6-(Tetrazol-5-yl)-7-aminoazolo[1,5-a]pyrimidines as Novel Potent CK2 Inhibitors
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. CK2 Inhibition
3. Materials and Methods
3.1. Chemistry
3.2. CK2 Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pinna, L.-A. Protein kinase CK2: A challenge to canons. J. Cell Sci. 2002, 115, 3873–3878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axtell, R.-C.; Xu, L.; Barnum, S.-R.; Raman, C. CD5-CK2 binding/activation-deficient mice are resistant to experimental autoimmune encephalomyelitis: Protection is associated with diminished populations of IL-17-expressing T cells in the central nervous system. J. Immunol. 2006, 177, 8542–8549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.-N.; Ramji, D.-P. Protein kinase CK2, an important regulator of the inflammatory response? J. Mol. Med. 2008, 86, 887–897. [Google Scholar] [CrossRef]
- Murtaza, I.; Wang, H.-X.; Feng, X.; Alenina, N.; Bader, M.; Prabhakar, B.S.; Li, P.-F. Down-regulation of catalase and oxidative modification of protein kinase CK2 lead to the failure of apoptosis repressor with caspase recruitment domain to inhibit cardiomyocyte hypertrophy. J. Biol. Chem. 2008, 283, 5996–6004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, K.I.; Puustinen, P.; Gabrenaite, R.; Vihinen, H.; Rönnstrand, L.; Valmu, L.; Kalkkinen, N.; Mäkinen, K. Phosphorylation of the potyvirus capsid protein by protein kinase CK2 and its relevance for virus infection. J. Plant Cell. 2003, 15, 2124–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, A.S.; Kim, S.; Leung, P.C.; Auersperg, N.; Pelech, S.L. Profiling of protein kinases in the neoplastic transformation of human ovarian surface epithelium. J. Gynecol. Oncol. 2001, 82, 305. [Google Scholar] [CrossRef]
- Ahmad, K.A.; Wang, G.; Unger, G.; Slaton, J.; Ahmed, K. Protein kinase CK2--a key suppressor of apoptosis. J. Adv. Enzym. Regul. 2008, 48, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Yu, H.W. Casein Kinase 2 Is Activated and Essential for Wnt/β-Catenin Signaling. J. Biol. Chem. 2006, 281, 18394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CX-4945 granted orphan drug designation. Oncol. Times 2017, 39, 23. [CrossRef]
- Cozza, G.; Pinna, L.A. Casein kinases as potential therapeutic targets. Expert Opin. Ther. Targets 2016, 20, 319–340. [Google Scholar] [CrossRef]
- Dowling, J.E.; Alimzhanov, M.; Bao, L.; Chuaqui, C.; Denz, C.R.; Jenkins, E.; Larsen, N.A.; Lyne, P.D.; Pontz, T.; Ye, Q.; et al. Potent and Selective CK2 Kinase Inhibitors with Effects on Wnt Pathway Signaling in Vivo. ACS Med. Chem. Lett. 2016, 7, 300–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, C.I.; Drewry, D.H.; Pickett, J.E.; Tjaden, A.; Krämer, A.; Müller, S.; Gyenis, L.; Menyhart, D.; Litchfield, D.W.; Knapp, S.; et al. Development of a Potent and Selective Chemical Probe for the Pleiotropic Kinase CK2. J. Cell Chem. Biol. 2021, 28, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Perretta, C.; Erickson, P.; Margosiak, S.; Almassy, R.; Lu, J.; Averill, A.; Yager, K.M.; Chu, S. Structure-based design, synthesis, and study of pyrazolo[1,5-a][1,3,5]triazine derivatives as potent inhibitors of protein kinase CK2. Bioorg. Med. Chem. Lett. 2007, 17, 4191–4195. [Google Scholar] [CrossRef] [PubMed]
- Pierre, F.; Chua, P.C.; O’Brien, S.E.; Siddiqui-jain, A.; Bourbon, P.; Haddach, M.; Michaux, J.; Nagasawa, J.; Schwaebe, M.K.; Stefan, E.; et al. Discovery and SAR of 5-(3-Chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic Acid (CX-4945), the First Clinical Stage Inhibitor of Protein Kinase CK2 for the Treatment of Cancer. J. Med. Chem. 2011, 54, 635–654. [Google Scholar] [CrossRef]
- Cozza, G.; Gianoncelli, A.; Bonvini, P.; Zorzi, E.; Pasquale, R.; Rosolen, A.; Pinna, L.A.; Meggio, F.; Zagotto, G.; Moro, S. Urolithin as a converging scaffold linking ellagic acid and coumarin analogues: Design of potent protein kinase CK2 inhibitors. ChemMedChem 2011, 6, 2273–2278. [Google Scholar] [CrossRef]
- Savateev, K.V.; Fedotov, V.V.; Rusinov, V.L.; Kotovskaya, S.K.; Spasov, A.A.; Kucheryavenko, A.F.; Vasiliev, P.M.; Kosolapov, V.A.; Sirotenko, V.S.; Gaidukova, K.A.; et al. Azolo[1,5-a]pyrimidines and Their Condensed Analogs with Anticoagulant Activity. Molecules 2022, 27, 274. [Google Scholar] [CrossRef]
- Spasov, A.; Kosolapov, V.; Babkov, D.; Klochkov, V.; Sokolova, E.; Miroshnikov, M.; Borisov, A.; Velikorodnaya, Y.; Smirnov, A.; Savateev, K.; et al. Discovery of Nitro-azolo[1,5-a]pyrimidines with Anti-Inflammatory and Protective Activity against LPS-Induced Acute Lung Injury. Pharmaceuticals 2022, 15, 537. [Google Scholar] [CrossRef] [PubMed]
- Savateev, K.V.; Spasov, A.A.; Rusinov, V.L. Small synthetic molecules with antiglycation activity. Structure-activity relationship. Russ. Chem. Rev. 2022, 91, 5041. [Google Scholar] [CrossRef]
- Savateev, K.V.; Rusinov, V.L.; Kotovskaya, S.K.; Spasov, A.A.; Naumenko, L.V.; Taran, A.S.; Brigadirova, A.A.; Yakovlev, D.S.; Sultanova, K.T.; Shcherbakova, N.M. The Effects of Nitroazolopyrimidines on the A1 Adenosine Receptor and Intraocular Pressure in Rats. Russ. J. Bioorg. Chem. 2022, 48, 777. [Google Scholar] [CrossRef]
- Savateev, K.V.; Ulomsky, E.N.; Fedotov, V.V.; Rusinov, V.L.; Sivak, K.V.; Lyubishin, M.M.; Kuzmich, N.N.; Aleksandrov, A.G. 6-Nitrotriazolo[1,5-a]pyrimidines as promising structures for pharmacotherapy of septic conditions. Russ. J. Bioorg. Chem. 2017, 43, 421. [Google Scholar] [CrossRef]
- Ostrovskii, V.A.; Popova, E.A.; Trifonov, R.E. Developments in Tetrazole Chemistry. Adv. Heterocycl. Chem. 2017, 123, 1–63. [Google Scholar] [CrossRef]
- Herr, J.R. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: Medicinal chemistry and synthetic methods. Bioorg. Med. Chem. 2002, 10, 3379. [Google Scholar] [CrossRef] [PubMed]
- Pegklidou, K.; Koukoulitsa, C.; Nicolaou, I.; Demopoulos, V.J. Design and synthesis of novel series of pyrrole based chemotypes and their evaluation as selective aldose reductase inhibitors. A case of bioisosterism between a carboxylic acid moiety and that of a tetrazole. Bioorg. Med. Chem. 2010, 18, 2107. [Google Scholar] [CrossRef] [PubMed]
- Pinter, T.; Jana, S.; Courtemanche, R.J.M.; Hof, F. Recognition Properties of Carboxylic Acid Bioisosteres: Anion Binding by Tetrazoles, Aryl Sulfonamides, and Acyl Sulfonamides on a Calix[4]arene Scaffold. J. Org. Chem. 2011, 76, 3733. [Google Scholar] [CrossRef] [PubMed]
- Allen, F.H.; Groom, C.R.; Liebeschuetz, J.W.; Bardwell, D.A.; Olsson, T.S.G.; Wood, P.A. The Hydrogen Bond Environments of 1H-Tetrazole and Tetrazolate Rings: The Structural Basis for Tetrazole–Carboxylic Acid Bioisosterism. J. Chem. Inf. Model. 2012, 52, 857. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Lu, Z.-J.; Dong, W.-S.; Zhang, J.-G.; Sinditskii, V.P. Detonation performance enhancement through a positional isomerism modification strategy. New J. Chem. 2022, 46, 13874–13879. [Google Scholar] [CrossRef]
- Urakov, G.V.; Savateev, K.V.; Rusinov, V.L. A versatile method for the synthesis of 7-aminoazolo[1,5-a]pyrimidine-6-carbonitriles. Dokl. Chem. 2022, in press. [Google Scholar]
- Cantillo, D.; Gutmann, B.; Kappe, C.O. An Experimental and Computational Assessment of Acid-Catalyzed Azide-Nitrile Cycloadditions. J. Org. Chem. 2012, 77, 10882. [Google Scholar] [CrossRef]
- Roh, J.; Artamonova, T.V.; Vávrová, K.; Koldobskii, G.I.; Hrabálek, A. Practical synthesis of 5-substituted tetrazoles under microwave irradiation. Synthesis 2009, 13, 2175–2178. [Google Scholar] [CrossRef]
- Gutmann, B.; Roduit, J.-P.; Roberge, D.; Kappe, C.O. Synthesis of 5-Substituted 1H-Tetrazoles from Nitriles and Hydrazoic Acid by Using a Safe and Scalable High-Temperature Microreactor Approach. Angew. Chem. Int. Ed. 2010, 49, 7101–7105. [Google Scholar] [CrossRef] [PubMed]
- Demko, Z.P.; Sharpless, K.B. Preparation of 5-Substituted 1H-Tetrazoles from Nitriles in Water. J. Org. Chem. 2001, 66, 7945–7950. [Google Scholar] [CrossRef]
- Cantillo, D.; Gutmann, B.; Kappe, C.O. Mechanistic Insights on Azide−Nitrile Cycloadditions: On the Dialkyltin Oxide−Trimethylsilyl Azide Route and a New Vilsmeier−Haack-Type Organocatalyst. J. Am. Chem. Soc. 2011, 133, 4465–4475. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Roy, A.; Ghosh, M.; Mitra, S.; Majee, A.; Hajra, A. Organocatalysis by an aprotic imidazolium zwitterion: A dramatic anion–cation cooperative effect on azide–nitrile cycloaddition. RSC Adv. 2014, 4, 6116. [Google Scholar] [CrossRef]
- Gazizov, D.A.; Fedotov, V.V.; Gorbunov, E.B.; Ulomskiy, E.N.; Yeltsov, O.S.; Rusinov, G.L.; Rusinov, V.L. Effective method for the synthesis of azolo[1,5-a]pyrimidin-7-amines. Chem. Heterocycl. Compd. 2019, 55, 573–577. [Google Scholar] [CrossRef]
- Trifonov, R.E.; Ostrovskii, V.A. Protolytic equilidria in tetrasoles. Russ. J. Org. Chem. 2006, 42, 1585. [Google Scholar] [CrossRef]
№ | NaN3, Equiv. | Catalyst | Catalyst, Equiv. | Solvent | T, °C | Time, h | Yield of 2g, % |
---|---|---|---|---|---|---|---|
1 | 1.1 | Me3N·HCl [29] | 1 | DMF | 100 | 8 | 60 b |
2 | 1.1 | Me3N·HCl | 1 | MeCN | 81 | 8 | 15 b |
3 | 1.1 | Me3N·HCl | 1 | MeOH | 64 | 8 | 0 |
4 | 1.1 | Me3N·HCl | 1.5 | DMF | 100 | 8 | 60 b |
5 | 1.1 | H3N·HCl [30] | 1 | DMF | 100 | 8 | 44 b |
6 | 1.1 | H3N·HCl | 1 | H2O | 100 | 8 | 0 |
7 | 1.1 | AcOH [29] | 1.2 | DMF | 100 | 8 | 78 b |
8 | 1.2 | Bu4NBr | 0.1 | DMF | 100 | 8 | 70 b |
9 | 1.1 | [28] | 0.1 | DMF | 100 | 8 | 56 b |
10 | 1.1 | ZnCl2 [31] | 0.15 | DMF | 100 | 8 | 33 b |
11 | 1.1 | - | - | DMF | 100 | 8 | 82 b |
12 | 1.2 | - | - | DMF | 100 | 8 | 80 b |
13 | 1.1 | - | - | DMF | 120 | 8 | 90 b |
14 | 1.1 | - | - | DMF | 140 | 8 | 69 b |
15 | 1.1 | - | - | DMF | 120 | 15 | 89 b |
16 | 1.0 | - | - | DMF | 120 | 8 | 80 b |
17 | 1.1 | AcOH | 1.2 | DMF | 120 | 8 | 75 b |
18 | 1.1 | - | - | H2O | 110 | 9 | 0 |
19 | 1.1 | - | - | DMF | 120 | 8 | 77 c |
Compound | CK2 Inhibition at 50 µM (%) | IC50 (µM) | IC50 95% C.I. (µM) |
---|---|---|---|
2a | 90.24 ± 2.83 | 9.27 | 4.09–21.03 |
3a | 93.69 ± 0.48 | 21.75 | 2.94–176.0 |
2b | 73.92 ± 1.05 | 42.10 | 22.32–78.75 |
3b | 77.73 ± 3.62 | 16.38 | 4.80–64.19 |
2c | 94.04 ± 0.47 | 4.48 | 1.11–16.49 |
3c | 93.04 ± 0.58 | 22.6 | 7.71–72.73 |
2d | 89.83 ± 1.65 | 2.42 | 0.16–20.35 |
2e | 98.19 ± 0.38 | 3.89 | 1.22–11.48 |
2f | 92.78 ± 4.16 | 0.18 | 0.11–0.28 |
3f | 99.54 ± 2.53 | 0.067 | 0.026–0.176 |
2g | 75.51 ± 10.19 | 9.45 | 1.35–99.91 |
3g | 87.3 ± 1.29 | 29.91 | 0.53–5664 |
2h | 98.23 ± 1.77 | 2.33 | 0.23–26.18 |
2i | 100.86 ± 0.83 | 0.045 | 0.018–0.243 |
3i | 99.26 ± 0.21 | 0.168 | 0.060–0.496 |
2j | 88.28 ± 1.23 | 0.253 | 0.967–7.405 |
2k | 89.32 ± 2.51 | n.t. | n.t. |
10a | 83.04 ± 1.52 | 23.78 | 6.33–102.6 |
10b | 56.85 ± 3.69 | n.t. | n.t. |
10c | 75.89 ± 2.65 | 30.41 | 5.17–203.7 |
10d | 43.95 ± 1.73 | n.t. | n.t. |
10e | 58.38 ± 4.88 | n.t. | n.t. |
10f | 85.18 ± 2.48 | 182.3 | 1.6–319.8 |
10g | 77.76 ± 1.11 | 114.8 | 49.35–302.2 |
10h | 85.02 ± 0.64 | 11.81 | 0.79–172.9 |
10i | 74.83 ± 2.74 | 44.67 | 1.29–254.7 |
10j | 58.85 ± 10.44 | n.t. | n.t. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urakov, G.V.; Savateev, K.V.; Kotovskaya, S.K.; Rusinov, V.L.; Spasov, A.A.; Babkov, D.A.; Sokolova, E.V. 6-(Tetrazol-5-yl)-7-aminoazolo[1,5-a]pyrimidines as Novel Potent CK2 Inhibitors. Molecules 2022, 27, 8697. https://doi.org/10.3390/molecules27248697
Urakov GV, Savateev KV, Kotovskaya SK, Rusinov VL, Spasov AA, Babkov DA, Sokolova EV. 6-(Tetrazol-5-yl)-7-aminoazolo[1,5-a]pyrimidines as Novel Potent CK2 Inhibitors. Molecules. 2022; 27(24):8697. https://doi.org/10.3390/molecules27248697
Chicago/Turabian StyleUrakov, Grigoriy V., Konstantin V. Savateev, Svetlana K. Kotovskaya, Vladimir L. Rusinov, Alexandr A. Spasov, Denis A. Babkov, and Elena V. Sokolova. 2022. "6-(Tetrazol-5-yl)-7-aminoazolo[1,5-a]pyrimidines as Novel Potent CK2 Inhibitors" Molecules 27, no. 24: 8697. https://doi.org/10.3390/molecules27248697
APA StyleUrakov, G. V., Savateev, K. V., Kotovskaya, S. K., Rusinov, V. L., Spasov, A. A., Babkov, D. A., & Sokolova, E. V. (2022). 6-(Tetrazol-5-yl)-7-aminoazolo[1,5-a]pyrimidines as Novel Potent CK2 Inhibitors. Molecules, 27(24), 8697. https://doi.org/10.3390/molecules27248697