Development of Novel Isatin-Tethered Quinolines as Anti-Tubercular Agents against Multi and Extensively Drug-Resistant Mycobacterium tuberculosis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthestic Chemistry
2.2. Biological Evaluation
2.2.1. Anti-Tubercular Effect for Quinolines Q6a–h and Q8a–h
2.2.2. Anti-Tubercular Activities toward MDR and XDR T.B
2.2.3. Cytotoxicity against Non-Tumorous Human Cells
3. Conclusions
4. Experimental
4.1. Chemistry
4.1.1. General
4.1.2. Preparation of 4-Hydroxyquinoline-3-Carboxylic Acid Ethyl Esters 3a–b
4.1.3. Preparation of Quinoline-3-Carbohydrazide Derivatives 4a–b
4.1.4. Preparation of Target Quinoline-Isatin Conjugates Q6a–h and Q8a–h
4.2. Biological Evaluation
4.2.1. Anti-Mycobacterial Activity
4.2.2. MTT Colorimetric Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Coulibaly, S.; Cimino, M.; Ouattara, M.; Lecoutey, C.; Buchieri, M.V.; Alonso-Rodriguez, N.; Briffotaux, J.; Mornico, D.; Gicquel, B.; Rochais, C.; et al. Phenanthrolinic analogs of quinolones show antibacterial activity against M. tuberculosis. Eur. J. Med. Chem. 2020, 207, 112821. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Global Tuberculosis Report. 2018. Available online: https://apps.who.int/iris/bitstream/handle/10665/274453/9789241565646-eng.pdf?sequence¼1&isAllowed¼y (accessed on 1 October 2022).
- World Health Organization Global Tuberculosis Report. 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua¼1 (accessed on 1 October 2022).
- Ribeiro, R.C.; de Marins, D.B.; Di Leo, I.; Gomes, L.D.S.; de Moraes, M.G.; Abbadi, B.L.; Villela, A.D.; da Silva, W.F.; da Silva, L.C.R.; Machado, P.; et al. Anti-tubercular profile of new selenium-menadione conjugates against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain and multidrug-resistant clinical isolates. Eur. J. Med. Chem. 2020, 209, 112859. [Google Scholar] [CrossRef] [PubMed]
- Ghiano, D.G.; Recio-Balsells, A.; Bortolotti, A.; Defelipe, L.A.; Turjanski, A.; Morbidoni, H.R.; Labadie, G.R. New one-pot synthesis of anti-tuberculosis compounds inspired on isoniazid. Eur. J. Med. Chem. 2020, 208, 112699. [Google Scholar] [CrossRef]
- Verma, S.K.; Verma, R.; Verma, S.; Vaishnav, Y.; Tiwari, S.; Rakesh, K. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. Eur. J. Med. Chem. 2020, 209, 112886. [Google Scholar] [CrossRef] [PubMed]
- Matviiuk, T.; Madacki, J.; Mori, G.; Orena, B.S.; Menendez, C.; Kysil, A.; André-Barrès, C.; Rodriguez, F.; Korduláková, J.; Mallet-Ladeira, S.; et al. Pyrrolidinone and pyrrolidine derivatives: Evaluation as inhibitors of InhA and Mycobacterium tuberculosis. Eur. J. Med. Chem. 2016, 123, 462–475. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakash, S.; Iso, Y.; Wan, B.; Franzblau, S.; Kozikowski, A.P. Design, Synthesis, and SAR Studies of Mefloquine-Based Ligands as Potential Antituberculosis Agents. Chemmedchem 2006, 1, 593–597. [Google Scholar] [CrossRef]
- Keri, R.S.; Patil, S.A. Quinoline: A promising antitubercular target. Biomed. Pharmacother. 2014, 68, 1161–1175. [Google Scholar] [CrossRef]
- Eswaran, S.; Adhikari, A.V.; Pal, N.K.; Chowdhury, I.H. Design and synthesis of some new quinoline-3-carbohydrazone derivatives as potential antimycobacterial agents. Bioorganic Med. Chem. Lett. 2010, 20, 1040–1044. [Google Scholar] [CrossRef]
- Briguglio, I.; Piras, S.; Corona, P.; Pirisi, M.; Jabes, D.; Carta, A. SAR and Anti-Mycobacterial Activity of Quinolones and Triazoloquinolones: An Update. Anti-Infect. Agents 2012, 11, 75–89. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, G.; Mangla, V.; Gupta, M.K. Quinoline and quinolones: Promising scaffolds for future antimycobacterial agents. J. Enzym. Inhib. Med. Chem. 2015, 30, 492–504. [Google Scholar] [CrossRef]
- Thomas, K.; Adhikari, A.V.; Telkar, S.; Chowdhury, I.H.; Mahmood, R.; Pal, N.K.; Row, G.; Sumesh, E. Design, synthesis and docking studies of new quinoline-3-carbohydrazide derivatives as antitubercular agents. Eur. J. Med. Chem. 2011, 46, 5283–5292. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.-L.; Teng, F.; Xiong, L.; Li, X.; Gao, C.; Yu, L.-T. Discovery of quinolone derivatives as antimycobacterial agents. RSC Adv. 2021, 11, 24095–24115. [Google Scholar] [CrossRef] [PubMed]
- Imramovský, A.; Polanc, S.; Vinšová, J.; Kočevar, M.; Jampílek, J.; Rečková, Z.; Kaustová, J. A new modification of anti-tubercular active molecules. Bioorg. Med. Chem. 2007, 15, 2551–2559. [Google Scholar] [CrossRef] [PubMed]
- Nayyar, A.; Malde, A.; Coutinho, E.; Jain, R. Synthesis, anti-tuberculosis activity, and 3D-QSAR study of ring-substituted-2/4-quinolinecarbaldehyde derivatives. Bioorg. Med. Chem. 2006, 14, 7302–7310. [Google Scholar] [CrossRef] [PubMed]
- Venugopala, K.N.; Uppar, V.; Chandrashekharappa, S.; Abdallah, H.H.; Pillay, M.; Deb, P.K.; Morsy, M.A.; Aldhubiab, B.E.; Attimarad, M.; Nair, A.B.; et al. Cytotoxicity and antimycobacterial properties of pyrrolo[1, 2-a] quinoline derivatives: Molecular target identification and molecular docking studies. Antibiotics 2020, 9, 233. [Google Scholar] [CrossRef]
- Insuasty, D.; Vidal, O.; Bernal, A.; Marquez, E.; Guzman, J.; Insuasty, B.; Quiroga, J.; Svetaz, L.; Zacchino, S.; Puerto, G.; et al. Antimicrobial Activity of Quinoline-Based Hydroxyimidazolium Hybrids. Antibiotics 2019, 8, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhayaya, R.S.; Vandavasi, J.K.; Kardile, R.A.; Lahore, S.V.; Dixit, S.S.; Deokar, H.S.; Shinde, P.D.; Sarmah, M.P.; Chattopadhyaya, J. Novel quinoline and naphthalene derivatives as potent antimycobacterial agents. Eur. J. Med. Chem. 2010, 45, 1854–1867. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.; Salama, I.; Gomaa, M.S.; Elaasser, M.M.; Abdel-Aziz, M.M.; Soliman, D.H. Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazone derivatives as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem. 2017, 138, 698–714. [Google Scholar] [CrossRef]
- Cheke, R.S.; Patil, V.M.; Firke, S.D.; Ambhore, J.P.; Ansari, I.A.; Patel, H.M.; Shinde, S.D.; Pasupuleti, V.R.; Hassan, I.; Adnan, M.; et al. Therapeutic Outcomes of Isatin and Its Derivatives against Multiple Diseases: Recent Developments in Drug Discovery. Pharmaceuticals 2022, 15, 272. [Google Scholar] [CrossRef]
- Brandão, P.; Marques, C.; Burke, A.J.; Pineiro, M. The application of isatin-based multicomponent-reactions in the quest for new bioactive and druglike molecules. Eur. J. Med. Chem. 2020, 211, 113102. [Google Scholar] [CrossRef]
- Chowdhary, S.; Shalini; Arora, A.; Kumar, V. A Mini Review on Isatin, an Anticancer Scaffold with Potential Activities against Neglected Tropical Diseases (NTDs). Pharmaceuticals 2022, 15, 536. [Google Scholar] [CrossRef] [PubMed]
- Varun; Sonam; Kakkar, R. Isatin and its derivatives: A survey of recent syntheses, reactions, and applications. MedChemComm 2019, 10, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Cheke, R.S.; Firke, S.D.; Patil, R.R.; Bari, S.B. Isatin: New hope against convulsion. Cent. Nerv. Syst. Agents Med. Chem. (Former. Curr. Med. Chem.-Cent. Nerv. Syst. Agents) 2018, 18, 76–101. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, H.; Ghabbour, H.A.; Eldehna, W.M.; Qabeel, M.M.; Fun, H.K. Synthesis, crystal structure, and biological activity of cis/trans amide rotomers of (Z)-N′-(2-Oxoindolin-3-ylidene) formohydrazide. J. Chem. 2014, 2014, 760434. [Google Scholar] [CrossRef] [Green Version]
- Taghour, M.S.; Elkady, H.; Eldehna, W.M.; El-Deeb, N.M.; Kenawy, A.M.; Elkaeed, E.B.; Alsfouk, A.A.; Alesawy, M.S.; Metwaly, A.M.; Eissa, I.H. Design and synthesis of thiazolidine-2,4-diones hybrids with 1,2-dihydroquinolones and 2-oxindoles as potential VEGFR-2 inhibitors: In-vitro anticancer evaluation and in-silico studies. J. Enzym. Inhib. Med. Chem. 2022, 37, 1903–1917. [Google Scholar] [CrossRef]
- Eldehna, W.M.; Al-Wabli, R.I.; Almutairi, M.S.; Keeton, A.B.; Piazza, G.A.; Abdel-Aziz, H.A.; Attia, M.I. Synthesis and biological evaluation of certain hydrazonoindolin-2-one derivatives as new potent anti-proliferative agents. J. Enzym. Inhib. Med. Chem. 2018, 33, 867–878. [Google Scholar]
- Eldehna, W.M.; Fares, M.; Ibrahim, H.S.; Alsherbiny, M.A.; Aly, M.H.; Ghabbour, H.A.; Abdel-Aziz, H.A. Synthesis and cytotoxic activity of biphenylurea derivatives containing indolin-2-one moieties. Molecules 2016, 21, 762. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, S.; Gao, C.; Fan, J.; Zhao, F.; Lv, Z.-S.; Feng, L.-S. Isatin hybrids and their anti-tuberculosis activity. Chin. Chem. Lett. 2016, 28, 159–167. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, G.-Q.; Liu, X.; Zhang, Z.; Feng, L.-S.; Liu, M.-L. Isatin Derivatives with Potential Antitubercular Activities. J. Heterocycl. Chem. 2018, 55, 1263–1279. [Google Scholar] [CrossRef]
- Karalı, N.; Gürsoy, A.; Kandemirli, F.; Shvets, N.; Kaynak, F.B.; Özbey, S.; Kovalishyn, V.; Dimoglo, A. Synthesis and structure–antituberculosis activity relationship of 1H-indole-2,3-dione derivatives. Bioorganic Med. Chem. 2007, 15, 5888–5904. [Google Scholar] [CrossRef]
- Shahlaei, M.; Fassihi, A.; Nezami, A. QSAR study of some 5-methyl/trifluoromethoxy-1H-indole-2,3-dione-3-thiosemicarbazone derivatives as anti-tubercular agents. Res. Pharm. Sci. 2009, 4, 123–131. [Google Scholar]
- Güzel, Ö.; Karalı, N.; Salman, A. Synthesis and antituberculosis activity of 5-methyl/trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazone derivatives. Bioorganic Med. Chem. 2008, 16, 8976–8987. [Google Scholar] [CrossRef] [PubMed]
- Eldehna, W.M.; El Hassab, M.A.; Abdelshafi, N.A.; Sayed, F.A.-Z.; Fares, M.; Al-Rashood, S.T.; Elsayed, Z.M.; Abdel-Aziz, M.M.; Elkaeed, E.B.; Elsabahy, M.; et al. Development of potent nanosized isatin-isonicotinohydrazide hybrid for management of Mycobacterium tuberculosis. Int. J. Pharm. 2021, 612, 121369. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, Z.M.; Eldehna, W.M.; Abdel-Aziz, M.M.; El Hassab, M.A.; Elkaeed, E.B.; Al-Warhi, T.; Abdel-Aziz, H.A.; Abou-Seri, S.M.; Mohammed, E.R. Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing–bacteria. J. Enzym. Inhib. Med. Chem. 2021, 36, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Eldehna, W.M.; Fares, M.; Abdel-Aziz, M.M.; Abdel-Aziz, H.A. Design, Synthesis and Antitubercular Activity of Certain Nicotinic Acid Hydrazides. Molecules 2015, 20, 8800–8815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abo-Ashour, M.F.; Eldehna, W.M.; George, R.F.; Abdel-Aziz, M.M.; Elaasser, M.M.; Abou-Seri, S.M.; Gawad, N.M.A. Synthesis and biological evaluation of 2-aminothiazole-thiazolidinone conjugates as potential antitubercular agents. Futur. Med. Chem. 2018, 10, 1405–1419. [Google Scholar] [CrossRef] [PubMed]
- Soliman, D.H.; Eldehna, W.M.; Ghabbour, H.A.; Kabil, M.M.; Abdel-Aziz, M.M.; Abdel-Aziz, H.A. Novel 6-phenylnicotinohydrazide derivatives: Design, synthesis and biological evaluation as a novel class of antitubercular and antimicrobial agents. Biol. Pharm. Bull. 2017, 40, 1883–1893. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aziz, H.A.; Eldehna, W.M.; Fares, M.; Al-Rashood, S.T.A.; Al-Rashood, K.A.; Abdel-Aziz, M.M.; Soliman, D.H. Synthesis, biological evaluation and 2D-QSAR study of halophenyl bis-hydrazones as antimicrobial and antitubercular agents. Int. J. Mol. Sci. 2015, 16, 8719–8743. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aziz, H.A.K.; Eldehna, W.M.; Fares, M.; Elsaman, T.; Abdel-Aziz, M.M.; Soliman, D.H. Synthesis, in vitro and in silico studies of some novel 5-nitrofuran-2-yl hydrazones as antimicrobial and antitubercular agents. Biol. Pharm. Bull. 2015, 38, 1617–1630. [Google Scholar] [CrossRef] [Green Version]
- Collins, L.; Franzblau, S.G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother. 1997, 41, 1004–1009. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Srivatava, N.; Kumar, A. Synthesis of substituted-4-oxo-1,4-dihydro-3-[1-oxo-2-hydrazino-3-{p-toluenesulfon}] quinoline Derivatives and their Biological Activity Against Bacterial Infections. Orient. J. Chem. 2013, 29, 507–511. [Google Scholar] [CrossRef]
- Franzblau, S.G.; Witzig, R.S.; McLaughlin, J.C.; Torres, P.; Madico, G.; Hernandez, A.; Degnan, M.T.; Cook, M.B.; Quenzer, V.K.; Ferguson, R.M.; et al. Rapid, Low-Technology MIC Determination with Clinical Mycobacterium tuberculosis Isolates by Using the Microplate Alamar Blue Assay. J. Clin. Microbiol. 1998, 36, 362–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagras, M.M.A.; Deeb, E.; Elzahabi, H.S.A.; Elkaeed, E.B.; Mehany, A.B.M.; Eissa, I.H. Discovery of new quinolines as potent colchicine binding site inhibitors: Design, synthesis, docking studies, and anti-proliferative evaluation. J. Enzym. Inhib. Med. Chem. 2021, 36, 640–658. [Google Scholar] [CrossRef] [PubMed]
Comp. | Cl | X | R | MIC |
---|---|---|---|---|
Q6a | 7-Cl | H | – | 0.48 |
Q6b | 7-Cl | F | – | 0.24 |
Q6c | 7-Cl | Br | – | 31.25 |
Q6d | 7-Cl | NO2 | – | 15.63 |
Q6e | 6-Cl | H | – | 3.9 |
Q6f | 6-Cl | F | – | 3.9 |
Q6g | 6-Cl | Br | – | 7.81 |
Q6h | 6-Cl | NO2 | – | 7.81 |
Q8a | 7-Cl | H | -CH3 | 0.24 |
Q8b | 7-Cl | H | -CH2-C6H5 | 0.06 |
Q8c | 7-Cl | Br | -CH3 | 0.98 |
Q8d | 7-Cl | Br | -CH2-C6H5 | 15.63 |
Q8e | 6-Cl | H | -CH3 | 1.95 |
Q8f | 6-Cl | H | -CH2-C6H5 | 0.98 |
Q8g | 6-Cl | Br | -CH3 | 1.95 |
Q8h | 6-Cl | Br | -CH2-C6H5 | 0.12 |
Isoniazide | 0.12 |
Comp. | MIC | |
---|---|---|
MDR (FJ05120) | XDR (FJ05195) | |
Q6a | 3.9 | 15.63 |
Q6b | 3.9 | 7.81 |
Q6c | NA | N.A. |
Q6d | 62.5 | N.A. |
Q6e | 15.63 | 125 |
Q6f | 31.25 | N.A. |
Q6g | 62.5 | N.A. |
Q6h | >125 | N.A. |
Q8a | 7.81 | 31.25 |
Q8b | 0.24 | 1.95 |
Q8c | 3.9 | 15.63 |
Q8d | >125 | N.A. |
Q8e | 7.81 | 31.25 |
Q8f | 7.81 | 15.63 |
Q8g | 15.63 | >125 |
Q8h | 0.98 | 3.9 |
Isoniazid | 7.19 | 27.22 |
Comp. | IC50 (µM) |
---|---|
WI-38 Cells | |
Q8b | 36.6 ± 0.96 |
Q8h | 42.8 ± 1.12 |
Staurosporine | 17.5 ± 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrahman, M.A.; Almahli, H.; Al-Warhi, T.; Majrashi, T.A.; Abdel-Aziz, M.M.; Eldehna, W.M.; Said, M.A. Development of Novel Isatin-Tethered Quinolines as Anti-Tubercular Agents against Multi and Extensively Drug-Resistant Mycobacterium tuberculosis. Molecules 2022, 27, 8807. https://doi.org/10.3390/molecules27248807
Abdelrahman MA, Almahli H, Al-Warhi T, Majrashi TA, Abdel-Aziz MM, Eldehna WM, Said MA. Development of Novel Isatin-Tethered Quinolines as Anti-Tubercular Agents against Multi and Extensively Drug-Resistant Mycobacterium tuberculosis. Molecules. 2022; 27(24):8807. https://doi.org/10.3390/molecules27248807
Chicago/Turabian StyleAbdelrahman, Mohamed A., Hadia Almahli, Tarfah Al-Warhi, Taghreed A. Majrashi, Marwa M. Abdel-Aziz, Wagdy M. Eldehna, and Mohamed A. Said. 2022. "Development of Novel Isatin-Tethered Quinolines as Anti-Tubercular Agents against Multi and Extensively Drug-Resistant Mycobacterium tuberculosis" Molecules 27, no. 24: 8807. https://doi.org/10.3390/molecules27248807
APA StyleAbdelrahman, M. A., Almahli, H., Al-Warhi, T., Majrashi, T. A., Abdel-Aziz, M. M., Eldehna, W. M., & Said, M. A. (2022). Development of Novel Isatin-Tethered Quinolines as Anti-Tubercular Agents against Multi and Extensively Drug-Resistant Mycobacterium tuberculosis. Molecules, 27(24), 8807. https://doi.org/10.3390/molecules27248807