Nutritional Attributes and Phenolic Composition of Flower and Bud of Sophora japonica L. and Robinia pseudoacacia L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Chemical Composition
2.2. Mineral Elements and Metals
2.3. Fatty Acids
2.4. Amino Acids
2.5. Monosaccharide Composition
2.6. Identification of Polyphenols
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Proximate Composition Analysis
3.3. Mineral Elements and Metals Analysis
3.4. Fatty Acid Analysis
3.5. Amino Acid Analysis
3.6. Monosaccharide Compounds Analysis
3.7. Polyphenols Preparation
3.8. UPLC-QTOF-MS Analysis of Polyphenols
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gong, Y.; Fan, L.; Wang, L.; Li, J. Flos Sophorae Immaturus: Phytochemistry, bioactivities, and its potential applications. Food Rev. Int. 2021, 1–19. [Google Scholar] [CrossRef]
- Xie, Z.; Lam, S.; Wu, J.; Yang, D.; Xu, X. Chemical fingerprint and simultaneous determination of flavonoids in Flos Sophorae Immaturus by HPLC-DAD and HPLC-DAD-ESI-MS/MS combined with chemometrics analysis. Anal. Methods 2014, 6, 4328–4335. [Google Scholar] [CrossRef]
- Li, L.; Huang, T.; Lan, C.; Ding, H.; Yan, C.; Dou, Y. Protective effect of polysaccharide from Sophora japonica L. flower buds against UVB radiation in a human keratinocyte cell line (HaCaT cells). J. Photochem. Photobiol. B 2019, 191, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Vitkova, M.; Mullerova, J.; Sadlo, J.; Pergl, J.; Pysek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 2017, 384, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; McLaughlin, J.L. Bioactive Flavonoids from the Black Locust Tree, Robinia Pseudoacacia. Pharm. Biol. 2000, 38, 229–234. [Google Scholar] [CrossRef]
- Veitch, N.C.; Elliott, P.C.; Kite, G.C.; Lewis, G.P. Flavonoid glycosides of the black locust tree, Robinia pseudoacacia (Leguminosae). Phytochemistry 2010, 71, 479–486. [Google Scholar] [CrossRef]
- Bratu, M.M.; Birghila, S.; Stancu, L.M.; Cenariu, M.C.; Emoke, P.; Popescu, A.; Radu, M.D.; Zglimbea, L. Evaluation of the antioxidant, cytotoxic and antitumoral activities of a polyphenolic extract of Robinia Pseudoacacia L. Flowers. J. Sci. Arts 2021, 21, 547–556. [Google Scholar] [CrossRef]
- Stankov, S.; Fidan, H.; Ivanova, T.; Stoyanova, A.; Damyanova, S.; Desyk, M. Chemical composition and application of flowers of false acacia (Robinia pseudoacacia L.). Ukr. Food J. 2018, 7, 577–588. [Google Scholar] [CrossRef]
- Liang, Q.; Cui, J.; Li, H.; Liu, J.; Zhao, G. Florets of sunflower (Helianthus annuus L.): Potential new sources of dietary fiber and phenolic acids. J. Agric. Food Chem. 2013, 61, 3435–3442. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, J.; Li, J.; Liu, H.; Dong, N.; Geng, Y.Y.; Lu, Y.; Wang, Y. Phenolic composition and nutritional attributes of diaphragma juglandis fructus and shell of walnut (Juglans regia L.). Food Sci. Biotechnol. 2020, 29, 187–196. [Google Scholar] [CrossRef]
- Borovkova, V.S.; Malyar, Y.N.; Sudakova, I.G.; Chudina, A.I.; Zimonin, D.V.; Skripnikov, A.M.; Miroshnikova, A.V.; Ionin, V.A.; Kazachenko, A.S.; Sychev, V.V.; et al. Composition and structure of aspen (Populus tremula) hemicelluloses obtained by oxidative delignification. Polymers 2022, 14, 4521. [Google Scholar] [CrossRef] [PubMed]
- Borovkova, V.S.; Malyar, Y.N.; Sudakova, I.G.; Chudina, A.I.; Skripnikov, A.M.; Fetisova, O.Y.; Kazachenko, A.S.; Miroshnikova, A.V.; Zimonin, D.V.; Ionin, V.A.; et al. Molecular characteristics and antioxidant activity of spruce (Picea abies) hemicelluloses isolated by catalytic oxidative delignification. Molecules 2022, 27, 266. [Google Scholar] [CrossRef] [PubMed]
- Kazachenko, A.S.; Vasilieva, N.Y.; Borovkova, V.S.; Fetisova, O.Y.; Issaoui, N.; Malyar, Y.N.; Elsuf’ev, E.V.; Karacharov, A.A.; Skripnikov, A.M.; Miroshnikova, A.V.; et al. Food xanthan polysaccharide sulfation process with sulfamic acid. Foods 2021, 10, 2571. [Google Scholar] [CrossRef] [PubMed]
- Bader Ul Ain, H.; Saeed, F.; Khan, M.A.; Niaz, B.; Rohi, M.; Nasir, M.A.; Tufail, T.; Anbreen, F.; Anjum, F.M. Modification of barley dietary fiber through thermal treatments. Food Sci. Nutr. 2019, 7, 1816–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Bai, X.; Zhang, Z. Extrusion process improves the functionality of soluble dietary fiber in oat bran. J. Cereal Sci. 2011, 54, 98–103. [Google Scholar] [CrossRef]
- Chawla, R.; Patil, G.R. Soluble dietary fiber. Compr. Rev. Food Sci. Food Saf. 2010, 9, 178–196. [Google Scholar] [CrossRef]
- Karak, T.; Kutu, F.R.; Nath, J.R.; Sonar, I.; Paul, R.K.; Boruah, R.K.; Sanyal, S.; Sabhapondit, S.; Dutta, A.K. Micronutrients (B, Co, Cu, Fe, Mn, Mo, and Zn) content in made tea (Camellia sinensis L.) and tea infusion with health prospect: A critical review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2996–3034. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Ahmad, A.; Khalid, N.; David, A.; Sandhu, M.A.; Randhawa, M.A.; Suleria, H.A. A question mark on iron deficiency in 185 million people of Pakistan: Its outcomes and prevention. Crit. Rev. Food Sci. Nutr. 2014, 54, 1617–1635. [Google Scholar] [CrossRef]
- Martín-Domingo, M.C.; Pla, A.; Hernández, A.F.; Olmedo, P.; Navas-Acien, A.; Lozano-Paniagua, D.; Gil, F. Determination of metalloid, metallic and mineral elements in herbal teas. Risk assessment for the consumers. J. Food Compos. Anal. 2017, 60, 81–89. [Google Scholar] [CrossRef]
- Achari, G.A.; Kowshik, M. Recent Developments on nanotechnology in agriculture: Plant mineral nutrition, health, and interactions with soil microflora. J. Agric. Food Chem. 2018, 66, 8647–8661. [Google Scholar] [CrossRef]
- Zhu, S.; Jiao, W.; Xu, Y.; Hou, L.; Li, H.; Shao, J.; Zhang, X.; Wang, R.; Kong, D. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci. 2021, 286, 120046. [Google Scholar] [CrossRef] [PubMed]
- van Rooijen, M.A.; Mensink, R.P. Palmitic acid versus stearic acid: Effects of interesterification and intakes on cardiometabolic risk markers—A systematic review. Nutrients 2020, 12, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Khan, H.; Xiao, J.; Cheang, W.S. Effects of arachidonic acid metabolites on cardiovascular health and disease. Int. J. Mol. Sci. 2021, 22, 12029. [Google Scholar] [CrossRef] [PubMed]
- Shramko, V.S.; Polonskaya, Y.V.; Kashtanova, E.V.; Stakhneva, E.M.; Ragino, Y.I. The short overview on the relevance of fatty acids for human cardiovascular disorders. Biomolecules 2020, 10, 1127. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, P.; Capparelli, R.; Iannelli, A.; Iannelli, D. Role of branched-chain amino acid metabolism in type 2 diabetes, obesity, cardiovascular disease and non-alcoholic fatty liver disease. Int. J. Mol. Sci. 2022, 23, 4325. [Google Scholar] [CrossRef] [PubMed]
- Patriarca, E.J.; Cermola, F.; D’Aniello, C.; Fico, A.; Guardiola, O.; De Cesare, D.; Minchiotti, G. The multifaceted roles of proline in cell behavior. Front. Cell Dev. Biol. 2021, 9, 728576. [Google Scholar] [CrossRef]
- Jiang, N.; Dillon, F.M.; Silva, A.; Gomez-Cano, L.; Grotewold, E. Rhamnose in plants—From biosynthesis to diverse functions. Plant Sci. 2021, 302, 110687. [Google Scholar] [CrossRef]
- Monrad, R.N.; Eklof, J.; Krogh, K.; Biely, P. Glucuronoyl esterases: Diversity, properties and biotechnological potential. A review. Crit. Rev. Biotechnol. 2018, 38, 1121–1136. [Google Scholar] [CrossRef]
- Li, Y.; Pan, H.; Liu, J.X.; Li, T.; Liu, S.; Shi, W.; Sun, C.; Fan, M.; Xue, L.; Wang, Y.; et al. l-Arabinose inhibits colitis by modulating gut microbiota in mice. J. Agric. Food Chem. 2019, 67, 13299–13306. [Google Scholar] [CrossRef]
- Li, P.; Sun, H.; Chen, Z.; Li, Y.; Zhu, T. Construction of efficient xylose utilizing Pichia pastoris for industrial enzyme production. Microb. Cell Fact. 2015, 14, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Gong, Y.; Li, J.; Fan, L. In vitro inhibitory effects of polyphenols from Tartary buckwheat on xanthine oxidase: Identification, inhibitory activity, and action mechanism. Food Chem. 2022, 379, 132100. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Bai, Y.; Zhao, Z.; Wang, X.; Fang, J.; Huang, L.; Zeng, M.; Zhang, Q.; Zhang, Y.; Zheng, X. Local and traditional uses, phytochemistry, and pharmacology of Sophora japonica L.: A review. J. Ethnopharmacol. 2016, 187, 160–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Cui, Q.; Yin, L.-J.; Li, Y.; Gao, M.-Z.; Meng, Y.; Li, J.; Zhang, S.-D.; Wang, W. Negative pressure cavitation based ultrasound-assisted extraction of main flavonoids from Flos Sophorae Immaturus and evaluation of its extraction kinetics. Sep. Purif. Technol. 2020, 244, 115805. [Google Scholar] [CrossRef]
- Wang, G.; Cui, Q.; Yin, L.J.; Zheng, X.; Gao, M.Z.; Meng, Y.; Wang, W. Efficient extraction of flavonoids from Flos Sophorae Immaturus by tailored and sustainable deep eutectic solvent as green extraction media. J. Pharm. Biomed. Anal. 2019, 170, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Khatri, D.; Chhetri, S.B.B. Reducing sugar, total phenolic content, and antioxidant potential of nepalese plants. Biomed. Res. Int. 2020, 2020, 7296859. [Google Scholar] [CrossRef]
- Li, J.; Gong, Y.; Li, J.; Fan, L. In vitro xanthine oxidase inhibitory properties of Flos Sophorae Immaturus and potential mechanisms. Food Biosci. 2022, 47, 101711. [Google Scholar] [CrossRef]
- Chen, L.; Pu, Y.; Xu, Y.; He, X.; Cao, J.; Ma, Y.; Jiang, W. Anti-diabetic and anti-obesity: Efficacy evaluation and exploitation of polyphenols in fruits and vegetables. Food Res. Int. 2022, 157, 111202. [Google Scholar] [CrossRef]
- Wan, F.; Feng, C.; Luo, K.; Cui, W.; Xia, Z.; Cheng, A. Effect of steam explosion on phenolics and antioxidant activity in plants: A review. Trends Food Sci. Tech. 2022, 124, 13–24. [Google Scholar] [CrossRef]
- Potortì, A.G.; Di Bella, G.; Mottese, A.F.; Bua, G.D.; Fede, M.R.; Sabatino, G.; Salvo, A.; Somma, R.; Dugo, G.; Lo Turco, V. Traceability of Protected Geographical Indication (PGI) Interdonato lemon pulps by chemometric analysis of the mineral composition. J. Food Compos. Anal. 2018, 69, 122–128. [Google Scholar] [CrossRef]
- Lee, T.H.; Lee, C.H.; Azmi, N.A.; Liew, R.K.; Hamdan, N.; Wong, S.L.; Ong, P.Y. Amino acid determination by HPLC combined with multivariate approach for geographical classification of Malaysian Edible Bird’s Nest. J. Food Compos. Anal. 2022, 107, 104399. [Google Scholar] [CrossRef]
- Wen, M.; Cui, Y.; Dong, C.X.; Zhang, L. Quantitative changes in monosaccharides of Keemun black tea and qualitative analysis of theaflavins-glucose adducts during processing. Food Res. Int. 2021, 148, 110588. [Google Scholar] [CrossRef] [PubMed]
- Martin-Garcia, B.; Pasini, F.; Verardo, V.; Gomez-Caravaca, A.M.; Marconi, E.; Caboni, M.F. Distribution of free and bound phenolic compounds in buckwheat milling fractions. Foods 2019, 8, 670. [Google Scholar] [CrossRef] [PubMed]
Component | Flower of SJL | Bud of SJL | Flower of RPL | Bud of RPL |
---|---|---|---|---|
Moisture | 5.74 ± 0.65 a | 5.70 ± 0.42 a | 6.48 ± 0.30 a | 6.27 ± 0.21 a |
Crude ash | 10.38 ± 0.19 d | 7.24 ± 0.25 c | 5.30 ± 0.18 a | 5.92 ± 0.32 b |
Crude protein | 11.65 ± 0.46 a | 16.82 ± 1.06 b | 21.30 ± 0.93 c | 21.65 ± 0.90 c |
Crude lipid | 0.78 ± 0.07 a | 1.50 ± 0.10 c | 1.15 ± 0.04 b | 1.12 ± 0.04 b |
Reducing sugar | 19.21 ± 0.34 b | 1.33 ± 0.23 a | 27.11 ± 0.54 c | 18.71 ± 0.60 b |
Total sugar | 50.36 ± 2.58 b | 44.49 ± 1.70 a | 52.44 ± 2.48 b | 53.30 ± 3.37 b |
Soluble dietary fiber | 17.25 ± 1.08 c | 7.91 ± 0.74 a | 19.29 ± 1.70 c | 12.23 ± 0.82 b |
Insoluble dietary fiber | 27.92 ± 1.62 a | 33.58 ± 1.19 b | 27.29 ± 0.98 a | 37.06 ± 1.31 c |
Total dietary fiber | 45.17 ± 2.69 ab | 41.49 ± 1.26 a | 46.57 ± 2.58 bc | 49.29 ± 1.08 c |
Free phenolics | 8.05 ± 0.02 b | 11.41 ± 0.57 c | 0.58 ± 0.03 a | 0.67 ± 0.02 a |
Bound phenolics | 0.10 ± 0.01 a | 0.13 ± 0.01 b | 0.11 ± 0.01 a | 0.18 ± 0.01 c |
Total phenolics | 8.14 ± 0.02 b | 11.54 ± 0.57 c | 0.69 ± 0.03 a | 0.85 ± 0.02 a |
Free flavonoids | 11.47 ± 0.10 b | 18.27 ± 1.39 c | 0.67 ± 0.01 a | 0.85 ± 0.01 a |
Bound flavonoids | 0.12 ± 0.01 b | 0.16 ± 0.01 c | 0.10 ± 0.01 a | 0.19 ± 0.01 d |
Total flavonoids | 11.59 ± 0.10 b | 18.43 ± 1.40 c | 0.77 ± 0.02 a | 1.04 ± 0.01 a |
Cu | 11.94 ± 0.39 a | 16.25 ± 0.97 b | 11.98 ± 0.46 a | 12.47 ± 0.75 a |
Zn | 25.22 ± 1.49 a | 29.92 ± 1.13 b | 31.98 ± 0.46 b | 36.47 ± 1.26 c |
Mn | 46.89 ± 1.81 c | 35.58 ± 1.04 a | 39.98 ± 1.54 b | 49.13 ± 1.30 c |
Na | 84.51 ± 1.47 c | 23.20 ± 1.87 a | 39.22 ± 2.05 b | 24.74 ± 1.07 a |
Fe | 1179.51 ± 13.91 d | 53.20 ± 1.87 a | 175.56 ± 3.58 c | 133.41 ± 2.12 b |
K | 2.21 ± 0.09 a | 2.97 ± 0.29 b | 2.29 ± 0.12 a | 2.31 ± 0.14 a |
Ca | 0.75 ± 0.04 c | 0.60 ± 0.06 b | 0.15 ± 0.02 a | 0.21 ± 0.04 a |
Mg | 0.31 ± 0.03 b | 0.39 ± 0.02 c | 0.12 ± 0.01 a | 0.16 ± 0.01 a |
Se | - | - | - | 0.029 ± 0.003 a |
Hg/Pb | - | - | - | - |
Compound | Flower of SJL | Bud of SJL | Flower of RPL | Bud of RPL |
---|---|---|---|---|
Undecanoic acid (C11:0) | 56.93 ± 0.87 d | 0.11 ± 0.02 a | 9.47 ± 0.34 b | 24.66 ± 0.47 c |
Lauric acid (C12:0) | 78.80 ± 0.70 d | 0.13 ± 0.01 a | 5.37 ± 0.46 b | 8.93 ± 0.32 c |
Tridecanoic acid (C13:0) | 56.73 ± 0.60 c | - | 13.70 ± 0.56 a | 29.25 ± 0.98 b |
Myristic acid (C14:0) | 9.15 ± 0.32 b | 0.34 ± 0.04 a | 15.30 ± 0.38 d | 10.84 ± 0.27 c |
Pentadecanoic acid (C15:0) | 60.67 ± 0.85 d | 0.12 ± 0.02 a | 14.59 ± 0.70 b | 20.82 ± 0.53 c |
Palmitic acid (C16:0) | 81.47 ± 0.75 a | 128.07 ± 1.67 b | 626.03 ± 4.18 d | 456.77 ± 3.64 c |
Heptadecanoic acid (C17:0) | 96.43 ± 0.93 d | 1.10 ± 0.05 a | 22.49 ± 1.03 b | 24.68 ± 0.72 c |
Stearic acid (C18:0) | 65.93 ± 0.91 b | 55.37 ± 0.66 a | 82.42 ± 2.34 c | 81.07 ± 0.69 c |
Arachidic acid (C20:0) | - | 0.28 ± 0.02 a | - | - |
Heneicosanoic acid (C21:0) | 96.20 ± 0.61 d | 0.26 ± 0.01 a | 24.51 ± 0.66 b | 33.92 ± 0.72 c |
Behenic acid (C22:0) | 3.69 ± 0.19 a | - | - | - |
Lignoceric acid (C24:0) | 103.73 ± 1.70 c | - | 20.67 ± 0.52 a | 32.66 ± 0.88 b |
Total saturated | 709.75 ± 1.56 b | 185.78 ± 2.34 a | 834.55 ± 7.39 d | 723.61 ± 4.24 c |
cis-10-Pentadecanoic acid (C15:1) | 9.06 ± 0.24 b | - | 6.36 ± 0.20 a | 8.62 ± 0.41 b |
Palmitoleic acid (C16:1) | 2.71 ± 0.30 b | 0.93 ± 0.03 a | 4.63 ± 0.21 c | 5.73 ± 0.27 d |
cis-10-Heptadecanoic acid (C17:1) | - | 0.99 ± 0.03 a | - | 9.63 ± 0.42 b |
Oleic (C18:1) | 33.36 ± 0.75 a | 1282.79 ± 9.29 c | 27.76 ± 0.59 a | 53.91 ± 0.37 b |
trans-6-Petroselenic (C18:1 T) | 8.81 ± 0.35 c | 0.16 ± 0.03 a | - | 4.26 ± 0.28 b |
Linoleic (C18:2) | 85.77 ± 1.23 a | 188.20 ± 1.48 b | 297.37 ± 3.17 d | 245.86 ± 3.62 c |
γ-Linolenic acid (C18:3 r) | 17.58 ± 0.57 b | 2.04 ± 0.08 a | 150.16 ± 2.24 d | 134.86 ± 1.87 c |
cis-11-Eicosenoic acid (C20:1) | 3.78 ± 0.25 a | 27.39 ± 0.54 c | 34.41 ± 0.67 d | 18.21 ± 0.67 b |
α-Linolenic acid (C18:3 a) | - | 27.07 ± 0.59 b | 2.84 ± 0.11 a | 2.81 ± 0.14 a |
Eicosatrienoic (C20:3(2)) | - | 51.70 ± 1.12 c | 23.93 ± 0.93 b | 6.85 ± 0.29 a |
Arachidonic acid (C20:4) | 3.35 ± 0.31 c | 1.96 ± 0.07 a | 1.84 ± 0.08 a | 2.39 ± 0.17 b |
cis-13,16-Docosadienoic acid(C22:2) | - | 0.57 ± 0.04 a | 2.28 ± 0.34 b | - |
Eicosapentaenoic (C20:5) | 4.71 ± 0.23 a | 27.53 ± 0.85 d | 12.91 ± 0.24 c | 5.72 ± 0.18 b |
Nervonic acid (C24:1) | - | 0.12 ± 0.03 a | - | - |
Docosahexenoic acid (C22:6) | - | 0.43 ± 0.05 a | - | - |
Total unsaturated | 169.14 ± 2.44 a | 1611.89 ± 11.96 d | 564.48 ± 2.30 c | 498.85 ± 5.25 b |
Amino Acids | Flower of SJL | Bud of SJL | Flower of RPL | Bud of RPL |
---|---|---|---|---|
Threonine (Thr) | 1.75 ± 0.03 a | 2.17 ± 0.01 b | 2.58 ± 0.08 c | 2.98 ± 0.03 d |
Valine (Val) | 5.64 ± 0.05 b | 5.16 ± 0.07 a | 5.84 ± 0.05 c | 6.61 ± 0.04 d |
Phenylalanine (Phe) | 2.27 ± 0.06 a | 2.76 ± 0.07 b | 3.28 ± 0.04 c | 3.31 ± 0.02 c |
Isoleucine (Ile) | 6.71 ± 0.06 a | 7.47 ± 0.02 b | 7.39 ± 0.07 b | 7.45 ± 0.03 b |
Leucine (Leu) | 6.94 ± 0.10 a | 9.43 ± 0.08 c | 7.65 ± 0.06 b | 7.67 ± 0.05 b |
Lysine (Lys) | 1.55 ± 0.07 a | 2.25 ± 0.03 b | 2.76 ± 0.04 c | 3.14 ± 0.07 d |
Total essential amino acids | 24.85 ± 0.19 a | 29.23 ± 0.13 b | 29.50 ± 0.17 b | 31.17 ± 0.13 c |
Aspartic acid (Asp) | 4.56 ± 0.09 a | 4.82 ± 0.07 b | 9.28 ± 0.08 d | 8.85 ± 0.05 c |
Serine (Ser) | 2.10 ± 0.07 a | 2.50 ± 0.08 b | 3.15 ± 0.06 c | 3.49 ± 0.09 d |
Glutamate (Glu) | 3.67 ± 0.06 a | 4.96 ± 0.08 b | 5.61 ± 0.10 c | 6.25 ± 0.06 d |
Glycine (Gly) | 1.84 ± 0.05 a | 2.06 ± 0.07 b | 2.27 ± 0.03 c | 2.40 ± 0.03 d |
Alanine (Ala) | 2.07 ± 0.04 a | 2.42 ± 0.05 b | 3.62 ± 0.06 d | 3.09 ± 0.07 c |
Cystine (Cys) | 0.67 ± 0.04 c | 0.51 ± 0.02 a | 0.62 ± 0.02 b | 0.69 ± 0.02 c |
Methionine (Met) | 6.19 ± 0.09 a | 8.81 ± 0.07 c | 7.29 ± 0.08 b | 6.20 ± 0.03 a |
Tyrosine (Tyr) | 2.82 ± 0.06 a | 3.13 ± 0.04 b | 4.22 ± 0.04 c | 4.38 ± 0.06 d |
Histidine (His) | 0.88 ± 0.05 a | 1.30 ± 0.02 b | 2.11 ± 0.03 c | 2.20 ± 0.05 d |
Arginine (Arg) | 1.51 ± 0.03 a | 2.49 ± 0.03 b | 2.43 ± 0.06 b | 2.77 ± 0.09 c |
Proline (Pro) | 10.08 ± 0.08 a | 19.08 ± 0.08 d | 11.96 ± 0.09 c | 11.73 ± 0.03 b |
Total nonessential amino acids | 36.39 ± 0.28 a | 52.08 ± 0.50 b | 52.55± 0.09 b | 52.04 ± 0.16 b |
Total amino acids | 61.24 ± 0.22 a | 81.31 ± 0.63 b | 82.06 ± 0.25 c | 83.22 ± 0.24 d |
Amino Acids | FAO/WHO Pattern | Flower of SJL | Bud of SJL | Flower of RPL | Bud of RPL |
---|---|---|---|---|---|
Threonine | 40 | 0.38 | 0.32 | 0.30 | 0.34 |
Valine | 50 | 0.97 | 0.61 | 0.55 | 0.61 |
Methionine + Cystine | 35 | 1.69 | 1.57 | 1.06 | 0.91 |
Isoleucine | 40 | 1.44 | 1.10 | 0.87 | 0.86 |
Leucine | 70 | 0.85 | 0.79 | 0.51 | 0.50 |
Phenylalanine + Tyrosine | 60 | 0.73 | 0.58 | 0.59 | 0.59 |
Lysine | 55 | 0.24 | 0.24 | 0.24 | 0.26 |
Compound | Flower of SJL | Bud of SJL | Flower of RPL | Bud of RPL |
---|---|---|---|---|
Mannose | 15.38 ± 1.35 b | - | 8.78 ± 0.31 a | - |
Ribose | 23.79 ± 1.98 c | 4.46 ± 0.43 b | 5.35 ± 0.61 b | 0.90 ± 0.06 a |
Rhamnose | 105.18 ± 2.59 d | 4.63 ± 0.48 b | 23.24 ± 0.98 c | 1.09 ± 0.23 a |
Glucuronic acid | 5.38 ± 0.35 a | 99.87 ± 1.50 b | - | - |
Galacturonic acid | 74.99 ± 1.35 d | 5.24 ± 0.24 b | 15.96 ± 0.21 c | 0.36 ± 0.04 a |
Xylose | 102.39 ± 3.33 c | 32.45 ± 1.98 b | 5.39 ± 0.81 a | 1.68 ± 0.20 a |
Arabinose | 46.65 ± 0.90 b | 52.27 ± 4.47 c | 6.49 ± 0.18 a | 5.28 ± 0.72 a |
Total content | 373.75 ± 3.64 d | 198.92 ± 7.85 c | 65.20 ± 0.21 b | 9.31 ± 0.74 a |
Peak | UV λ/nm | Compounds | [M-H]− m/z | Flower of SJL | Bud of SJL | Flower of RPL | Bud of RPL | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
fp | bp | fp | bp | fp | bp | fp | bp | ||||
1 | 213, 259 | Protocatechuic acid | 153 | − | + | − | + | − | + | − | + |
2 | 211, 289 | Chlorogenic acid | 353 | + | − | + | + | − | + | − | + |
3 | 239, 263 | Catechin | 289 | − | − | − | − | − | + | − | + |
4 | 265, 344 | Robinin | 739 | − | − | − | − | + | + | + | + |
5 | 256, 356 | Rutin | 609 | + | + | + | + | + | + | + | + |
6 | 253, 367 | Hyperoside | 463 | + | + | + | + | + | + | + | + |
7 | 264, 342 | Kaempferol-3-O-rutinoside | 593 | + | − | + | + | + | + | + | + |
8 | 258, 342 | Narcissoside | 623 | + | − | + | + | − | − | − | − |
9 | 258 | Quercitrin | 447 | + | + | + | + | + | − | + | + |
10 | 262, 313 | Sophorabioside | 577 | + | − | + | − | − | − | − | − |
11 | 255, 372 | Quercetin | 301 | + | − | + | + | − | − | − | − |
12 | 261, 367 | Kaempferol | 285 | + | − | + | + | − | + | − | + |
13 | 253, 368 | Isorhamnetin | 315 | + | − | + | + | − | − | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Gong, Y.; Li, J. Nutritional Attributes and Phenolic Composition of Flower and Bud of Sophora japonica L. and Robinia pseudoacacia L. Molecules 2022, 27, 8932. https://doi.org/10.3390/molecules27248932
Tian J, Gong Y, Li J. Nutritional Attributes and Phenolic Composition of Flower and Bud of Sophora japonica L. and Robinia pseudoacacia L. Molecules. 2022; 27(24):8932. https://doi.org/10.3390/molecules27248932
Chicago/Turabian StyleTian, Jing, Yuhong Gong, and Jun Li. 2022. "Nutritional Attributes and Phenolic Composition of Flower and Bud of Sophora japonica L. and Robinia pseudoacacia L." Molecules 27, no. 24: 8932. https://doi.org/10.3390/molecules27248932
APA StyleTian, J., Gong, Y., & Li, J. (2022). Nutritional Attributes and Phenolic Composition of Flower and Bud of Sophora japonica L. and Robinia pseudoacacia L. Molecules, 27(24), 8932. https://doi.org/10.3390/molecules27248932