Determination of Polycyclic Aromatic Hydrocarbons in Traditional Chinese Medicine Raw Material, Extracts, and Health Food Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis Conditions
2.2. Extraction
2.3. Purification
2.4. Accuracy, Precision, and Quality Control of the Developed Method
2.5. Samples Analysis
2.6. Exposure Assessment
3. Materials and Methods
3.1. Chemical Reagents and Samples
3.2. Analytical Instrumentation
3.3. Preparation of Standard Solutions
3.4. Sample Preparation
3.4.1. Sample Extraction
3.4.2. Sample Purification
3.5. Quality Control
3.6. Data Analysis
3.7. Risk Assessment for Dietary Exposure to PAHs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ciemniak, A.; Kuzmicz, K.; Rajkowska-Mysliwiec, M.; Cadena, M.F. Assessing the contamination levels of dried teas and their infusions by polycyclic aromatic hydrocarbons (PAHs). J. Consum. Prot. Food Saf. 2019, 14, 263–274. [Google Scholar] [CrossRef] [Green Version]
- International Agency for Research on Cancer. Monographs on the Evaluation of Carcinogenic Risks to Humans, Some Non-Heterocyclic Polycyclic Aromatic Hydroncarbons and Some Related Exposures; IARC: Lyon, France, 2010. [Google Scholar]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Zelinkova, Z.; Wenzl, T. The occurrence of 16 EPA PAHs in food—A Review. Polycycl. Aromat. Compd. 2015, 35, 248–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, L.; Varshney, J.G.; Agarwal, T. Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chem. 2016, 199, 768–781. [Google Scholar] [CrossRef] [PubMed]
- Ciemniak, A. Wielopierścieniowe weglowodory aromatyczne (WWA) w herbatach ziołowych i owocowych [Polycyclic aromatic hydrocarbons (PAHs) in herbs and fruit teas]. Rocz. Panstw. Zakl. Hig. 2005, 56, 317–322. [Google Scholar] [CrossRef]
- Sampaio, G.R.; Guizellini, G.M.; da Silva, S.A.; de Almeida, A.P.; Pinaffi-Langley, A.C.C.; Ogero, M.M.; de Camargo, A.C.; Torres, E.A.F.S. Polycyclic aromatic hydrocarbons in foods: Biological effects, legislation, occurrence, analytical methods, and strategies to reduce their formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef]
- Wu, P.G.; Zhang, L.Q.; Hu, Z.Y.; Zhang, N.H.; Wang, L.Y.; Zhao, Y.X. Contamination of 15 + 1 European Union polycyclic aromatic hydrocarbons in various types of tea and their infusions purchased on Hangzhou city market in China. Food Addit. Contam. Part A 2020, 7, 1621–1632. [Google Scholar] [CrossRef]
- Roudbari, A.; Nazari, R.R.; Shariatifar, N.; Moazzen, M.; Abdolshahi, A.; Mirzamohammadi, S.; Madani-Tonekaboni, M.; Delvarianzadeh, M.; Arabameri, M. Concentration and health risk assessment of polycyclic aromatic hydrocarbons in commercial tea and coffee samples marketed in Iran. Environ. Sci. Pollut. Res. 2021, 28, 4827–4839. [Google Scholar] [CrossRef]
- Sharma, N.; Jain, A.; Verma, K.K. Extraction strategies of PAHs from grilled meat for their determination by HPLC–DAD. Chem. Pap. 2021, 8, 3859–3871. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2015/1933 of 27 October 2015 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Polycyclic Aromatic Hydrocarbons in Cocoa Fibre, Banana Chips, Food Supplements, Dried Herbs and Dried Spices. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R1933&from=CS (accessed on 28 October 2015).
- Tang, X.Y.; Xie, G.Z.; Zhou, R.R.; Zhang, S.H. Development and application of “one root of medicine and food”. Mod. Chin. Food 2020, 22, 1428–1433. [Google Scholar]
- Zhou, L.; Cheng, Y.X.; Yang, Q.S.; Liu, D.S.; Li, X. Contamination and source of benzo(a)pyrene in marigold extract. Food Ind. 2018, 39, 323–326. [Google Scholar] [CrossRef]
- Cui, Z.Y.; Ge, N.; Cao, Y.Z.; Zhang, J.J.; Liu, Y.M.; Zhou, L. Investigation and assessment of polycyclic aromatic hydrocarbons contamination in Chinese herbal medicines. Environ. Chem. 2014, 34, 844–849. [Google Scholar]
- Zhang, D.; Yu, B.; Zhao, S.P.; Li, N.; Guo, J.J.; Cao, W.G. Rapid determination of benzo[a]pyrene in Coptis chinensis Franch by high performance liquid chromatography-fluorescence. J. Chin. Med. Mater. 2017, 40, 890–892. [Google Scholar]
- Jung, S.Y.; Park, J.S.; Chang, M.S.; Kim, M.S.; Lee, S.M.; Kim, J.H.; Chae, Y.Z. A simple method for the determination of polycyclic aromatic hydrocarbons (PAH) in edible oil employing solid phase extraction (SPE) cartridge purification. Food Sci. Biotechnol. 2013, 22, 241–248. [Google Scholar] [CrossRef]
- Mottier, P.; Parisod, V.; Turesky, R.J. Quantitative determination of polycyclic aromatic hydrocarbons in barbecued meat sausages by gas chromatography coupled to mass spectrometry. J. Agric. Food Chem. 2000, 48, 1160–1166. [Google Scholar] [CrossRef]
- Cai, C.G.; Wu, P.G.; Zhou, P.P.; Yang, D.J.; Hu, Z.Y. Detection, risk assessment, and survey of four polycyclic aromatic hydrocarbon markers in infant formula powder. J. Food Qual. 2020, 2020, 2959532. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.W.C.; Lau, J.S.Y. Single laboratory validation of an environmentally friendly single extraction and cleanup method for quantitative determination of four priority polycyclic aromatic hydrocarbons in edible oils and fats. Anal. Methods 2015, 7, 7631–7638. [Google Scholar] [CrossRef]
- Ji, W.H.; Zhang, M.M.; Duan, W.J.; Wang, X.; Zhao, H.Q.; Guo, L.P. Phytic acid-stabilized super-amphiphilic Fe3O4-graphene oxide for extraction of polycyclic aromatic hydrocarbons from vegetable oils. Food Chem. 2017, 235, 104–110. [Google Scholar] [CrossRef]
- Fromberg, A.; HØjgård, A.; Duedahl-Olesen, L. Analysis of polycyclic aromatic hydrocarbons in vegetable oils combining gel permeation chromatography with solid-phase extraction clean-up. Food Addit. Contam. 2007, 24, 758–767. [Google Scholar] [CrossRef] [Green Version]
- Farhadian, A.; Jinap, S.; Faridah, A.; Zaidul, I.S.M. Effects of marinating on the formation of polycyclic aromatic hydrocarbons (benzo[a]pyrene, benzo[b]fluoranthene and fluoranthene) in grilled beef meat. Food Control 2012, 28, 420–425. [Google Scholar] [CrossRef]
- Škaljac, S.; Jokanović, M.; Tomović, V.; Ivić, M.; Tasić, T.; Ikonić, P.; Šojić, B.; Džinić, N.; Petrović, L. Influence of smoking in traditional and industrial conditions on colour and content of polycyclic aromatic hydrocarbons in dry fermented sausage “Petrovská klobása”. LWT Food Sci. Technol. 2018, 87, 158–162. [Google Scholar] [CrossRef]
- Slámová, T.; Sadowska-Rociek, A.; Fraňková, A.; Surma, M.; Banout, J. Application of QuEChERS-EMR-Lipid-DLLME method for the determination of polycyclic aromatic hydrocarbons in smoked food of animal origin. J. Food Compos. Anal. 2020, 87, 103420. [Google Scholar] [CrossRef]
- Urban, M.; Lesueur, C. Comparing d-SPE sorbents of the QuEChERS extraction method and EMR-lipid for the determination of polycyclic aromatic hydrocarbons (PAH4) in food of animal and plant origin. Food Anal. Methods 2017, 10, 2111–2124. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Dutta, R.; Das, P. A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques. Chemosphere 2020, 251, 126441. [Google Scholar] [CrossRef]
- Rozentāle, I.; Stumpe-Vīksna, I.; Začs, D.; Siksna, I.; Melngaile, A.; Bartkevičs, V. Assessment of dietary exposure to polycyclic aromatic hydrocarbons from smoked meat products produced in Latvia. Food Control 2015, 54, 16–22. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Findings of the EFSA data collection on polycyclic aromatic hydrocarbons in food. In A Report from the Unit of Data Collection and Exposure on a Request from the European Commission; European Food Safety Authority (EFSA): Parma, Italy, 2008. [Google Scholar] [CrossRef]
- Toxicological Review of Trichloroethylene, EPA/635/R-09/011F. 2011. Available online: www.epa.gov/iris (accessed on 15 September 2011).
- United States Environmental Protection Agency. BMD Software Version 2.1.2.60; EPA: Washington, DC, USA, 2010. [Google Scholar]
- EFSA. Scientific opinion of the panel on contaminants in the food chain on a request from the European commission on polycyclic aromatic hydrocarbons in food. EFSA J. 2008, 724, 1–114. [Google Scholar] [CrossRef]
- State Health and Family Planning Commission of the People’s Republic of China. Revised Version of GB 5009.265 National Food Safety Standard Determination of Polycyclic Aromatic Hydrocarbons in Food; State Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2017. [Google Scholar]
- Gao, J.; Guo, W.J.; Liu, N.; Hui, Y.H. Determination of 4 polycyclic aromatic hydrocarbons in plant extract by GC-MS combined with sulfuric acid acidification. Phys. Test Chem. Anal. Part B Chem. Anal. 2017, 53, 684–688. [Google Scholar] [CrossRef]
- Zelinkova, Z.; Wenzl, T. EU marker polycyclic aromatic hydrocarbons in food supplements: Analytical approach and occurrence. Food Addit. Contam. Part A 2015, 32, 1914–1926. [Google Scholar] [CrossRef] [Green Version]
- Moret, S.; Dudine, A.; Conte, L.S. Processing effects on the polyaromatic hydrocarbon content of grapeseed oil. J. Am. Oil Chem. Soc. 2000, 77, 1289–1292. [Google Scholar] [CrossRef]
- Bogusz, M.J.; El-Hajj, S.A.; Ehaideb, Z.; Hassa, H.; Al-Tufail, M. Rapid determination of benzo(a)pyrene in olive oil samples with solid-phase extraction and low-pressure, wide-bore gas chromatography–mass spectrometry and fast liquid chromatography with fluorescence detection. J. Chromat. A 2004, 1026, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Taghvaee, Z.; Piravivanak, Z.; Rezaei, K.; Faraji, M. Determination of polycyclic aromatic hydrocarbons (PAHs) in olive and refined pomace olive oils with modified low temperature and ultrasound-assisted liquid–liquid extraction method followed by the HPLC/FLD. Food Anal. Methods 2016, 9, 1220–1227. [Google Scholar] [CrossRef]
- Simonich, S.L.; Hites, R.A. Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 1994, 28, 939–943. [Google Scholar] [CrossRef]
- Zhan, X.H.; Ma, H.L.; Zhou, L.X. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L.) seedlings: Passive or active uptake? BMC Plant Biol. 2010, 10, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathy, V.; Basak, B.B.; Varghese, T.S.; Saha, A. Residues and contaminants in medicinal herbs—A review. Phytochem. Lett. 2015, 14, 67–78. [Google Scholar] [CrossRef]
Chemicals | Identification Ions | Internal Standards | Identification Ions 1 | Linear Equations | R2 | Limit Range (×10−3 µg/mL) |
---|---|---|---|---|---|---|
BaA | 226, 229, 228 1 | D12-BaA | 236, 240 | y = 0.418x − 0.022 | 1.0 | 2.5–50 |
Chr | 226, 229, 228 1 | D12-Chr | 236, 240 | y = 0.352x − 0.018 | 0.999 | 2.5–50 |
BbF | 250, 253, 252 1 | D12-BbF | 260, 264 | y = 0.296x + 0.011 | 0.999 | 2.5–50 |
BaP | 250, 253, 252 1 | D12-BaP | 260, 264 | y = 0.283x + 0.017 | 0.999 | 2.5–50 |
Samples | Standard Spiked (μg/kg) | BaA Average Recovery (%) | RSD% | Chr Average Recovery (%) | RSD% | BbF Average Recovery (%) | RSD% | BaP Average Recovery (%) | RSD% |
---|---|---|---|---|---|---|---|---|---|
Raw Dendrobium candidum | 2.0 | 86.2 | 9.2 | 88.2 | 10.5 | 85.9 | 8.3 | 89.8 | 8.9 |
10.0 | 92.8 | 7.6 | 94.2 | 8.5 | 96.2 | 7.3 | 103.4 | 6.2 | |
20.0 | 98.7 | 4.3 | 102.3 | 5.1 | 105.3 | 4.2 | 107.6 | 3.8 | |
Dendrobium candidum extract | 2.0 | 78.6 | 9.2 | 82.5 | 10.5 | 80.2 | 8.3 | 83.0 | 8.9 |
10.0 | 81.0 | 7.6 | 88.9 | 8.5 | 86.0 | 7.3 | 92.6 | 6.2 | |
20.0 | 90.6 | 4.3 | 92.7 | 5.1 | 97.5 | 4.2 | 102.4 | 3.8 | |
Dendrobium candidum-containing health food | 2.0 | 81.2 | 8.3 | 86.4 | 7.4 | 80.5 | 7.8 | 81.6 | 8.4 |
10.0 | 88.4 | 7.1 | 92.3 | 6.7 | 91.2 | 6.4 | 94.9 | 4.9 | |
20.0 | 98.1 | 3.2 | 99.4 | 3.4 | 98.6 | 2.9 | 101.4 | 2.3 |
Samples | BaA | Chr | BbF | BaP | PAH4 |
---|---|---|---|---|---|
Extract 1 | 238.2 ± 11.9 | 214.2 ± 10.7 | 99.2 ± 4.96 | 92.9 ± 4.64 | 644.5 ± 32.2 |
Extract 2 | 19.2 ± 0.77 | 26.8 ± 1.07 | 3.2 ± 0.127 | 2.4 ± 0.1 | 51.6 ± 2.06 |
Extract 3 | 24.2 ± 1.45 | 10.2 ± 0.61 | 4.5 ± 0.27 | 3.6 ± 0.22 | 42.5 ± 2.55 |
Extract 4 | 12.8 ± 0.38 | 16.8 ± 0.5 | 8.1 ± 0.24 | 2.4 ± 0.07 | 40.1 ± 1.20 |
Extract 5 | 3.2 ± 0.23 | 5.7 ± 0.4 | 1.6 ± 0.11 | 1.3 ± 0.09 | 11.8 ± 0.83 |
Extract 6 | 12.7 ± 0.38 | 30.5 ± 0.92 | 6.4 ± 0.19 | 5.8 ± 0.17 | 55.4 ± 1.67 |
Extract 7 | 259.1 ± 5.19 | 553.8 ± 11.1 | 445.4 ± 8.92 | 755.0 ± 15.1 | 2013.3 ± 40.3 |
Health food 1 | 55.6 ± 3.34 | 65.8 ± 3.95 | 40.6 ± 2.43 | 76.3 ± 4.58 | 238.3 ± 14.3 |
Health food 2 | 5.1 ± 0.36 | 8.3 ± 0.58 | 5.8 ± 0.41 | 5.4 ± 0.38 | 24.5 ± 1.72 |
Health food 3 | 1.0 ± 0.08 | 1.8 ± 0.15 | 0.6 ± 0.05 | ND 1 | 3.7 ± 0.31 |
Health food 4 | 3.9 ± 0.31 | 9.5 ± 0.76 | 2.4 ± 0.19 | 2.1 ± 0.17 | 17.9 ± 1.43 |
Health food 5 | 3.6 ± 0.26 | 16.2 ± 1.15 | 3.7 ± 0.26 | 0.8 ± 0.06 | 24.3 ± 1.7 |
Samples | Chemicals | Analysis Results (μg/kg) | Limit Range (μg/kg) |
---|---|---|---|
Rhodiola Rosea Extract | BaA | 3.70 | 2.7 ± 1.2 |
Chr | 6.79 | - | |
BbF | 2.36 | 1.7 ± 0.76 | |
BaP | 1.66 | 1.2 ± 0.54 | |
Spirulina | PAH4 | 14.5 | - |
BaA | 3.31 | 4.1 ± 1.8 | |
Chr | 17.97 | 12.7 ± 5.6 | |
BbF | 6.39 | 9.4 ± 4.2 | |
BaP | 2.06 | 3.0 ± 1.32 | |
PAH4 | 29.72 | 29.0 ± 12.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, C.; Chang, G.; Zhao, M.; Wu, P.; Hu, Z.; Jiang, D. Determination of Polycyclic Aromatic Hydrocarbons in Traditional Chinese Medicine Raw Material, Extracts, and Health Food Products. Molecules 2022, 27, 1809. https://doi.org/10.3390/molecules27061809
Cai C, Chang G, Zhao M, Wu P, Hu Z, Jiang D. Determination of Polycyclic Aromatic Hydrocarbons in Traditional Chinese Medicine Raw Material, Extracts, and Health Food Products. Molecules. 2022; 27(6):1809. https://doi.org/10.3390/molecules27061809
Chicago/Turabian StyleCai, Chenggang, Guoli Chang, Miaomiao Zhao, Pinggu Wu, Zhengyan Hu, and Dingguo Jiang. 2022. "Determination of Polycyclic Aromatic Hydrocarbons in Traditional Chinese Medicine Raw Material, Extracts, and Health Food Products" Molecules 27, no. 6: 1809. https://doi.org/10.3390/molecules27061809
APA StyleCai, C., Chang, G., Zhao, M., Wu, P., Hu, Z., & Jiang, D. (2022). Determination of Polycyclic Aromatic Hydrocarbons in Traditional Chinese Medicine Raw Material, Extracts, and Health Food Products. Molecules, 27(6), 1809. https://doi.org/10.3390/molecules27061809