are constituted as a natural, effective, and environmentally friendly adsorbent.
Considering the documentary analysis of fruit peels as a sustainable waste for the biosorption of heavy metals in wastewater from 2020 to 2021, it is established that, to date, seven metals have been removed (Pb, Cr, Ni, Cd, As, Cu, Zn) out of the thirteen that, according to the World Health Organization, have been specified as those with the greatest impact on health and the environment. This makes it possible to infer that it is necessary to continue research on the removal of the remaining heavy metals (Hg, Mn, Co, Ti, Fe, Sn) in industrial wastewater using biomasses with the fruit peels selected in this article.

Author Contributions

D.L.G.-A. carried out the methodology, systematization, and analysis of the documentary review; J.P.R.-M. and O.J.S.-P. guided the research that was carried out; D.L.G.-A. wrote the manuscript; J.P.R.-M. and O.J.S.-P. translated the article and revised the wording and citation of the bibliographical references. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Acknowledgments

To all those who participated in the preparation of the article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Barrantes, E.A.; Núñez, M.C. Eficacia del tratamiento de aguas residuales de la Universidad de Costa Rica en la Sede de Occidente, San Ramón, Costa Rica. Cuadernos de Investigación UNED 2017, 9, 193–197. [Google Scholar]
  2. WWAP. Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2017; Aguas residuales: El Recurso Desaprovechado; UNESCO: Paris, France, 2017. [Google Scholar]
  3. UNESCO; ONU-Agua. Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2020; Agua y Cambio Climático; UNESCO: Paris, France, 2020. [Google Scholar]
  4. Banco-Mundial. Un 70% de las Aguas Residuales de Latinoamérica Vuelven a los ríos sin ser Tratadas. 2013. Available online: https://www.bancomundial.org/es/news/feature/2014/01/02/rios-de-latinoamerica-contaminados.print (accessed on 16 June 2021).
  5. Barleta, M.; Lima, R.A.; Costa, M.F. Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South American estuaries. Sci. Total Environ. 2019, 651, 1199–1218. [Google Scholar] [CrossRef]
  6. Sánchez, J.M.; González, R.R.; Blancas, F.J.; Fonseca, A. Utilización de subproductos agroindustriales para la bioadsorción de metales pesados. Revista Especializada en Ciencias Químico-Biológicas 2020, 23, 1–6. [Google Scholar] [CrossRef]
  7. Marín, M.; González, V.H.; Lapo, B.; Molina, M.; Lemus, M. Niveles de mercurio en sedimentos de la zona costera de El Oro, Ecuador. Gayana 2016, 80, 147–153. [Google Scholar] [CrossRef]
  8. Fog, L. Es un hecho: La Bahía de Cartagena es un Paciente Terminal. 2021. Available online: https://www.elespectador.com/ambiente/es-un-hecho-la-bahia-de-cartagena-es-un-paciente-terminal/ (accessed on 17 November 2021).
  9. Amin, M.T.; Alazba, A.A.; Shafiq, M. Comparative Sorption of Nickel from an Aqueous Solution Using Biochar Derived from Banana and Orange Peel Using a Batch System: Kinetic and Isotherm Models. Arab. J. Sci. Eng. 2019, 44, 10105–10116. [Google Scholar] [CrossRef]
  10. Caviedes, D.I.; Muñoz, R.A.; Perdomo, A.; Rodriguez, D.; Sandoval, I.J. Tratamientos para la Remoción de Metales Pesados Comúnmente Presentes en Aguas Residuales Industriales. Una Revisión Revista Ingeniería y Región 2015, 13, 73–90. [Google Scholar] [CrossRef]
  11. Concejo Nacional de Política Económica y Social República de Colombia Departamento Nacional de Planeacios (COMPES-4004). Economía Circular en la Gestión de Los Servicios de Agua Potable y Manejo de Aguas Residuals. 2020. Available online: https://santandercompetitivo.org/biblioteca-de-documentos/competitividad-en-colombia/conpes-4004-economa-circular-en-la-gestin-de-los-servicios-de-agua-potable-y-manejo-de-aguas-residua/ (accessed on 18 January 2022).
  12. Acuatecnica, S.A.S. ¿Cuántas Plantas De Tratamiento De Aguas Residuales Hay En Colombia? 2017. Available online: https://acuatecnica.com/cuantas-plantas-tratamiento-aguas-residuales-colombia/#comments (accessed on 20 November 2021).
  13. Mehdi, L.; Abdoul, N.R.; Abdelaziz, B.; Abdelrani, Y. Removal of Chromium Cr(VI) of Tanning Effluent with Activated Carbon from Tannery Solid Wastes. Am. J. Phys. Chem. 2017, 6, 103–109. [Google Scholar] [CrossRef]
  14. Ministerio de Ambiente y Desarrollo Sostenible. Resolución 1207 de 2014. Por la Cual se Adoptan Disposiciones Relacionadas con el uso de Aguas Residuales Tratadas. 25 de Septiembre de 2014, Bogotá, D.C., Colombia. Available online: http://www.leyex.info/leyes/Resolucionmads1207de2014.pdf (accessed on 18 January 2022).
  15. Consorcio; Caltiz-Aguas Residuales. Elaborar un Estudio que Contenga el Análisis y Documente las Técnicas de Reúso de Aguas Residuales Domésticas, Industriales, Agrícola y Aguas Lluvias, y Realice Recomendaciones para la Implementación y Reglamentación del Reúso de agua Residual en Colombia; Conosorcio N&V-Caltiz-Aguas Residuales: Bogotá, Colombia, 2019. [Google Scholar]
  16. Hernández, R.; Fernández, C.; Baptista, M.P. Metodología de la Investigación, 6a Edición Edificio Punta Santa Fe, Prolongación Paseo de la Reforma 1015, Torre A, Piso 17, Colonia Desarrollo Santa Fe, Delegación Álvaro Obregón, México D.F. 2014. Available online: https://www.uca.ac.cr/wp-content/uploads/2017/10/Investigacion.pdf (accessed on 18 January 2022).
  17. Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 327, n71. [Google Scholar] [CrossRef]
  18. ICBF, Instituto Colombiano de Bienestar Familiar. Encuesta Nacional de la Situación Nutricional en Colombia 2010 (ENSIN); ICBF: Bogotá, Colombia, 2010. [Google Scholar]
  19. Tafur, R.; Toro, J.C. Presente y Futuro de la fruticultura Colombiana. AGROSAV/A Corp. Colomb. Investig. Agropecu. 2007, 1, 9–22. [Google Scholar]
  20. Combariza, J.A. Perfil Nacional de Consumo de Frutas y Verduras Prosperidad Para Todos; Ministerio de Salud y Protección Social: Bogotá, Colombia, 2013. [Google Scholar]
  21. ICBF, Instituto Colombiano de Bienestar Familiar. Tabla de Composición de Alimentos Colombianos (TCAC); ICFB: Bogotá, Colombia, 2018. [Google Scholar]
  22. Tadepalli, S.; Murthy, K.S.; Rakesh, N.N. Modelado de regresión isotérmica y lineal de Cu (II) y Fe (II) utilizando piel de naranja como adsorbente en estudios por lotes. Revista Internacional de Investigación PharmTech 2016, 9, 197–210. [Google Scholar]
  23. Hussein, R.A. Evaluación de la eficacia de la piel de naranja (Citrus reticulata) en la recuperación de níquel de aguas residuales de galvanoplastia. Revista de la Asociación de Salud Pública de Egipto 2014, 89, 154–158. [Google Scholar]
  24. Izquierdo, M.; Marzal, P.; Lens, P.N. Efecto de los ligandos orgánicos sobre la eliminación de cobre (II) de las aguas residuales del revestimiento metálico mediante biosorbentes a base de piel de naranja. Contaminación del Agua, el Aire y el Suelo 2013, 224, 1–5. [Google Scholar]
  25. Liu, M.; Yuan, Q.; Jia, H.; Li, S.; Wang, X.; Wang, C. Cáscara de naranja modificada con cisteína para la eliminación de Cu (II) de soluciones acuosas. Ciencia y Tecnología del Agua 2013, 67, 2444–2450. [Google Scholar]
  26. Liang, S.; Guo, X.; Feng, N.; Tian, Q. Aplicación de xantato de piel de naranja para la adsorción de Pb2+ de soluciones acuosas. Revista de Materiales Peligrosos 2013, 170, 425–429. [Google Scholar]
  27. Pavithra, S.; Thandapani, G.; S, S.; PN, S.; Alkhamis, H.H.; Alrefaei, A.F.; Almutairi, M.H. Estudios de adsorción por lotes en un compuesto de hidrogel de quitosano/piel de naranja adaptado a la superficie para la eliminación de iones Cr (VI) y Cu (II) de aguas residuales sintéticas. Chemosphere 2021, 271, 1–5. [Google Scholar]
  28. Njikam, E.; Schiewer, S. Optimización y modelado cinético de la desorción de cadmio a partir de cáscaras de cítricos: Un proceso para la regeneración biosorbente. Revista de Materiales Peligrosos 2012, 213, 242–248. [Google Scholar]
  29. Schiewer, S.; Patil, S.B. Residuos de frutas ricos en pectina como biosorbentes para la eliminación de metales pesados: Equilibrio y cinética. Tecnología de Fuentes Biológicas 2008, 99, 1896–1903. [Google Scholar]
  30. Naji, M.; Kareem, S.; Nief, O.A. Corteza residual de frutas y agrícolas como adsorbentes de resinas naturales para la eliminación de iones metálicos pesados de las aguas residuales. Archivos de Plantas 2019, 19, 966–971. [Google Scholar]
  31. Afolabi, F.O.; Musonge, P.; Bakare, B.F. Aplicación de la metodología de superficie de respuesta en la eliminación de Cu2+ y Pb2+ de soluciones acuosas utilizando cáscaras de naranja. Sci. Afr. 2021, 13, 1–5. [Google Scholar]
  32. Romero, L.A.; García, H.; Gonzalez, L.V.; Baldenegro, L.A.; Carrasco, F. Adsorbentes funcionalizados preparados a partir de cáscaras de frutas: Estudios de equilibrio, cinéticos y termodinámicos para la adsorción de cobre en solución acuosa. J. Clean. Prod. 2017, 162, 195–204. [Google Scholar]
  33. Lasheen, M.R.; Ammar, N.S.; Ibrahim, H.S. Adsorción/desorción de Cd (II), Cu (II) y Pb (II) mediante cáscara de naranja modificada químicamente: Estudios cinéticos y de equilibrio. Solid State Sci. 2012, 14, 202–210. [Google Scholar]
  34. Feng, N.; Guo, X. Caracterización de la capacidad de adsorción y mecanismos de adsorción de cobre, plomo y zinc por piel de naranja modificada. Trans. Nonferrous Met. Soc. China 2012, 22, 1224–1231. [Google Scholar]
  35. Shah, J.; Jan, M.R.; Ul-Haq, A. Eliminación de plomo de medios acuosos mediante cáscara de naranja carbonizada y tratada con ácido. Tenside Surfactants Deterg. 2014, 51, 240–246. [Google Scholar]
  36. Khan, M.; Shah, J.; Jan, M.R. Eliminación de Ni (II) de muestras de agua utilizando un compuesto de nanopartículas magnéticas de piel de naranja (MNP-OP). Desalin. Water Treat. 2020, 1, 274–282. [Google Scholar]
  37. Muhammad, T.; Abdulrahman, A.; Muhammad, N. Absorción Comportamientos de cobre, plomo y arsénico en solución acuosa utilizando fibras de palmera datilera y piel de naranja: Cinética y termodinámica. Pol. J. Environ. Stud. 2017, 26, 543–557. [Google Scholar]
  38. Patiño, L.; Hernández, J.A.; Ardila, A.; Salazar, M.; Talavera, A.; Hernández, R. Capacidad de eliminación de Cr (III) en solución acuosa en relación con los grupos funcionales presentes en la piel de naranja (Citrus sinensis). Appl. Sci. 2021, 11, 6346. [Google Scholar]
  39. López, G.; Barrera, C.E.; Balderas, P.; Roa, G.; Bilyeu, B. Eliminación de cromo hexavalente en soluciones acuáticas mediante nanopartículas de hierro incrustadas en la médula de la piel de naranja. Chem. Eng. J. 2011, 173, 480–485. [Google Scholar]
  40. Amin, M.T.; Alazba, A.A.; Shafiq, M. Aplicación del biocarbón derivado de la piel de naranja para la biosorción efectiva de cobre y cadmio en estudios por lotes: Modelos de isotermas y estudios cinéticos. Arab. J. Geosci. 2019, 12, 1–6. [Google Scholar]
  41. Gupta, V.K.; Nayak, A. Eliminación y recuperación de cadmio de soluciones acuosas mediante nuevos adsorbentes preparados a partir de cáscara de naranja y nanopartículas de Fe2O3. Chem. Eng. J. 2012, 180, 81–90. [Google Scholar]
  42. El Nemr, A.; Aboughaly, R.M.; El Sikaily, A.; Ragab, S.; Masoud, M.S.; Ramadan, M.S. Carbón microporoso nanoactivado tipo I derivado de la piel de naranja y su aplicación para la eliminación de Cr (VI) del medio acuático. Biomass Convers. Biorefinery 2020, 122, 184–189. [Google Scholar]
  43. Saini, J.; Garg, V.K.; Gupta, R.K. Nanocompuestos de SiO2 @ OPW sintetizados en verde para una mejor eliminación del plomo (II) del agua. Arab. J. Chem. 2020, 13, 2496–2499. [Google Scholar]
  44. Abdelhafez, A.A.; Li, J. Eliminación de Pb (II) de una solución acuosa mediante el uso de biocarros derivados del bagazo de caña de azúcar y la piel de naranja. J. Taiwan Inst. Chem. Eng. 2016, 61, 367–375. [Google Scholar]
  45. Pakshirajan, K.; Worku, A.N.; Acheampong, M.A.; Lubberding, H.J.; Lens, P.N. Eliminación de Cr (III) y Cr (VI) de soluciones acuosas mediante residuos de frutas asequibles y biomasa de algas. Bioquímica y Biotecnología Aplicadas 2013, 170, 498–513. [Google Scholar]
  46. Memon, J.R.; Memon, S.Q.; Bhanger, M.I.; El-Turki, A.; Hallam, K.R.; Allen, G.C. Cáscara de plátano: Absorbente verde y económico para la eliminación selectiva de Cr (VI) de las aguas residuales industriales. Coloides Superf. B Biointerfaces 2009, 70, 232–237. [Google Scholar]
  47. Kumar, M.; Majumder, C.B. Eliminación biológica de cromo (VI) de aguas residuales sintéticas mediante el uso de “piel de plátano tratada con ácido”. Revista de Investigación de Ciencias Farmacéuticas, Biológicas y Químicas 2014, 5, 662–679. [Google Scholar]
  48. Michael, N.X.; Ragupathi, T. Estudio experimental sobre reducción del contenido de cromo de efluentes industriales mediante cáscara de plátano. Revista Internacional de Investigación ChemTech 2015, 8, 725–731. [Google Scholar]
  49. Cheah, C.; Yue, C.S.; Ting, A.S. Efectos de los pretratamientos térmicos y químicos de las cáscaras de banano para la eliminación de metales en sistemas de un solo metal y multimetal. Contaminación del Agua, el Aire y el Suelo 2020, 232, 1–5. [Google Scholar]
  50. Zhou, N.; Chen, H.; Xi, J.; Yao, D.; Zhou, Z.; Tian, Y.; Lu, X. Biocarros con excelente propiedad de adsorción de Pb (II) producidos a partir de cáscaras de plátano frescas y deshidratadas mediante carbonización hidrotermal. Tecnología de Fuentes Biológicas 2017, 232, 204–210. [Google Scholar]
  51. Ajmi, R.N.; Sultan, M.; Hanno, S.H. Bioabsorbente de cromo, cadmio y plomo de aguas residuales industriales por planta de residuos. Revista de Investigación y Ciencias Farmacéuticas 2018, 10, 672–674. [Google Scholar]
  52. Ping, W.; Wu, Y.; Yang, C.; Jiang, X.; Liu, L. Propiedades y mecanismo de adsorción de Cd (II) de las aguas residuales mediante cáscara de plátano modificada. Trans. Soc. China Ing. Agríc. 2019, 35, 269–279. [Google Scholar]
  53. Lavanya, K.M.; Florence, J.A.; Vivekanandan, B.; Lakshmipathy, R. Investigaciones comparativas de la cáscara de plátano en bruto y libre de metales alcalinos como adsorbente para la eliminación de iones Hg2+. Mater. Today Proc. 2021, 1, 1–9. [Google Scholar]
  54. Liu, C.; Ngo, H.H.; Guo, W.; Tung, K.L. Condiciones óptimas para la preparación de cáscaras de plátano, bagazo de caña de azúcar y cáscara de sandía para eliminar el cobre del agua. Bioresour. Technol. 2012, 119, 349–354. [Google Scholar] [PubMed]
  55. Vilardi, G.; Di Palma, L.; Verdone, N. Adsorción de metales pesados por micropolvo de cáscara de plátano: Modelado de equilibrio por modelos no lineales. Chin. J. Chem. Eng. 2018, 26, 455–464. [Google Scholar]
  56. Hu, Z.T.; Ding, Y.; Shao, Y.; Cai, L.; Jin, Z.Y.; Liu, Z.; Zhao, J.; Li, F.; Pan, Z.; Li, X.; et al. Biocarbón de cáscara de plátano con estructura ensamblada en nanoflake para el tratamiento de la contaminación cruzada en el agua: Comportamientos de interacción entre el plomo y la tetraciclina. Chem. Eng. J. 2021, 420, 1–10. [Google Scholar]
  57. Al-Qahtani, K.M. Purificación de agua utilizando diferentes cortezas de frutos de desecho para la eliminación de metales pesados. J. Taibah Univ. Sci. 2015, 10, 700–708. [Google Scholar]
  58. Anwar, J.; Shafique, U.; Waheed-uz-Zaman, S.M.; Dar, A.; Anwar, S. Eliminación de Pb (II) y Cd (II) del agua por adsorción en cáscaras de banano. Bioresour. Technol. 2010, 101, 1752–1755. [Google Scholar]
  59. Ali, A.; Saeed, K.; Mabood, F. Eliminación de cromo (VI) del medio acuoso utilizando cáscaras de plátano modificadas químicamente como adsorbente eficiente de bajo costo. Alex. Eng. J. 2016, 55, 2933–2942. [Google Scholar]
  60. Mohd, S.R.; Khan, A.J.; Rayathulhan, R.; Yunus, K.; Sarkar, M.Z. Biosorción de Pb y Cu a partir de una solución acuosa con polvo de cáscara de plátano. Desalin. Water Treat. 2015, 1, 1–12. [Google Scholar]
  61. Amin, M.T.; Alazba, A.A.; Shafiq, M. Eliminación de cobre y plomo utilizando biocarbón de banano en sistemas de adsorción por lotes: Estudios de isotermas y cinética. Arab. J. Sci. Eng. 2017, 1, 1–5. [Google Scholar]
  62. Aziz, H.A.; Adlan, M.N.; Hui, C.S.; Zahari, M.S.; Hameed, B.H. Eliminación de Ni, Cd, Pb, Zn y color de una solución acuosa utilizando un adsorbente potencial de bajo costo. Revista India de Ingeniería y Ciencias de los Materiales 2006, 12, 248–258. [Google Scholar]
  63. Agarwal, G.S.; Bhuptawat, H.K.; Chaudhari, S. Biosorción de cromo acuoso (VI) por semillas de Tamarindus indica. Tecnología de Fuentes Biológicas 2006, 97, 949–956. [Google Scholar]
  64. Amuda, O.S.; Giwa, A.A.; Bello, I.A. Eliminación de metales pesados de aguas residuales industriales utilizando carbón de cáscara de coco activado modificado. Revista de Ingeniería Bioquímica 2007, 36, 174–181. [Google Scholar]
  65. Acheampong, M.A.; Pereira, J.P.; Meulepas, R.J.; Lens, P.N. Biosorción de Cu (II) en materiales agrícolas de regiones tropicales. Revista de Tecnología Química y Biotecnología 2011, 86, 1184–1194. [Google Scholar]
  66. Kumar, S.; Meikap, B.C. Eliminación de cromo (VI) de las aguas residuales mediante el uso de adsorbente preparado a partir de cáscara de coco verde. Desalinización y Tratamiento de Agua 2013, 52, 3122–3132. [Google Scholar]
  67. Priyadharshini, B.; Marykutty, A.; Varshaa, L.P.; Kavisri, M. Investigación experimental sobre la eliminación de cromo metal utilizando cáscara de coco. Revista Internacional de Ciencia y Tecnología Avanzadas 2020, 29, 103–109. [Google Scholar]
  68. Abdul-Rahim, A.R.; Mohsin, H.M.; Thanabalan, M.; Rabat, N.E.; Saman, N.; Mat, H.; Johari, K. Adsorbente de residuos de coco desecado carbonoso eficaz para la aplicación de captaciones de metales pesados por adsorción: Análisis de equilibrio, cinético y termodinámico. Biomass Bioenergy 2020, 142, 1–12. [Google Scholar]
  69. Shrestha, S.; Son, G.; Lee, S.H.; Lee, T.G. Estudios isotermos y termodinámicos de la adsorción de Zn (II) en lignito y fibra de carbón activado a base de cáscara de coco. Chemosphere 2013, 92, 1053–1061. [Google Scholar]
  70. Acheampong, M.A.; Pakshirajan, K.; Annachhatre, A.P.; Lens, P.N. Eliminación de Cu (II) por biosorción en cáscara de coco en sistemas de columnas de lecho fijo. J. Ind. Eng. Chem. 2013, 19, 841–848. [Google Scholar]
  71. Acheampong, M.A.; Dapcic, A.D.; Yeh, D.; Lens, P.N. Absorción cíclica y desorción de Cu (II) sobre cáscara de coco y arena recubierta de óxido de hierro. Sep. Sci. Technol. 2013, 48, 2786–2794. [Google Scholar]
  72. Song, C.; Wu, S.; Cheng, M.; Tao, P.; Shao, M.; Gao, G. Adsorption Studies of Coconut Shell Carbons Prepared by KOH Activation for Removal of Lead(II) from Aqueous Solutions. Sustainability 2014, 6, 86–98. [Google Scholar]
  73. Caccin, M.; Giorgi, M.; Giacobbo, F.; Da Ros, M.; Besozzi, L.; Mariani, M. Eliminación de plomo (II) de soluciones acuosas mediante adsorción en carbones activados preparados a partir de cáscara de coco. Desalin. Water Treat. 2015, 1, 1–19. [Google Scholar]
  74. Halder, G.; Dhawane, S.; Barai, P.K.; Das, A. Optimización de la adsorción de cromo (VI) sobre carbón granular activado por vapor sobrecalentado a través de la metodología de superficie de respuesta y la red neuronal artificial. Environ. Prog. Sustain. Energy 2014, 34, 638–647. [Google Scholar]
  75. Vijetha, P.; Kumaraswamy, K.; Dhananjaneyulu, B.V.; Satyasree, N.; Lalitha, K.B. Estudios Cinéticos de Biosorción de Cadmio y Níquel a partir de Soluciones Acuosas con Citrus limonum. Revista de Investigación Farmacéutica, Biológica y Química Ciencias. 2014, 5, 1006–1015. [Google Scholar]
  76. Ergüvenerler, F.; Targan, Ş.; Tirtom, V.N. Eliminación de plomo de soluciones acuosas mediante biosorbentes de bajo coste y residuos (cáscaras de limón, judía y alcachofa). Ciencia y Tecnología del Agua 2020, 81, 159–169. [Google Scholar]
  77. Mohammadi, S.Z.; Mofidinasab, N.; Karimi, M.A.; Mosazadeh, F. Eliminación rápida y eficaz del ion Pb (II) y del tinte verde de malaquita de las aguas residuales mediante el uso de nanopartículas magnéticas de carbón activado y cobalto. Ciencia y Tecnología del Agua 2020, 82, 829–842. [Google Scholar]
  78. Threepanich, A.; Praipipat, P. Materiales de hidróxido-óxido de hierro (III) dopados con cáscaras de limón en polvo y perlas para aplicaciones de eliminación de plomo: Estudios de síntesis, caracterizaciones y adsorción de plomo. J. Environ. Chem. Eng. 2021, 9, 1–12. [Google Scholar]
  79. Villen, M.; Cerrillo, M.M.; Paz, J.M.; Rodriguez, J.M.; Arhoun, B. Valorización de residuos de cáscara de limón como biosorbente para la eliminación simultánea de níquel y cadmio de efluentes industriales. Environ. Technol. Innov. 2021, 21, 101380. [Google Scholar]
  80. Herrera, A.; Bitar, N.; Villabona, Á.; Tejada, C.; González, Á.D. Adsorción de níquel a partir de una solución acuosa utilizando biomasa de piel de limón modificada químicamente con nanopartículas de TiO2. Sustain. Chem. Pharm. 2020, 17, 2–7. [Google Scholar]
  81. Villen, M.; Gutierrez, D.; Gomez, C.; Vereda, C.; Rodríguez, J.M.; Arhoun, B. Optimización de la biosorción de Ni (II) a partir de una solución acuosa en cáscara de limón modificada. Environ. Res. 2019, 1, 1–23. [Google Scholar]
  82. Bhatnagar, A.; Minocha, A.K.; Sillanpää, M. Eliminación por adsorción de cobalto de una solución acuosa mediante la utilización de cáscara de limón como biosorbente. Biochem. Eng. J. 2010, 48, 181–186. [Google Scholar]
  83. Poonam, M.; Kumar, N. Estudio experimental y cinético de eliminación de plomo (Pb2+) del efluente de la batería utilizando adsorbente de biocarbón de cáscara de limón dulce (Citrus limetta). Environ. Dev. Sustain. 2019, 1, 1–5. [Google Scholar]
  84. Šabanović, E.; Muhić-Šarac, T.; Nuhanović, M.; Memić, M. Biosorción de uranio (VI) a partir de solución acuosa mediante cáscaras de Citrus limon: Cinética, equlibrio y estudios por lotes. J. Radioanal. Nucl. Chem. 2019, 319, 425–435. [Google Scholar]
  85. Enniya, I.; Rghioui, L.; Jourani, A. Adsorción de cromo hexavalente en solución acuosa sobre carbón activado preparado a partir de cáscaras de manzana. Química y Farmacia Sostenibles 2018, 7, 9–16. [Google Scholar]
  86. Sartape, A.S.; Mandhare, A.M.; Salvi, P.P.; Pawar, D.K.; Kolekar, S.S. Estudios cinéticos y de equilibrio de la adsorción de Cd (II) a partir de soluciones acuosas por carbón activado de cáscara de manzano. Desalinización y Tratamiento de Agua. 2013, 51, 4638–4650. [Google Scholar]
  87. Chand, P.; Shil, A.K.; Sharma, M.; Pakade, Y.B. Adsorción mejorada de iones de cadmio de una solución acuosa utilizando orujo de manzana modificado químicamente: Mecanismo, cinética y termodinámica. Int. Biodeterior. Biodegrad. 2014, 90, 8–16. [Google Scholar]
  88. Heraldy, E.; Lestari, W.W.; Permatasari, D.; Arimurti, D.D. Biosorbente de desechos de tomate y residuos de jugo de manzana para eliminar el plomo. J. Environ. Chem. Eng. 2018, 6, 1201–1208. [Google Scholar]
  89. Chand, P.; Pakade, Y.B. Síntesis y caracterización de nanopartículas de hidroxiapatita impregnadas en orujo de manzana para mejorar la adsorción de iones Pb (II), Cd (II) y Ni (II) de una solución acuosa. Environ. Sci. Pollut. Res. 2015, 22, 10919–10929. [Google Scholar]
  90. Mahmoud, M.E.; Mohamed, A.K. Novedoso hidrogel de pectina derivado de un compuesto de estructuras organometálicas a base de cáscara de mandarina para una eliminación mejorada de los iones Cr (VI) y Pb (II). Revista Internacional de Macromoléculas Biológicas 2020, 164, 920–931. [Google Scholar]
  91. Ehrampoush, M.H.; Miria, M.; Salmani, M.H.; Mahvi, A.H. Eliminación de cadmio de una solución acuosa mediante nanopartículas de óxido de hierro de síntesis verde con extracto de cáscara de mandarina. J. Environ. Health Sci. Eng. 2015, 13, 1–5. [Google Scholar]
  92. Unugul, T.; Nigiz, F.U. Síntesis de cáscara de mandarina carbonizada tratada con ácido para la purificación de cobre. Water Pract. Technol. 2020, 29, 2108–2113. [Google Scholar]
  93. Inagaki, C.S.; Caretta, T.O.; Alfaya, R.V. da S.; Alfaya, A.A. da S. Cáscara de mandarina mexicana (Citrus nobilis) como nuevo biosorbente para eliminar Cu (II), Cd (II) y Pb (II) del efluente industrial. Desalin. Water Treat. 2013, 1, 5537–5546. [Google Scholar]
  94. Iqbal, M.; Saeed, A.; Zafar, S.I. Espectrofotometría FTIR, modelado de isotermas de adsorción y cinética, intercambio iónico y análisis EDX para comprender el mecanismo de eliminación de Cd2+ y Pb2+ por residuos de cáscara de mango. J. Hazard. Mater. 2009, 164, 161–171. [Google Scholar] [PubMed]
  95. Farihahusnah, H.; Mohamed, K.; Małgorzata, S. Biocarbón derivado de subproductos de frutas mediante un proceso de pirólisis para la eliminación del ión Pb (II): Una revisión actualizada. Chemosphere 2021, 287, 1–10. [Google Scholar]
  96. Rai, M.K.; Shahi, G.; Meena, V.; Meena, R.; Chakraborty, S.; Singh, R.S.; Rai, B.N. Eliminación de cromo hexavalente Cr (VI) utilizando carbón activado preparado a partir de granos de mango activados con H3PO4. Resour.-Effic. Technol. 2016, 2, 63–70. [Google Scholar]
  97. Adekola, F.; Adegoke, H.; Ajikanle, R. Estudios cinéticos y de equilibrio de la adsorción de Pb (II) y Cd (II) en la cáscara de mango salvaje africano (irvingia gabonensis). Bull. Chem. Soc. Ethiop. 2016, 30, 185. [Google Scholar]
  98. Shakya, A.; Agarwal, T. Eliminación de Cr (VI) del agua utilizando biocarros derivados de la cáscara de piña: Potencial de adsorción y evaluación de la reutilización. J. Mol. Liq. 2019, 293, 111497. [Google Scholar]
  99. Lim, Z.E.; Thai, Q.B.; Le, D.K.; Luu, T.P.; Nguyen, P.T.; Do, N.H.; Le, P.K.; Phan-Thien, N.; Goh, X.T.; Doung, H.M. Aerogeles de piña funcionalizados para aplicaciones de adsorción de gas etileno y eliminación de iones de níquel (II). J. Environ. Chem. Eng. 2020, 8, 104524. [Google Scholar]
  100. Wang, C.; Gu, L.; Liu, X.; Zhang, X.; Cao, L.; Hu, X. Comportamiento de sorción del Cr (VI) en el biocarbón derivado de la piel de la piña y la influencia del pireno coexistente. Int. Biodeterior. Biodegrad. 2016, 111, 78–84. [Google Scholar]
  101. Phuengphai, P.; Singjanusong, T.; Kheangkhun, N.; Wattanakornsiri, A. Eliminación de cobre (II) de una solución acuosa utilizando cáscaras de frutas modificadas químicamente como biosorbentes eficientes y de bajo costo. Water Sci. Eng. 2021, 1, 1–12. [Google Scholar]
  102. Gerola, G.P.; Boas, N.V.; Caetano, J.; Tarley, C.R.; Gonçalves, A.C.; Dragunski, D.C. Utilización del subproducto de la piel de Maracuyá como biosorbente de iones de plomo (II). Water Air Soil Pollut. 2013, 224, 1–5. [Google Scholar]
  103. Aranda, E.; Cristiani, E. Efecto del pH sobre la eliminación de cromo hexavalente y total de soluciones acuosas por cáscara de aguacate utilizando sistemas continuos y por lotes. Environ. Sci. Pollut. Res. 2017, 1, 1–5. [Google Scholar]
  104. DANE. Cultivo de limón o lima Tahití (Citrus latifolia Tanaka) frente a los efectos de las condiciones climáticas adversas. Boletín Mensual, Insumos y Factores Asociados a la Producción Agropecuaria 2015, 41, 1–93. [Google Scholar]
  105. Carvajal, M.; Zuluaga, P.; Ocampo, O.; Duque, D. Las exportaciones de plátano como una estrategia de desarrollo rural en Colombia. Apuntes CENES 2018, 38, 113–148. [Google Scholar]
  106. DANE. El cultivo del mango, Magnifera indica, y su comportamiento frente a las comunidades ambientales y manejo. Boletín Mensual Insumos y Factores Asociados a la Producción Agropecuaria 2015, 31, 1–64. [Google Scholar]
  107. Cámara de comercio. Tomate de árbol, Programa de apoyo agrícola agroindustrial vicepresidencia de fortalecimiento empresarial. Núcleo Ambiental 2015, 1, 1–20. [Google Scholar]
  108. Garzón, J. Establecimiento y Manejo de un Cultivo de Piña en la Sede de la Asociación de Ingenieros Agrónomos del Llano en Villavicencio. Bachelor’s Thesis, Universidad de los llanos, Villavicencio, Colombia, 2016. [Google Scholar]
  109. Álvarez, E. Guía Técnica del Cultivo de la Maracuyá, Programa MAG-CENTA-FRUTALES; Centro Nacional de Tecnología Agropecuaria y Forestal: Ciudad Arce, El Salvador, 2010. [Google Scholar]
  110. Orduz, J.; Castiblanco, S.; Calderón, C.; Velasquéz, H. Potencial de rendimiento y calidad de 13 variedades e híbridos comerciales de cítricos en condiciones del piedemonte llanero de Colombia. Revista Colombiana de Ciencias Hortícolas 2011, 5, 171–185. [Google Scholar]
  111. Lizano, M. Guía Técnica del cultivo de Coco; Programa Nacional de Frutas del Salvador Ministerio De Agricultura Y Ganadería: Santa Tecla, El Salvador, 2015. [Google Scholar]
  112. FINANGRO. Ficha de Inteligencia del Aguacate. Fondo para el Financiamiento del Sector Agropecuario. Unidad de Gestión de Riesgos Agropecuarios–UGRA. Vicepresidencia de Garantías y Riesgos Agropecuario. 2018. Available online: https://www.finagro.com.co/productos-y-servicios/ISA/gesti%C3%B3n-de-riesgos-agropecuarios (accessed on 18 January 2022).
  113. Flores, M. Texto guía del Participante, Producción de Manzana. Fundación Educación para el Desarrollo FAUTAPO. 2014. Sucre-Bolivia. Available online: http://saludpublica.bvsp.org.bo/cc/bo40.1/documentos/704.pdf (accessed on 18 January 2022).
  114. Muñoz, J.; Rodríguez, L.; Bermúdez, L. Analysis of the competitiveness of the lulo production system (Solanum quitoense Lam.) in three municipalities of Nariño. Revista Colombiana de Ciencias Hortícolas 2013, 7, 173–185. [Google Scholar]
  115. Mateus, D.; Orduz, J. Mandarina Dancy: Una nueva alternativa para la citricultura del piedemonte llanero de Colombia. Revista Corpoica Cienc Tecnol Agropecu 2015, 16, 105–112. [Google Scholar]
  116. Noguera, K.; Oliveros, J. Los rellenos sanitarios en Latinoamérica. Caso Colombiano. Revista Académica Colombiana de Ciencia XXXIV 2010, 132, 347–356. [Google Scholar]
  117. Unidad Administrativa Especial de Servicios Públicos. Observación de Residuos Sólidos en Bogotá. 2020. Available online: https://www.uaesp.gov.co/content/observatorio-residuos-solidos (accessed on 5 January 2022).
  118. Bhatnagar, A.; Sillanpaa, M.; Witek-Krowiak, A. Agricultural waste peels as versatile biomass for water purification—A review. Chem. Eng. J. 2015, 270, 244–271. [Google Scholar]
  119. Concejo Nacional de Política Económica y Social República de Colombia Departamento Nacional de Planeacios (COMPES-3874). Política Nacional Para la Gestión Integral de Residuos Sólidos. 2016. Available online: https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3874.pdf (accessed on 18 January 2022).
  120. Division for Sustainable Development. How Does the CSD Relate to the Johannesburg Summit? 2002. Available online: https://www.un.org/esa/dsd/dsd/dsd_faqs_csd.shtml#Q5 (accessed on 5 January 2022).
  121. Saval, S. Aprovechamiento de Residuos Agroindustriales: Pasado, Presente y Futuro. Biotecnología y Bioingeniería 2012, 16, 14–46. [Google Scholar]
  122. Huang, R.; Cao, M.; Guo, H.; Qi, W.; Su, R.; He, Z. Enhanced Ethanol Production from Pomelo Peel Waste by Integrated Hydrothermal Treatment, Multienzyme Formulation, and Fed-Batch Operation. J. Agric. Food Chem. 2014, 60, 4643–4651. [Google Scholar]
  123. Tejada, C.; Quiñones, E.; Tejada, L.; Marimón, W. Absorción de Cromo Hexavalente en soluciones acuosas por cascaras de naranja (Citrus sinensis). Prod. Limpia 2014, 10, 9–21. [Google Scholar]
  124. Mafra, M.; Igarashi, L.; Zuim, D.; Vasques, C.; Ferreira, M. Adsorption of remazol brilliant blue on an orange peel adsorbent. Braz. J. Chem. Eng. 2013, 30, 657–665. [Google Scholar]
  125. Pinzón, M.; Tamayo, M. Caracterización de la cáscara de naranja para su uso como material bioadsorbente. Rev. BISTUA 2008, 6, 28–37. [Google Scholar]
  126. Deveci, H.; Kar, Y. Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis. J. Ind. Eng. Chem. 2013, 19, 190–196. [Google Scholar]
  127. Lugo, V.; Barrera, C.; Ureña, F.; Bilyeu, B.; Linares, I. Biosorption of Cr (III) and Fe (III) in single and binary systems onto pretreated orange peel. J. Environ. Manag. 2012, 112, 120–127. [Google Scholar]
  128. Rodríguez, M.; Gamba, N.; Lozano, O.; Estévez de Sístiva, A.; Castillo, E.; Pedraza, E.; Moreno, C.; Orduz, J.; Fonseca, J.; Herrera, I. Desempeño Ambiental de la Tecnología en la Industria Colombiana, 1st ed.; Instituto de Hidrología, Meteorología y Estudios Ambiental, Ed.; El medio ambiente en Colombia (520); Editorial Santa fe de Bogotá: Bogotá, Colombia, 1998. Available online: http://documentacion.ideam.gov.co/openbiblio/bvirtual/005192/medioambiente/cap12.pdf (accessed on 18 January 2022).
  129. Vargas, M.; Figueroa, H.; Tamayo, J.; Toledo, V.; Moo, V. Aprovechamiento de cáscaras de frutas: Análisis nutricional y compuestos bioactivos. Ciencias Naturales y Agropecuarias 2018, 26, 1–12. [Google Scholar]
  130. Feng, N.; Guo, X.; Liang, S. Adsorption study of copper(II) by chemically modified orange peel. J. Hazard. Mater. 2009, 164, 1286–1292. [Google Scholar]
  131. Shan, W.; Fang, D.; Zhao, Z.; Shuang, Y.; Ning, L.; Xing, Z.; Xiong, Y. Application of orange peel for adsorption separation of molybdenum(VI) from re-containing industrial effluent. Biomass Bioenergy 2012, 37, 289–297. [Google Scholar]
  132. Ali Khan Rao, R.; Rehman, F.; Kashifuddin, M. Removal of Cr (VI) from electroplating wastewater using fruit peel of Leechi (Litchi chinensis). Desalin. Water Treat. 2012, 49, 136–146. [Google Scholar]
  133. Monroy, F.; Echavarría, M.; Gómez, D. Design and validation of a system for hexavalent chromium adsorption in tannery effluents using orange peel and wheat bran. Tecnología y Ciencias del Agua 2021, 12, 1–31. [Google Scholar]
Figure 1. Food Consumption in Colombia. Reprinted with permission from ref. [18]. 2010 ICBF.
Figure 1. Food Consumption in Colombia. Reprinted with permission from ref. [18]. 2010 ICBF.
Molecules 27 02124 g001
Figure 2. Inedible percentage shell–seed of fruits in Colombia. Reprinted with permission from ref [21]. 2018 ICBF.
Figure 2. Inedible percentage shell–seed of fruits in Colombia. Reprinted with permission from ref [21]. 2018 ICBF.
Molecules 27 02124 g002
Figure 3. The pyramid of the most consumed fruits in Colombia [20]. Own elaboration.
Figure 3. The pyramid of the most consumed fruits in Colombia [20]. Own elaboration.
Molecules 27 02124 g003
Figure 4. PRISMA format of selected articles in the Scopus, Web of Science, Science Direct databases from 2010 to 2021.
Figure 4. PRISMA format of selected articles in the Scopus, Web of Science, Science Direct databases from 2010 to 2021.
Molecules 27 02124 g004
Figure 5. Compilation of selected fruit peels in Scopus, Web of Science, and Science Direct databases from 2010–2021.
Figure 5. Compilation of selected fruit peels in Scopus, Web of Science, and Science Direct databases from 2010–2021.
Molecules 27 02124 g005
Figure 6. Co-occurrence of fruit peels with respect to publications of heavy metals removal in wastewater. Taken from Scopus/VOSviewer 1.6.17 metadata (https://www.vosviewer.com/getting-started, accessed on 18 January 2021).
Figure 6. Co-occurrence of fruit peels with respect to publications of heavy metals removal in wastewater. Taken from Scopus/VOSviewer 1.6.17 metadata (https://www.vosviewer.com/getting-started, accessed on 18 January 2021).
Molecules 27 02124 g006
Figure 7. Co-occurrence of countries with respect to heavy metals publications. Taken from Scopus/VOSviewer 1.6.17 metadata.
Figure 7. Co-occurrence of countries with respect to heavy metals publications. Taken from Scopus/VOSviewer 1.6.17 metadata.
Molecules 27 02124 g007
Figure 8. Co-occurrence of authors presenting publications on heavy metals removal in wastewater. Taken from Scopus/VOSviewer 1.6.17 metadata.
Figure 8. Co-occurrence of authors presenting publications on heavy metals removal in wastewater. Taken from Scopus/VOSviewer 1.6.17 metadata.
Molecules 27 02124 g008
Figure 9. Heat map of organizations presenting publications on heavy metals removal in wastewater. Taken from Scopus/VOSviewer 1.6.17 metadata.
Figure 9. Heat map of organizations presenting publications on heavy metals removal in wastewater. Taken from Scopus/VOSviewer 1.6.17 metadata.
Molecules 27 02124 g009
Figure 10. Co-occurrence of journals presenting publications on heavy metals removal in wastewater. Taken from Scopus/VOSviewer 1.6.17 metadata.
Figure 10. Co-occurrence of journals presenting publications on heavy metals removal in wastewater. Taken from Scopus/VOSviewer 1.6.17 metadata.
Molecules 27 02124 g010
Figure 11. Organic solid waste behavior in Bogotá, D.C. Reprinted with permission from ref [117]. 2016 UAESP.
Figure 11. Organic solid waste behavior in Bogotá, D.C. Reprinted with permission from ref [117]. 2016 UAESP.
Molecules 27 02124 g011
Figure 12. Solid waste production in Bogotá, D.C. Reprinted with permission from ref [117]. 2016 UAESP.
Figure 12. Solid waste production in Bogotá, D.C. Reprinted with permission from ref [117]. 2016 UAESP.
Molecules 27 02124 g012
Figure 13. Content analysis map. Source: Elaborated with NVivo 12 Plus.
Figure 13. Content analysis map. Source: Elaborated with NVivo 12 Plus.
Molecules 27 02124 g013
Figure 14. Word cloud. Source: Elaborated with NVivo 12 Plus.
Figure 14. Word cloud. Source: Elaborated with NVivo 12 Plus.
Molecules 27 02124 g014
Figure 15. Fruit peels. (a) optimal orange peel conditions; (b) optimal banana peel conditions.
Figure 15. Fruit peels. (a) optimal orange peel conditions; (b) optimal banana peel conditions.
Molecules 27 02124 g015
Figure 16. Fruit peels. (a) Optimal conditions of lemon peel; (b) optimal conditions of coconut peel.
Figure 16. Fruit peels. (a) Optimal conditions of lemon peel; (b) optimal conditions of coconut peel.
Molecules 27 02124 g016
Figure 17. Fruit peels. (a) Optimal conditions of Apple peel; (b) optimal conditions of tangerine peel.
Figure 17. Fruit peels. (a) Optimal conditions of Apple peel; (b) optimal conditions of tangerine peel.
Molecules 27 02124 g017
Figure 18. Fruit peels. (a) Optimal conditions of mango peel; (b) optimal conditions of pineapple peel.
Figure 18. Fruit peels. (a) Optimal conditions of mango peel; (b) optimal conditions of pineapple peel.
Molecules 27 02124 g018
Figure 19. Fruit peels. (a) Optimal conditions of passion fruit peel; (b) optimal conditions of avocado peel.
Figure 19. Fruit peels. (a) Optimal conditions of passion fruit peel; (b) optimal conditions of avocado peel.
Molecules 27 02124 g019
Figure 20. Biorefinery of fruit peels [118,129]. 2022, own elaboration.
Figure 20. Biorefinery of fruit peels [118,129]. 2022, own elaboration.
Molecules 27 02124 g020
Figure 21. Evaluation of fruit peels in the removal of heavy metals in industrial wastewater, own elaboration.
Figure 21. Evaluation of fruit peels in the removal of heavy metals in industrial wastewater, own elaboration.
Molecules 27 02124 g021
Figure 22. Word tree of challenges from the use of fruit peels. Source NVivo 12 plus.
Figure 22. Word tree of challenges from the use of fruit peels. Source NVivo 12 plus.
Molecules 27 02124 g022
Table 1. Consolidation of the 12 fruit peels in Scopus, Web of Science, and Science Direct databases from 2010 to 2021.
Table 1. Consolidation of the 12 fruit peels in Scopus, Web of Science, and Science Direct databases from 2010 to 2021.
Fruit PeelScopus (Number of Articles)References ScopusScience Direct (Number of Articles)References Science DirectWeb of Science (Number of Articles)References Web of Science
Orange9[22,23,24,25,26,27,28,29,30]2[31,32]13[9,33,34,35,36,37,38,39,40,41,42,43,44]
Banana8[45,46,47,48,49,50,51,52]7[53,54,55,56,57,58,59]5[9,50,55,60,61]
Coconut6[62,63,64,65,66,67]2[68,69]6[66,70,71,72,73,74]
Lemon5[29,30,75,76,77]5[78,79,80,81,82]3[82,83,84]
Apple3[29,85,86]3[85,87,88]1[89]
Tangerine1[90]1[57]3[91,92,93]
Mango0-3[94,95,96]1[97]
Pineapple0-3[98,99,100]0-
Passion fruit0-1[101]1[102]
Avocado0-0-1[103]
Lulo0-0-0-
Tree Tomato0-0-0-
Table 2. Generalities of the selected fruits in Colombia [19].
Table 2. Generalities of the selected fruits in Colombia [19].
General Information on Selected Fruits in Colombia
SpeciesOrigin/YearType of FruitReferences
LemonChina/1941Major perennials[104]
BananaAsia/NETransient fruits[105]
Mango * India/NEMajor perennials[106]
Tree tomatoPeru/NETransient Fruits[107]
PineappleSoutheast Brazil and Paraguay/NETransient fruits[108]
Passion fruitBrazil/NETransient fruits[109]
Orange * China/NEMajor perennials[110]
CoconutMalaysia/NEMajor perennials[111]
Avocado * Mexico and Guatemala/NEMajor perennials[112]
Apple * Central Asia/NE-[113]
LuloColombia/NETransient fruits[114]
Tangerine *Asia/NEMajor perennials [115]
* Fruits of greater daily consumption.
Table 3. Organic characterization of orange peel. Reprinted with permission from ref [123]. 2014 Tejada.
Table 3. Organic characterization of orange peel. Reprinted with permission from ref [123]. 2014 Tejada.
ParameterValue (%)Analytical Method of QuantificationReference
Carbon42.04AOAC 949.14[123]
Hydrogen5.44AOAC 949.14
Nitrogen0.70AOA 984.13 Kjeldahl
Pectin10.98Acid digestion and Thermogravimetry
Lignin6.51Photocolorimetry
Cellulose13.08digestion and Thermogravimetry
Hemicellulose6.47digestion and Thermogravimetry
Table 4. Inorganic composition of orange peel by X-ray fluorescence analysis. Reprinted with permission from ref [124]. 2013 Mafra.
Table 4. Inorganic composition of orange peel by X-ray fluorescence analysis. Reprinted with permission from ref [124]. 2013 Mafra.
CharacteristicsValuesReference
CaO1.42[124]
K2O0.18
SO30.14
MgO0.12
Fe2O30.11
SiO20.08
P2O50.05
BaO0.02
SrO0.01
Al2O30.01
NiO0.01
WO3Not detected
ZnONot detected
MnNot detected
Table 5. Characterization of functional groups in orange peel, infrared spectrum.
Table 5. Characterization of functional groups in orange peel, infrared spectrum.
Functional GroupDisplacement cm−1References
Hydroxyl groups (OH) ranging from 3340 to 3600 cm−1.3441[125,126,127]
(C-H) methyl, methylene, and methoxy groups.2923.78
Carbonyl (C=O), indicating the vibration of the carboxyl groups of pectin.1748.15
Stretching of (C=C), as a consequence of the presence of aromatic rings.1636.17
Presence of (C-H), aliphatic and aromatic, groups in a deformation plane, methyl, methylene, and methoxy groups.1444.43
The range corresponds to the (C-O) group of alcohols and carboxylic acids.1333.24–1022
Table 6. Industrial activities that generate heavy metals [10,128]. 2015, Caviedes, D.I.; Muñoz, R.A.; Perdomo, A.; Rodriguez, D.; Sandoval, I.J.
Table 6. Industrial activities that generate heavy metals [10,128]. 2015, Caviedes, D.I.; Muñoz, R.A.; Perdomo, A.; Rodriguez, D.; Sandoval, I.J.
IndustryMetals Generated by the ActivityContamination By-Products
Ferrous metal miningCd, Cu, Ni, Cr, Co, ZnAcid mine drainage, tailings, tailings dumps, ferrous metals and steel mills, chemical industry.
Ore extractionAs, Cd, Cu, Ni, Pb, ZnPresence in ores as well as in by-products.
SmeltingAs, Cd, Pb, TiOre processing to obtain metals.
MetallurgyCr, Cu, Mn, Pb, Sb, ZnThermal processing of metals.
Alloys and steelsPb, Mo, Ni, Cu, Cd, As, Te, U, ZnMetal fabrication, disposal and recycling Tailings.
Waste managementZn, Cu, Cd, Pb, Ni, Cr, Hg, MnWaste incineration or in leachates.
Metal corrosionFe, Cr, Pb, Ni, Co, ZnInstability of metals exposed to the environment.
ElectroplatingCr, Ni, Zn, CuLiquid effluents from coating processes.
Paints and pigmentsPb, Cr, As, Ti, Ba, ZnAqueous waste from the manufacture and deterioration of old paint.
BatteriesPb, Sb, Zn, Cd, Ni, HgWaste pile fluid, soil and groundwater contamination.
ElectronicsPb, Cd, Hg, Pt, Au, Cr, As, Ni, MnAqueous and solid metal waste from the manufacturing and recycling process.
Agriculture and livestockCd, Cr, Mo, Pb, U, V, Zn, As, Mn, CuContamination of runoff, surface and ground water, plant bioaccumulation.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Gómez-Aguilar, D.L.; Rodríguez-Miranda, J.P.; Salcedo-Parra, O.J. Fruit Peels as a Sustainable Waste for the Biosorption of Heavy Metals in Wastewater: A Review. Molecules 2022, 27, 2124. https://doi.org/10.3390/molecules27072124

AMA Style

Gómez-Aguilar DL, Rodríguez-Miranda JP, Salcedo-Parra OJ. Fruit Peels as a Sustainable Waste for the Biosorption of Heavy Metals in Wastewater: A Review. Molecules. 2022; 27(7):2124. https://doi.org/10.3390/molecules27072124

Chicago/Turabian Style

Gómez-Aguilar, Dora Luz, Juan Pablo Rodríguez-Miranda, and Octavio José Salcedo-Parra. 2022. "Fruit Peels as a Sustainable Waste for the Biosorption of Heavy Metals in Wastewater: A Review" Molecules 27, no. 7: 2124. https://doi.org/10.3390/molecules27072124

Article Metrics

Back to TopTop