Michael Addition of 3-Oxo-3-phenylpropanenitrile to Linear Conjugated Enynones: Approach to Polyfunctional δ-Diketones as Precursors for Heterocycle Synthesis
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Procedure for the Synthesis of 3-(2-Aryl-2-oxoethyl)-5-aryl-2-benzoylpent-4-ynenitriles (2a–l)
3.1.1. 2-Benzoyl-3-(2-oxo-2-phenylethyl)-5-phenylpent-4-ynenitrile (2.1a/2.2a)
3.1.2. 2-Benzoyl-3-(2-(4-methylphenyl)-2-oxo-ethyl)-5-phenylpent-4-ynenitrile (2.1b/2.2b)
3.1.3. 2-Benzoyl-3-(2-(4-methoxyphenyl)-2-oxo-ethyl)-5-phenylpent-4-ynenitrile (2.1c/2.2c)
3.1.4. 2-Benzoyl-3-(2-(4-fluorophenyl)-2-oxoethyl)-5-phenylpent-4-ynenitrile (2.1d/2.2d)
3.1.5. 2-Benzoyl-3-(2-(4-chlorophenyl)-2-oxoethyl)-5-phenylpent-4-ynenitrile (2.1e/2.2e)
3.1.6. 2-Benzoyl-3-(2-oxo-2-phenylethyl)-5-(p-tolyl)pent-4-ynenitrile (2.1f/2.2f)
3.1.7. 2-Benzoyl-5-(4-methoxyphenyl)-3-(2-oxo-2-phenylethyl)pent-4-ynenitrile (2.1g/2.2g)
3.1.8. 2-Benzoyl-5-(4-chlorophenyl)-3-(2-oxo-2-phenylethyl)pent-4-ynenitrile (2.1h/2.2h)
3.1.9. 2-Benzoyl-3-(2-(3,4-dimethoxyphenyl)-2-oxoethyl)-5-phenylpent-4-ynenitrile (2.1i/2.2i)
3.1.10. 2-Benzoyl-3-(2-(4-chlorophenyl)-2-oxoethyl)-5-(p-tolyl)pent-4-ynenitrile (2.1j/2.2j)
3.1.11. 2-Benzoyl-3-(2-(4-bromphenyl)-2-oxoethyl)-5-(p-tolyl)pent-4-ynenitrile (2.1k/2.2k)
3.1.12. 2-Benzoyl-3-(2-oxo-2-(thiophen-2-yl)ethyl)-5-(p-tolyl)pent-4-ynenitrile (2.1l/2.2l)
3.2. Procedure for the Synthesis of 5,6-Dihydro-4H-1,2-diazepine (3)
4,5-trans-4-Cyano-3,7-diphenyl-5-(phenylethynyl)-5,6-dihydro-4H-1,2-diazepine (3)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Golovanov, A.A.; Odin, I.S.; Zlotskii, S.S. Conjugated enynones: Preparation, properties and applications in organic synthesis. Russ. Chem. Rev. 2019, 88, 280–318. [Google Scholar] [CrossRef]
- Golovanov, A.A.; Gusev, D.M.; Odin, I.S.; Zlotskii, S.S. Conjugated 2,4,1- and 1,4,3-enynones as polycentric electrophiles in synthesis of heterocyclic compounds. Chem. Heterocycl. Compd. 2019, 55, 333–348. [Google Scholar] [CrossRef]
- Kuznetcova, A.V.; Odin, I.S.; Golovanov, A.A.; Grigorev, I.M.; Vasilyev, A.V. Multicomponent reaction of conjugated enynones with malononitrile and sodium alkoxides: Complex reaction mechanism of the formation of pyridine derivatives. Tetrahedron 2019, 75, 4516–4530. [Google Scholar] [CrossRef]
- Igushkina, A.V.; Golovanov, A.A.; Boyarskaya, I.A.; Kolesnikov, I.E.; Vasilyev, A.V. Stereoselective synthesis of multisubstituted cyclohexanes by reaction of conjugated enynones with malononitrile in the presence of LDA. Molecules 2020, 25, 5920. [Google Scholar] [CrossRef] [PubMed]
- Kharchenko, V.G.; Markova, L.I.; Fedotova, O.V.; Pchelintseva, N.V. Reactions of 1,5-diketones with ammonia and its derivatives. Chem. Heterocycl. Compd. 2003, 39, 1121–1142. [Google Scholar] [CrossRef]
- Jia, W.; Xi, Q.; Liu, T.; Yang, M.; Chen, Y.; Yin, D.; Wang, X. One-pot synthesis of O-heterocycles or aryl ketones using an InCl3/Et3SiH system by switching the solvent. J. Org. Chem. 2019, 84, 5141–5149. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Liu, C.; Yang, H.; Fu, H. Light and oxygen-enabled sodium trifluoromethane sulfinate-mediated selective oxidation of C–H bonds. Green Chem. 2020, 22, 4357–4363. [Google Scholar] [CrossRef]
- Court, M.; Alaaeddine, M.; Barth, V.; Tortech, L.; Fichou, D. Structural and electronic properties of 2,20,6,60-tetraphenyldipyranylidene and its use as a hole-collecting interfacial layer in organic solar cells. Dyes Pigm. 2017, 141, 487–492. [Google Scholar] [CrossRef]
- Colon, I.; Griffin, G.W.; O’Connell, E.J. 1,2-diaroylcyclopropanes: Trans-1,2-dibenzoylcyclopropane. Org. Synth. 1972, 52, 33. [Google Scholar]
- Zhen, Q.; Li, R.; Qi, L.; Hu, K.; Yao, X.; Shao, Y.; Chen, J. Nickel(II)-catalyzed C–C, N–C cascade coupling of ketonitriles into substituted pyrroles and pyridines. Org. Chem. Front. 2020, 7, 286–291. [Google Scholar] [CrossRef]
- Mahmoud, N.F.H.; Elsayed, G.A.; Ismail, M.F. Synthesis of various fused heterocyclic rings from oxoindenyl esters and their pharmacological and antimicrobial evaluations. J. Heterocyclic Chem. 2018, 55, 465–474. [Google Scholar] [CrossRef]
- Velcicky, J.; Bodendorf, U.; Rigollier, P.; Epple, R.; Beisner, D.R.; Guerini, D.; Smith, P.; Liu, B.; Feifel, R.; Wipfli, P.; et al. Discovery of the first potent, selective, and orally bioavailable signal peptide peptidase-like 2a (SPPL2a) inhibitor displaying pronounced immunomodulatory effects in vivo. J. Med. Chem. 2018, 61, 865–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, K.S.; Elbeily, E.E.; El-Taweel, F.M.; Faddac, A.A. Synthesis, characterization, and antioxidant evaluation of some novel pyrazolo[3,4-c][1,2]diazepine and pyrazolo[3,4-c]pyrazole derivatives. J. Heterocyclic Chem. 2019, 56, 493–500. [Google Scholar] [CrossRef]
- Go, E.B.; Kim, L.J.; Nelson, H.M.; Ohashi, M.; Tang, Y. Biosynthesis of the fusarium mycotoxin (−)-sambutoxin. Org. Lett. 2021, 23, 7819–7823. [Google Scholar] [CrossRef]
- Song, M.; Ying, Z.; Ying, X.; Jia, L.; Yang, G. Three novel alkaloids from Portulaca oleracea L. and their anti-inflammatory bioactivities. Fitoterapia 2022, 156, 105087. [Google Scholar] [CrossRef]
- Toktas, U.; Sarikahya, N.B.; Parlak, C.; Ozturk, I.; Kayalar, H. A new iridoid skeleton from Galium asparagi folium and biological activity studies. J. Mol. Str. 2022, 1250, 131693. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fluorescent chameleon labels for bioconjugation and imaging of proteins, nucleic acids, biogenic amines and surface amino groups. Methods Appl. Fluoresc. 2021, 9, 042001. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Wang, X.; Zhang, K. Efficient cascade reactions for luminescent pyrylium biolabels catalysed by light rare-earth elements. New J. Chem. 2021, 45, 12305–12310. [Google Scholar] [CrossRef]
- Resta, I.M.; Lucantoni, F.; Apostolova, N.; Galindo, F. Fluorescent styrylpyrylium probes for the imaging of mitochondria in live cells. Org. Biomol. Chem. 2021, 19, 9043–9057. [Google Scholar] [CrossRef]
- Huang, S.; Palanisamy, S.; Yu, X.; Wang, Y.; Liu, D.; Gong, W.; Zhang, X. α-Active pyrylium salt 2,4,5-triphenylpyrylium for improved mass spectrometry-based detection of peptides. Anal. Chem. 2021, 93, 11072–11080. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, K.; Gao, Y.; Weng, A.; Wang, L.; Zhang, Y.; Zhang, Z.; She, D.; Ning, J.; Mei, X. Synthesis and bioactivity studies of sex pheromone analogs of the diamond back moth Plutella xylostella. Pest. Manag. Sci. 2019, 75, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.F.; Zhao, J.; Sun, M.; Ji, X.H.; Huang, P.; Ge, H.G. Synthesis and crystal structure of 1-(3-amino-4-morpholino-1H-indazole-1-carbonyl)-N-(4-methoxyphenyl)cyclopropane-1-carboxamide, a molecule with antiproliferative activity. Crystallogr. Rep. 2021, 66, 455–460. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, G.; Chen, G. Synthesis and biological activities of drugs for the treatment of osteoporosis. Eur. J. Med. Chem. 2020, 197, 112313. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Yan, Q.; He, Z.; Zou, Z.; Le, Q.; Chen, T.; Cai, B.; Yang, X.; Luo, S. Total synthesis and anti-inflammatory bioactivity of (−)-majusculoic acid and its derivatives. Mar. Drugs 2021, 19, 288. [Google Scholar] [CrossRef] [PubMed]
- Gaydukov, I.O.; Voronina, T.A.; Litvinova, S.A.; Kutepova, I.S. Anticonvulsant activity of new 3- and 4-benzoilpiridines oxime derivatives in comparison with valproic acid. Med. Chem. Res. 2020, 29, 783. [Google Scholar] [CrossRef]
- Wang, L.; Cai, X.; Li, B.; Li, M.; Wang, Z.; Gan, L.; Qiao, Z.; Xie, W.; Liang, Q.; Zheng, N.; et al. Achieving enhanced thermally activated delayed fluorescence rates and shortened exciton lifetimes by constructing intramolecular hydrogen bonding channels. ACS Appl. Mater. Interfaces 2019, 11, 45999–46007. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Ma, C.; Li, L.; Han, Y.; Wang, D.; Wan, X. A novel on-tissue cycloaddition reagent for mass spectrometry imaging of lipid C=C position isomers in biological tissues. Chin. Chem. Lett. 2021; in press. [Google Scholar] [CrossRef]
- Golovanov, A.A.; Latypova, D.R.; Bekin, V.V.; Pisareva, V.S.; Vologzhanina, A.V.; Dokichev, V.A. Synthesis of 1,5-disubstituted (E)-pent-2-en-4-yn-1-ones. Russ. J. Org. Chem. 2013, 49, 1264–1269. [Google Scholar] [CrossRef]
- Saulnier, S.; Golovanov, A.A.; Vasilyev, A.V. A controlled tandem transformation of conjugated enynones with arenes under superelectrophilic activation leading to aryl substituted dienones and indenes. RSC Adv. 2016, 6, 103546–103555. [Google Scholar] [CrossRef]
Entry | Starting Enynone | Reaction Conditions: Base–Solvent, Temperature, Time, R—Ratio of Enynone 1 and NCCH2COPh | Reaction Products, Ratio of Diastereomers, Yield |
---|---|---|---|
1 | MeONa, MeOH, r.t., 4 h, R = 1:1 | ||
2 | 1a | MeONa, MeOH, r.t., 3 h, R = 2:1 | |
3 | 1a | LDA, THF, r.t., 1 h, R = 2:1 | |
4 | MeONa, MeOH, r.t., 4 h, R = 1:1 | ||
5 | MeONa, MeOH, r.t., 4 h, R = 1:1 | ||
6 | MeONa, MeOH, r.t., 5 h, R = 1:1 | ||
7 | MeONa, MeOH, r.t., 4 h, R = 1:1 | ||
8 | MeONa, MeOH, r.t., 4 h, R = 1:1 | ||
9 | MeONa, MeOH, r.t., 4 h, R = 1:1 | ||
10 | MeONa, MeOH, r.t., 23 h, R = 1:1 | ||
11 | MeONa, MeOH, r.t., 26 h, R=1:1 | ||
12 | MeONa, MeOH, r.t., 4 h, R= 1:1 | ||
13 | MeONa, MeOH, r.t., 4 h, R = 1:1 | ||
14 | MeONa, MeOH, r.t., 23 h, R = 1:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igushkina, A.V.; Golovanov, A.A.; Vasilyev, A.V. Michael Addition of 3-Oxo-3-phenylpropanenitrile to Linear Conjugated Enynones: Approach to Polyfunctional δ-Diketones as Precursors for Heterocycle Synthesis. Molecules 2022, 27, 1256. https://doi.org/10.3390/molecules27041256
Igushkina AV, Golovanov AA, Vasilyev AV. Michael Addition of 3-Oxo-3-phenylpropanenitrile to Linear Conjugated Enynones: Approach to Polyfunctional δ-Diketones as Precursors for Heterocycle Synthesis. Molecules. 2022; 27(4):1256. https://doi.org/10.3390/molecules27041256
Chicago/Turabian StyleIgushkina, Anastasiya V., Alexander A. Golovanov, and Aleksander V. Vasilyev. 2022. "Michael Addition of 3-Oxo-3-phenylpropanenitrile to Linear Conjugated Enynones: Approach to Polyfunctional δ-Diketones as Precursors for Heterocycle Synthesis" Molecules 27, no. 4: 1256. https://doi.org/10.3390/molecules27041256