Kinetics of Ni, V and Fe Leaching from a Spent Catalyst in Microwave-Assisted Acid Activation Process
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Work
2.2. Analytical Methods
2.3. Leaching Kinetics
3. Results and Discussions
3.1. Characterization of Contaminant Metals on Spent FCC Catalyst Particles
3.1.1. Distribution and Migration of Contaminant Metals
3.1.2. Phase Speciation of Contaminant Metals in SFCC Catalyst
3.2. Leaching Behavior of Contaminant Metals in Organic and Inorganic Acids
3.2.1. Removal Effects
3.2.2. Leaching Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pathak, A.; Kothari, R.; Vinoba, M.; Habibi, N.; Tyagi, V.V. Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions. J. Environ. Manag. 2021, 280, 111789. [Google Scholar] [CrossRef]
- Nguyen, L.P.; Tran, T.V.; Phan, T.T.; Ngo, P.T.; Ha, Q.L.M.; Luong, T.N.; Tran, T.H.; Phan, T.T. High-efficient production of biofuels using spent fluid catalytic cracking (FCC) catalysts and high acid value waste cooking oils. Renew. Energy 2021, 168, 57–63. [Google Scholar]
- Jiang, H.; Livi, K.J.; Kundu, S.; Cheng, W.C. Characterization of iron contamination on equilibrium fluid catalytic cracking catalyst particles. J. Catal. 2018, 361, 126–134. [Google Scholar] [CrossRef]
- Mouna, H.M.; Barala, S.S.; Mohapatra, P. Leaching of metals from spent fluid catalytic cracking catalyst using acidothiobacillus ferrooxidans and comparing its leaching efficiency with organic and inorganic acids. J. Environ. Chem. Eng. 2021, 9, 105522. [Google Scholar] [CrossRef]
- Liu, H.L.; He, H.Y.; Li, Y.; Hu, T.T.; Ni, H.W.; Zhang, H. Coupling effect of steel slag in preparation of calcium-containing geopolymers with spent fluid catalytic cracking (FCC) catalyst. Constr. Build. Mater. 2021, 290, 123194. [Google Scholar] [CrossRef]
- Wallenstein, D.; Farmer, D.; Knoell, J.; Fougret, C.M.; Brandt, S. Progress in the deactivation of metals contaminated FCC catalysts by a novel catalyst metallation method. Appl. Catal. A Gen. 2013, 462, 91–99. [Google Scholar] [CrossRef]
- Souza, N.; Tkach, I.; Morgado, E.; Krambrock, K. Vanadium poisoning of FCC catalysts: A quantitative analysis of impregnated and real equilibrium catalysts. Appl. Catal. A Gen. 2018, 560, 206–214. [Google Scholar] [CrossRef]
- Mouna, H.M.; Saroj, S.B. Leaching of nickel and vanadium from the spent fluid catalytic cracking catalyst by reconnoitering the potential of aspergillus niger associating with chemical leaching. J. Environ. Chem. Eng. 2019, 7, 103025. [Google Scholar]
- Cho, S.I.; Jung, K.S.; Woo, S.I. Regeneration of spent RFCC catalyst irreversibly deactivated by Ni, Fe, and V contained in heavy oil. Appl. Catal. B Environ. 2001, 33, 249–261. [Google Scholar] [CrossRef]
- Ramos-Cano, J.; González-Zamarripa, G.; Carrillo-Pedroza, F.R.; de Jesús Soria-Aguilar, M.; Hurtado-Macías, A.; Cano-Vielma, A. Kinetics and statistical analysis of nickel leaching from spent catalyst in nitric acid solution. Int. J. Miner. Process. 2016, 148, 41–47. [Google Scholar] [CrossRef]
- Chaudhary, A.J.; Donaldson, J.D.; Boddington, S.C.; Grimes, S.M. Heavy metals in the environment. Part II: A hydrochloric acid leaching process for the recovery of nickel value from a spent catalyst. Hydrometallurgy 1993, 34, 137–150. [Google Scholar] [CrossRef]
- Lee, J.Y.; Rao, S.V.; Kumar, B.N.; Kang, D.J.; Reddy, B.R. Nickel recovery from spent Raney nickel catalyst through dilute sulfuric acid leaching and soda ash precipitation. J. Hazard. Mater. 2010, 176, 1122–1125. [Google Scholar] [CrossRef]
- Valverde, J.I.M.; Paulino, J.F.; Afonso, J.C. Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium. J. Hazard. Mater. 2008, 160, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Sha, Y.X.; Gu, Y.P.; Yuan, Q.M.; Tian, H.; Shan, H.H.; Yang, C.H. Activity recovery of FCC catalyst by metal removal with various inorganic acids. J. Univ. Petrol. 2005, 29, 115–118. (In Chinese) [Google Scholar]
- Behera, S.S.; Panda, S.K.; Das, D.; Mohapatra, R.K.; Kim, H.I.; Lee, J.Y.; Jyothi, R.K.; Parhi, P.K. Microwave assisted leaching investigation for the extraction of copper(ii) and chromium(iii) from spent catalyst. Sep. Purif. Technol. 2020, 244, 116842. [Google Scholar] [CrossRef]
- Lie, J.; Liu, J.C. Recovery of Y and Eu from waste CRT phosphor using closed-vessel microwave leaching. Sep. Purif. Technol. 2021, 277, 119448. [Google Scholar] [CrossRef]
- Lin, S.D.; Gao, L.; Yang, Y.; Chen, J.; Guo, S.H.; Omran, M.; Chen, G. Efficiency and sustainable leaching process of manganese from pyrolusite-pyrite mixture in sulfuric acid systems enhanced by microwave heating. Hydrometallurgy 2020, 198, 105519. [Google Scholar] [CrossRef]
- Shang, H.; Liu, Y.; Shi, J.C.; Shi, Q.; Zhang, W.H. Microwave-assisted nickel and vanadium removal from crude oil. Fuel Process. Technol. 2016, 142, 250–257. [Google Scholar] [CrossRef]
- Le, T.Q.X.; Wang, Q.; Ravindra, A.V.; Li, X.T.; Ju, S.H. Microwave intensified synthesis of Zeolite-Y from spent FCC catalyst after acid activation. J. Alloys Compd. 2019, 776, 437–446. [Google Scholar] [CrossRef]
- Zhu, B.W.; Zhang, Y.J.; Zou, Y.L.; Yang, Z.L.; Zhang, B.; Dong, P.; Zhao, Y.; Zhang, M.Y.; Meng, Q.; Dong, P. Leaching kinetics and interface reaction of LiNi0.6Co0.2Mn0.2O2 materials from spent libs using gkb as reductant. J. Environ. Manag. 2021, 300, 113710. [Google Scholar] [CrossRef]
- Zeng, S.; Shen, Y.; Sun, B.; Tan, K.X.; Zhang, S.W.; Ye, W.H. Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone. Nucl. Eng. Technol. 2022, 54, 1175–1184. [Google Scholar] [CrossRef]
- Le, T.Q.X.; Ju, S.H.; Koppala, S.; Peng, J.H.; Pan, B.; Zhang, L.B.; Wang, Q.; Li, X.T. Kinetics study of microwave enhanced reactions between diasporic bauxite and alkali solution. J. Alloys Compd. 2018, 749, 652–663. [Google Scholar] [CrossRef]
- Chen, C.; Yu, J.; Yoza, B.A.; Li, Q.X.; Wang, G. A novel “wastes-treat-wastes” technology: Role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater. J. Environ. Manag. 2015, 152, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Jenko, M.; Koroušić, B.; Mandrino, D.; Prešern, V. HRAES study of oxide scale formation by decarburization of non-oriented electrical steel sheets. Vacuum 2000, 57, 295–305. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- John, F.M.; William, F.S.; Peter, E.S.; Kenneth, D.B. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Chastain, J.; King, R.C. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics: Eden Prairie, MN, USA, 1995. [Google Scholar]
1 − 3(1 − x)2/3 + 2(1 − x) | 1 − (1 − x)1/3 | ||||||
---|---|---|---|---|---|---|---|
T (K) | Rate Constant k | R2 | T (K) | Rate Constant k | R2 | ||
V | oxalic acid | 323 | 2.37 × 10−4 | 0.984 | 323 | 6.99 × 10−4 | 0.983 |
343 | 3.00 × 10−4 | 0.995 | 343 | 8.39 × 10−4 | 0.987 | ||
353 | 3.54 × 10−4 | 0.993 | 353 | 9.15 × 10−4 | 0.987 | ||
363 | 3.70 × 10−4 | 0.959 | 363 | 9.72 × 10−4 | 0.961 | ||
sulfuric acid | 323 | 5.77 × 10−4 | 0.998 | 323 | 0.00128 | 0.991 | |
343 | 7.09 × 10−4 | 0.989 | 343 | 0.00137 | 0.993 | ||
353 | 8.48 × 10−4 | 0.990 | 353 | 0.00145 | 0.993 | ||
363 | 8.81 × 10−4 | 0.999 | 363 | 0.00152 | 0.995 | ||
Fe | oxalic acid | 323 | 1.25 × 10−4 | 0.954 | 323 | 6.66 × 10−4 | 0.995 |
343 | 2.17 × 10−4 | 0.966 | 343 | 9.15 × 10−4 | 0.993 | ||
353 | 3.12 × 10−4 | 0.916 | 353 | 0.0012 | 0.981 | ||
363 | 4.03 × 10−4 | 0.948 | 363 | 0.00158 | 0.991 | ||
sulfuric acid | 323 | 1.92 × 10−4 | 0.901 | 323 | 9.46 × 10−4 | 0.974 | |
343 | 5.096 × 10−4 | 0.993 | 343 | 0.00134 | 0.945 | ||
353 | 6.54 × 10−4 | 0.968 | 353 | 0.00153 | 0.942 | ||
363 | 8.22 × 10−4 | 0.985 | 363 | 0.00189 | 0.999 | ||
Ni | oxalic acid | 323 | 5.18 × 10−6 | 0.985 | 323 | 1.64 × 10−4 | 0.944 |
343 | 2.26 × 10−5 | 0.816 | 343 | 3.57 × 10−4 | 0.958 | ||
353 | 4.55 × 10−5 | 0.855 | 353 | 5.22 × 10−4 | 0.969 | ||
363 | 6.11 × 10−5 | 0.841 | 363 | 6.97 × 10−4 | 0.984 | ||
sulfuric acid | 323 | 3.86 × 10−5 | 0.924 | 323 | 5.05 × 10−4 | 0.993 | |
343 | 1.24 × 10−4 | 0.875 | 343 | 8.80 × 10−4 | 0.992 | ||
353 | 2.64 × 10−4 | 0.967 | 353 | 0.00142 | 0.982 | ||
363 | 3.43 × 10−4 | 0.932 | 363 | 0.0019 | 0.999 | ||
Al | oxalic acid | 323 | 6.98 × 10−6 | 0.920 | 323 | 1.98 × 10−4 | 0.998 |
343 | 3.46 × 10−5 | 0.823 | 343 | 4.38 × 10−4 | 0.956 | ||
353 | 5.20 × 10−5 | 0.959 | 353 | 5.18 × 10−4 | 0.995 | ||
363 | 6.14 × 10−5 | 0.962 | 363 | 6.01 × 10−4 | 0.978 | ||
sulfuric acid | 323 | 7.52 × 10−5 | 0.972 | 323 | 6.28 × 10−4 | 0.990 | |
343 | 1.82 × 10−4 | 0.985 | 343 | 9.22 × 10−4 | 0.972 | ||
353 | 2.40 × 10−4 | 0.984 | 353 | 0.00111 | 0.979 | ||
363 | 2.89 × 10−4 | 0.946 | 363 | 0.0014 | 0.993 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Ren, J.; Ravindra, A.V.; Lv, Y.; Le, T. Kinetics of Ni, V and Fe Leaching from a Spent Catalyst in Microwave-Assisted Acid Activation Process. Molecules 2022, 27, 2078. https://doi.org/10.3390/molecules27072078
Wang T, Ren J, Ravindra AV, Lv Y, Le T. Kinetics of Ni, V and Fe Leaching from a Spent Catalyst in Microwave-Assisted Acid Activation Process. Molecules. 2022; 27(7):2078. https://doi.org/10.3390/molecules27072078
Chicago/Turabian StyleWang, Tian, Jing Ren, Annavarapu V. Ravindra, Yan Lv, and Thiquynhxuan Le. 2022. "Kinetics of Ni, V and Fe Leaching from a Spent Catalyst in Microwave-Assisted Acid Activation Process" Molecules 27, no. 7: 2078. https://doi.org/10.3390/molecules27072078
APA StyleWang, T., Ren, J., Ravindra, A. V., Lv, Y., & Le, T. (2022). Kinetics of Ni, V and Fe Leaching from a Spent Catalyst in Microwave-Assisted Acid Activation Process. Molecules, 27(7), 2078. https://doi.org/10.3390/molecules27072078