Hepatoprotective Effect of Millettia dielsiana: In Vitro and In Silico Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Silico Docking of Isolated Compounds from Millettia dielsiana against PI3K/mTOR
2.2. Molecular Dynamic Simulation
2.3. SMD Results
2.4. Biological Activities of Crude Extract, Fractions, and Isolated Compounds
2.4.1. The in Vitro Cytotoxicity of Crude Extract, Fractions, and Isolated Compounds
2.4.2. The Antioxidant Activity on Liver Cells of Crude Extract, Fractions, and Isolated Compounds
3. Materials and Methods
3.1. Plant Materials
3.2. Sample Processing, Extraction and Isolated Compounds (1–2) from Millettia dielsiana
3.3. Isolated and Determined Chemical Structures Methods
3.4. Biological Activity Test Methods
3.4.1. Cytotoxicity Test Method
3.4.2. The Antioxidant Activity on Liver Cells Test Method
3.5. Preparation of Target Protein and Compounds
3.6. Molecular Docking
3.7. Molecular Dynamic Simulation
3.8. Steered Molecular Dynamic (SMD)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- European Association for the Study of the Liver. EASL clinical practice guidelines: Management of Hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, M.A.; Mandour, Y.M.; Abd El-Aziz, M.K.; Stein, U.; El Tayebi, H.M. Small Molecule Inhibitors for Hepatocellular carcinoma: Advances and Challenges. Molecules 2022, 27, 5537. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Health Observatory. World Health Organization: Geneva, Switzerland, 2018. Available online: www.who.int/gho/database/en/ (accessed on 21 June 2018).
- Hyuna, S.; Jacques, F.; Rebecca, L.S.; Mathieu, L.; Isabelle, S.; Ahmedin, J.; Freddie, B. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Paola, B.; Federica, T.; Greta, C.; Teresa, R.; Carlo, L.V.; Matteo, M.; Eva, N. Global trends and predictions in Hepatocellular carcinoma mortality. J. Hepatol. 2017, 67, 302–309. [Google Scholar] [CrossRef]
- Ao, H.; Xin-Rong, Y.; Wen-Yuan, C.; Ashley, R.D.; Jian, Z. Targeted therapy for Hepatocellular carcinoma. Signal Transduct. Target. Ther. 2020, 5, 146. [Google Scholar] [CrossRef]
- Rawat, D.; Shrivastava, S.; Naik, R.A.; Chhonker, S.K.; Mehrotra, A.; Koiri, R.K. An overview of natural plant products in the treatment of Hepatocellular carcinoma. Anticancer Agents Med. Chem. 2018, 18, 1838–1859. [Google Scholar] [CrossRef]
- Banzouzi, J.; Prost, A.; Rajemiarimiraho, M.; Ongoka, P. Traditional uses of the African Millettia species (Fabaceae). Int. J. Bot. 2008, 4, 406–420. [Google Scholar] [CrossRef] [Green Version]
- Le, D.D.; Nguyen, T.M.T.; Ngo, V.D.; Bui, T.T.L.; Chu, T.T.H.; Hyun, J.J.; Dang, T.T.; Tran, T.H.; Le, H.T.; Nguyen, V.T.; et al. Anti-inflammatory secondary metabolites from the stems of Millettia dielsiana Harms ex Diels. Carbohydr. Res. 2019, 484, 107778. [Google Scholar] [CrossRef]
- Ye, H.; Wu, W.; Liu, Z.; Xie, C.; Tang, M.; Li, S.; Yang, J.; Tang, H.; Chen, K.; Long, C.; et al. Bioactivity-guided isolation of anti-inflammation flavonoids from the stems of Millettia dielsiana Harms. Fitoterapia 2014, 95, 154–159. [Google Scholar] [CrossRef]
- Gong, T.; Wang, H.Q.; Chen, R.Y. Isoflavones from vine stem of Millettia dielsiana. China J. Chin. Mater. Med. 2007, 32, 2138–2140. [Google Scholar]
- Gong, T.; Wang, D.X.; Chen, R.Y.; Liu, P.; Yu, D.Q. Novel benzil and isoflavone derivatives from Millettia dielsiana. Planta Med. 2009, 75, 236–242. [Google Scholar] [CrossRef]
- Gong, T.; Zhang, T.; Wang, D.X.; Chen, R.Y.; Liu, P.; Yu, D.Q. Two new isoflavone glycosides from the vine stem of Millettia dielsiana. J. Asian Nat. Prod. Res. 2014, 16, 181–186. [Google Scholar] [CrossRef]
- Jasmine, B.; Aswathy, R.D.; Ayana, R.K.; Jaggaiah, N.G.; Bhagyalakshmi, N.; Thanatharayil, S.A.; Lekshmi, R.N. Cogent role of flavonoids as key orchestrators of chemoprevention of Hepatocellular carcinoma: A review. J. Food Biochem. 2021, 45, e13761. [Google Scholar] [CrossRef]
- Gustavo, F.; Marta, G.; Víctor, A.; Manuel, R.P.; Manuel, D.l.M. Activation of mTOR signaling pathway in Hepatocellular carcinoma. Int. J. Mol. Sci. 2020, 21, 1266. [Google Scholar] [CrossRef] [Green Version]
- Lisa, M.B.; Richard, Z.L. Rapamycin and mTOR kinase inhibitors. J. Chem. Biol. 2008, 1, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell. Biosci. 2020, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Matthias, S.M.; Thomas, D.; Jesper, B.A.; Snorri, S.T. Targeting the mTOR pathway in Hepatocellular carcinoma: Current state and future trends. J. Hepatol. 2014, 60, 855–865. [Google Scholar] [CrossRef] [Green Version]
- Marco, D.V.; Matteo, M.; Giovanni, B.; Andrea, C. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem. 2016, 59, 4035–4061. [Google Scholar] [CrossRef]
- Maiorov, V.N.; Crippen, G.M. Size-independent comparison of protein three-dimensional structures. Proteins 1995, 22, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Lobanov, M.Y.; Bogatyreva, N.; Galzitskaya, O. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 2008, 42, 623–628. [Google Scholar] [CrossRef]
- Truong, D.T.; Li, M.S. Probing the binding affinity by Jarzynski’s nonequilibrium binding free energy and rupture time. J. Phys. Chem. B 2018, 122(17), 4693–4699. [Google Scholar] [CrossRef] [PubMed]
- Harris, N.C.; Song, Y.; Kiang, C.H. Experimental free energy surface reconstruction from single-molecule force spectroscopy using Jarzynski’s equality. Phys. Rev. Lett. 2007, 99, 068101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunus, A.; Zahira, Y.; Parul, A.; Mahbubur, R.; Faridul, I. In vitro antibacterial and in vivo Brine Shrimp Lethal Active Compounds Isolated from the Leaves of Saurauia roxburghii. Int. J. Pharmacol. 2015, 11, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.G.; Fukushi, Y.; Hostettmann, K.; Tahara, S. Isoflavonoid glycosides from Eriosema tuberosum. Phytochemistry 1998, 49, 251–254. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Chen, H.; Yan, X.; Zhu, P.; Lin, J. Antioxidant activity and hepatoprotective potential of agaro-oiigosaccharides in vitro and in vivo. Nutr. J. 2006, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Le, P.T.; Cheng, H.; Ninkovic, S.; Plewe, M.; Huang, X.; Wang, H.; Bagrodia, S.; Sun, S.; Knighton, D.R.; Rogers, C.M.L.; et al. Design and synthesis of a novel pyrrolidinyl pyrido pyrimidinone derivative as a potent inhibitor of PI3Kα and mTOR. Bioorg. Med. Chem. Lett. 2012, 22, 5098–5103. [Google Scholar] [CrossRef]
- Przybyłek, M.; Miernicka, A.; Nowak, M.; Cysewski, P. New, Screening Protocol for Effective Green Solvents Selection of Benzamide, Salicylamide and Ethenzamide. Molecules 2022, 27, 3323. [Google Scholar] [CrossRef]
- Tashchilova, A.; Podoplelova, N.; Sulimov, A.; Kutov, D.; Ilin, I.; Panteleev, M.; Shikhaliev, K.; Medvedeva, S.; Novichikhina, N.; Potapov, A.; et al. New Blood Coagulation Factor XIIa Inhibitors: Molecular Modeling, Synthesis, and Experimental Confirmation. Molecules 2022, 27, 1234. [Google Scholar] [CrossRef]
- Thomas, A.H. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J. Comput. Chem. 1999, 20, 730–748. [Google Scholar] [CrossRef]
- Eberhardt, J.; Diogo, S.M.; Andreas, F.T.; Stefano, F. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Muhammad, A.S.; Ruqaiya, K.; Zaheer, U.H.; Pharkphoom, P. α-Glucosidase inhibitory effect of rhinacanthins-rich extract from Rhinacanthus nasutus leaf and synergistic effect in combination with acarbose. J. Funct. Foods 2017, 36, 325–331. [Google Scholar] [CrossRef]
- Mark, A.; Teemu, M.; Roland, S.; Szilárd, P.; Jeremy, C.S.; Berk, H.; Erik, L. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Kresten, L.L.; Stefano, P.; Kim, P.; Paul, M.; John, L.K.; Ron, O.D.; David, E.S. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958. [Google Scholar] [CrossRef] [Green Version]
- Alan, W.S.d.S.; Wim, F.V. ACPYPE-Antechamber python parser interface. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef] [Green Version]
- Michael, W.S.; Kim, K.B.; Jerry, A.B.; Steven, T.E.; Mark, S.G.; Jan, H.J.; Shiro, K.; Nikita, M.; Kiet, A.N.; Shujun, S.; et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Mark, S.G.; Michael, W.S. Advances in electronic structure theory: GAMESS a decade later. In Theory and Applications of Computational Chemistry; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1167–1189. [Google Scholar] [CrossRef]
- Darrin, M.Y.; Tom, A.D.; Lee, G.P. The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods. J. Chem. Phys. 1993, 99, 8345–8348. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Binnig, G.; Quate, C.F. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933. [Google Scholar] [CrossRef] [Green Version]
- Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 1997, 78, 2690. [Google Scholar] [CrossRef]
- Gerhard, H.; Attila, S. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl. Acad. Sci. USA 2001, 98, 3658–3661. [Google Scholar] [CrossRef]
Compounds | Binding Affinity (kcal/mol) | Hydrogen Bond | Hydrophobic Interactions | |
---|---|---|---|---|
With Amino Acid Residues | Bond Length (Å) | |||
1 | −9.237 | Val 882 | 2.45 | Ala 805, Ile 963, Lys833, Lys808, Ile 831, Pro 810, Met 804, Met 953 |
2 | −9.083 | Val 882 | 2.52, 2.81 | ILE963, ILE831, MET953 |
Ser806 | 2.98, 3.18 | |||
THR887 | 2.68 | |||
Ref. | −9.12 | Val 882 | 1.92, 2.16 | Phe 961, Tyr 867, Ile 963, Ile 879, Ile 831, Met 804 |
No. | Compounds | Fmax (pN) | W (kcal/mol) | ∆GneqJar (kcal/mol) |
---|---|---|---|---|
1 | 1 | 336.2 ± 45.3 | 83.5 ± 10.6 | −69.86074 |
2 | 2 | 430.3 ± 84.0 | 126.6 ± 21.7 | −101.2317 |
3 | PI3Kalpha/mTOR-IN-1 | 331.4 ± 30.4 | 72.0 ± 6.7 | −66.89196 |
No. | Samples | HepG2 Cell Lines | |
---|---|---|---|
Cell Growth Inhibition Rate (%) * | IC50 Values | ||
1 | MD | 55.3 ± 0.4 | 81.2 µg/mL |
2 | MDE | 59.8 ± 0.2 | 60.4 µg/mL |
3 | MDW | 30.5 ± 0.9 | >100 µg/mL |
4 | 1 | 66.4 ± 1.0 | 23.1 μM |
5 | 2 | 73.2 ± 0.6 | 16.3 μM |
6 | Paclitaxel 50 μM | 54.2 ± 1.8 | 45.1 μM |
No. | Samples | Liver Cell Survival Rate (%) * | ED50 Values |
---|---|---|---|
1 | MD | 60.9 ± 1.1 | 24.4 µg/mL |
2 | MDE | 70.2 ± 0.7 | 19.3 µg/mL |
3 | MDW | 26.6 ± 1.8 | 93.5 µg/mL |
4 | 1 | 58.5 ± 0.9 | 30.7 μM |
5 | 2 | 66.2 ± 1.4 | 20.5 μM |
6 | Curcumin 50 μM | 73.8 ± 1.2 | 7.2 μM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, V.T.T.; Hung, D.V.; Quy, B.M.; Minh, P.T.H.; Lam, D.T. Hepatoprotective Effect of Millettia dielsiana: In Vitro and In Silico Study. Molecules 2022, 27, 8978. https://doi.org/10.3390/molecules27248978
Le VTT, Hung DV, Quy BM, Minh PTH, Lam DT. Hepatoprotective Effect of Millettia dielsiana: In Vitro and In Silico Study. Molecules. 2022; 27(24):8978. https://doi.org/10.3390/molecules27248978
Chicago/Turabian StyleLe, Vu Thi Thu, Dao Viet Hung, Bui Minh Quy, Pham Thi Hong Minh, and Do Tien Lam. 2022. "Hepatoprotective Effect of Millettia dielsiana: In Vitro and In Silico Study" Molecules 27, no. 24: 8978. https://doi.org/10.3390/molecules27248978
APA StyleLe, V. T. T., Hung, D. V., Quy, B. M., Minh, P. T. H., & Lam, D. T. (2022). Hepatoprotective Effect of Millettia dielsiana: In Vitro and In Silico Study. Molecules, 27(24), 8978. https://doi.org/10.3390/molecules27248978