Polarity- and Pressure-Induced Emission from a Benzophenone-Based Luminophore
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polarity-Induced Emission
2.2. Pressure-Induced Emission
2.3. Theoretical Calculation
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Teng, M.-J.; Jia, X.-R.; Yang, S.; Chen, X.-F.; Wei, Y. Reversible Tuning Luminescent Color and Emission Intensity: A Dipeptide-Based Light-emitting Material. Adv. Mater. 2012, 24, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lv, X.; Wang, P.; Zhang, Y.; Dai, Y.; Wu, Q.; Ouyang, M.; Zhang, C. A donor–acceptor cruciform p-system: High contrast mechanochromic properties and multicolour electrochromic behavior. J. Mater. Chem. C 2014, 2, 5365–5371. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Zhou, H.; Chen, W.; Mei, J.; Su, J. Ratiometric Hg2+/Ag+ Probes with Orange Red-White-Blue Fluorescence Response Constructed by Integrating Vibration-Induced Emission with an Aggregation-Induced Emission Motif. Chem. Eur. J. 2017, 23, 9280–9287. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, Y.; Kong, L.; Yang, J. Mechanoresponsive Material of AIE-Active 1,4-Dihydropyrrolo[3,2-b]pyrrole Luminophores Bearing Tetraphenylethylene Group with Rewritable Data Storage. Molecules 2018, 23, 3255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, Y.; Liang, Z. Electroluminochromic Materials and Devices. Adv. Funct. Mater. 2016, 26, 2783–2799. [Google Scholar] [CrossRef]
- Luo, J.; Li, L.Y.; Song, Y.L.; Pei, J. A Piezochromic Luminescent Complex: Mechanical Force Induced Patterning with a High Contrast Ratio. Chem. Eur. J. 2011, 17, 10515–10519. [Google Scholar] [CrossRef]
- Sattar, F.; Feng, Z.; Zou, H.; Ye, H.; Zhang, Y.; You, L. Dynamic covalent bond constrained ureas for multimode fluorescence switching, thermally induced emission, and chemical signaling cascades. Org. Chem. Front. 2021, 8, 3760–3769. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef]
- Xie, P.; Wang, J.-Y.; Huang, Y.-Z.; Wu, X.-M.; Chen, Z.-N. Heteroctanuclear Au4Ag4 Cluster Complexes of 4,5-Diethynylacridin-9-One with Luminescent Mechanochromism. Molecules 2022, 27, 2127. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Zhuang, G.; Ouyang, M.; Yu, Z.; Cao, F.; Pan, G.; Tang, P.; Zhang, C.; Ma, Y. Heating and mechanical force-induced luminescence on–off switching of arylamine derivatives with highly distorted structures. J. Mater. Chem. C 2014, 2, 195–200. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, Y.; Wang, Q.; Yang, X.-F.; Li, Z.; Li, H. Ratiometric Fluorescent Probe for Vicinal Dithiol-Containing Proteins in Living Cells Designed via Modulating the Intramolecular Charge Transfer–Twisted Intramolecular Charge Transfer Conversion Process. Anal. Chem. 2016, 88, 10237–10244. [Google Scholar] [CrossRef]
- Li, K.; Cui, J.; Yang, Z.; Huo, Y.; Duan, W.; Gong, S.; Liu, Z. Solvatochromism, acidochromism and aggregation-induced emission of propeller-shaped spiroborates. Dalton Trans. 2018, 47, 15002–15008. [Google Scholar] [CrossRef]
- Sun, J.; Yang, S.; Wu, J.; He, X.; Zhang, Y.; Ji, J.; Zhang, C.; Liang, Z. In-situ electro-polymerization of fluorescent electrochromic thin films based on charge-transfer complexes. Chem. Eng. J. 2022, 428, 132625. [Google Scholar] [CrossRef]
- Ouyang, M.; Zhuo, C.; Cao, F.; Pan, G.; Lv, C.; Yang, S.; Li, C.; Zhang, C.; Sun, J.; Zhang, Y. Organogelator based on long alkyl chain attached excimer precursor: Two channels of TICT, highly efficient and switchable luminescence. Dye. Pigment. 2020, 180, 108433. [Google Scholar] [CrossRef]
- Ghosh, R.; Palit, D.K. Effect of Donor–Acceptor Coupling on TICT Dynamics in the Excited States of Two Dimethylamine Substituted Chalcones. J. Phys. Chem. A 2015, 119, 11128–11137. [Google Scholar] [CrossRef]
- Sun, J.; Dai, Y.; Ouyang, M.; Zhang, Y.; Zhan, L.; Zhang, C. Unique torsional cruciform p-architectures composed of donor and acceptor axes exhibiting mechanochromic and electrochromic properties. J. Mater. Chem. C 2015, 3, 3356–3363. [Google Scholar] [CrossRef]
- Wu, H.; Du, L.; Luo, J.; Wang, Z.; Phillips, D.L.; Qin, A.; Tang, B.Z. Structural modification on tetraphenylpyrazine: From polarity enhanced emission to polarity quenching emission and its intramolecular charge transfer mechanism. J. Mater. Chem. C 2022, 10, 8174–8180. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Jiang, C.; He, M.; Yao, C.; Zhang, J. Ultrapure deep-blue aggregation-induced emission and thermally activated delayed fluorescence emitters for efficient OLEDs with CIEy < 0.1 and low efficiency roll-offs. J. Mater. Chem. C 2022, 10, 3163–3171. [Google Scholar]
- Yang, S.; Lin, Y.; Sun, J.; Li, C.; Zhang, Y.; Zhang, C. Integrated electrochromic and electrofluorochromic properties from polyaniline-like polymers with triphenylacrylonitrile as side groups. Electrochim. Acta 2022, 421, 140443. [Google Scholar] [CrossRef]
- Li, W.; Pan, Y.; Yao, L.; Liu, H.; Zhang, S.; Wang, C.; Shen, F.; Lu, P.; Yang, B.; Ma, Y. A Hybridized Local and Charge-Transfer Excited State for Highly Efficient Fluorescent OLEDs: Molecular Design, Spectral Character, and Full Exciton Utilization. Adv. Optical Mater. 2014, 2, 892–901. [Google Scholar] [CrossRef]
- Li, C.; Ye, L.; Sun, J.; Zhang, C.; Song, Q.; Wang, K.; Ouyang, M. Near-infrared piezochromism of AIE-active luminophore in hybridized local and charge-transfer excited state—The effect of shortened donor-acceptor distance. Dye. Pigments 2022, 204, 110457. [Google Scholar] [CrossRef]
- Zhou, C.; Han, X.; Liao, G.; Zhou, C.; Jin, P.; Guo, Y.; Gao, H.; Zhang, Y.; Yang, S.; Sun, J. A Fluorescent Chemosensor with a Hybridized Local and Charge Transfer Nature and Aggregation-Induced Emission Effect for the Detection of Picric Acid. ChemistrySelect 2019, 4, 2868–2873. [Google Scholar] [CrossRef]
- Sun, J.; Liang, Z. Swift Electroflfluorochromism of Donor−Acceptor Conjugated Polytriphenylamines. ACS Appl. Mater. Interfaces 2016, 8, 18301–18308. [Google Scholar] [CrossRef]
- Li, H.; Han, J.; Zhao, H.; Liu, X.; Luo, Y.; Shi, Y.; Liu, C.; Jin, M.; Ding, D. Lighting Up the Invisible Twisted Intramolecular Charge Transfer State by High Pressure. J. Phys. Chem. Lett. 2019, 10, 748–753. [Google Scholar] [CrossRef]
- Roy, B.; Reddy, M.C.; Hazra, P. Developing the structure–property relationship to design solid state multi-stimuli responsive materials and their potential applications in different fields. Chem. Sci. 2018, 9, 3592–3606. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Ma, L.; Yang, X.; Zhou, H.; Qin, H.; Song, J.; Zhou, G.; Wang, D.; Wu, Z. High Efficiency Fluorescent Electroluminescence with Extremely Low Efficiency Roll-Off Generated by a Donor–Bianthracene–Acceptor Structure: Utilizing Perpendicular Twisted Intramolecular Charge Transfer Excited State. Adv. Opt. Mater. 2018, 6, 1800060. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Zhang, Y.; Qile, M.; Sun, J.; Xu, M.; Wang, K.; Cao, F.; Li, W.; Song, Q.; Zou, B.; Zhang, C. Ratiometric pressure sensors based on cyano-substituted oligo(p-phenylene vinylene) derivatives in the hybridized local and charge-transfer excited state. J. Mater. Chem. C 2016, 4, 9954–9960. [Google Scholar] [CrossRef]
Solvents | Hex | Tol | THF | DCM | Ace | DMF | ACN |
---|---|---|---|---|---|---|---|
ε | 1.90 | 2.38 | 7.58 | 8.93 | 20.7 | 37 | 37.5 |
n | 1.375 | 1.494 | 1.407 | 1.424 | 1.359 | 1.427 | 1.344 |
f | 0.0012 | 0.014 | 0.210 | 0.217 | 0.284 | 0.276 | 0.305 |
λabs (nm) | 331 | 338 | 338 | 339 | 331 | 342 | 337 |
λflu (nm) | 370 | 394 | 380 | 463 | 471 | 489 | 500 |
υa (×104 cm−1) | 3.021 | 2.959 | 2.959 | 2.950 | 3.021 | 2.924 | 2.967 |
υf (×104 cm−1) | 2.703 | 2.538 | 2.632 | 2.160 | 2.123 | 2.045 | 2.000 |
νa − νf (×103 cm−1) | 3.18 | 4.21 | 3.27 | 7.90 | 8.98 | 8.79 | 9.67 |
ΦPL 1 (%) | 0.3 | 0.7 | 1.2 | 63.9 | 41.3 | 90.6 | 91.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Zhang, P.; Zhang, Y.; Sun, J. Polarity- and Pressure-Induced Emission from a Benzophenone-Based Luminophore. Molecules 2022, 27, 8748. https://doi.org/10.3390/molecules27248748
Hu Q, Zhang P, Zhang Y, Sun J. Polarity- and Pressure-Induced Emission from a Benzophenone-Based Luminophore. Molecules. 2022; 27(24):8748. https://doi.org/10.3390/molecules27248748
Chicago/Turabian StyleHu, Qintao, Pu Zhang, Yunpeng Zhang, and Jingwei Sun. 2022. "Polarity- and Pressure-Induced Emission from a Benzophenone-Based Luminophore" Molecules 27, no. 24: 8748. https://doi.org/10.3390/molecules27248748
APA StyleHu, Q., Zhang, P., Zhang, Y., & Sun, J. (2022). Polarity- and Pressure-Induced Emission from a Benzophenone-Based Luminophore. Molecules, 27(24), 8748. https://doi.org/10.3390/molecules27248748