In Silico and In Vitro Analysis of Tacca Tubers (Tacca leontopetaloides) from Banyak Island, Aceh Singkil Regency, Indonesia, as Antihypercholesterolemia Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Plant Determination
2.2. Extract Yield
2.3. Phytochemical Analysis
2.4. Analysis of GC-MS
2.5. Molecular Docking (In Silico)
2.6. In Vitro Potential of HMG-CoA Inhibitor
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation of Tuber Extract
3.2.2. Phytochemical Test
3.2.3. Identification of Active Compounds Using Gas Chromatography-Mass Spectrometry (GC-MS)
3.2.4. Molecular Docking (In Silico)
- Preparation of target proteins (receptors)
- 2.
- Preparation of ligands
- 3.
- Determination of the active site
- 4.
- Molecular docking
- 5.
- Analysis
3.2.5. In Vitro HMG Co-A Reductase Inhibitory Activity [58,59]
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- World Health Organization (WHO). Cardiovascular Disease (CVDs); WHO: Geneva, Switzerland, 2022.
- Johnston, T.P.; Korolenko, T.A.; Pirro, M.; Sahebkar, A. Preventing Cardiovascular Heart Disease: Promising Nutraceutical and Non-Nutraceutical Treatments for Cholesterol Management. Pharmacol. Res. 2017, 120, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E.; et al. Homozygous Familial Hypercholesterolaemia: New Insights and Guidance for Clinicians to Improve Detection and Clinical Management. A Position Paper Fromthe Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 2014, 35, 2146–2157. [Google Scholar] [CrossRef] [PubMed]
- Gesto, D.S.; Pereira, C.M.S.; Cerqueira, N.M.F.S.; Sousa, S.F. An Atomic-Level Perspective of HMG-CoA-Reductase: The Target Enzyme to Treat Hypercholesterolemia. Molecules 2020, 25, 3891. [Google Scholar] [CrossRef]
- Baskaran, G.; Salvamani, S.; Ahmad, S.A.; Shaharuddin, N.A.; Pattiram, P.D. HMG-CoA Reductase Inhibitory Activity and Phytocomponent Investigation of Basella Alba Leaf Extract as a Treatment for Hypercholesterolemia. Drug Des. Devel. Ther. 2015, 9, 509–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lennernäs, H.; Fager, G. Pharmacodynamics and Pharmacokinetics of the HMG-CoA Reductase Inhibitors. Similarities and Differences. Clin. Pharmacokinet. 1997, 32, 403–425. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.B.; Cassagnol, M. HMG-CoA Reductase Inhibitors; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Patel, D.K. Plants as a Source of Medicine. Med. Aromat. Plants 2015, s3, 1. [Google Scholar] [CrossRef]
- Imelda, E.; Idroes, R.; Khairan, K.; Lubis, R.R.; Abas, A.H.; Nursalim, A.J.; Rafi, M.; Tallei, T.E. Natural Antioxidant Activities of Plants in Preventing Cataractogenesis. Antioxidants 2022, 11, 1285. [Google Scholar] [CrossRef] [PubMed]
- Son, K.H.; Lee, J.Y.; Lee, J.S.; Kang, S.S.; Sohn, H.Y.; Kwon, C.S. Screening of Flavonoid Compounds with HMG-CoA Reductase Inhibitory Activities. J. Sci. 2018, 28, 247–256. [Google Scholar]
- Mahdavi, A.; Bagherniya, M.; Fakheran, O.; Reiner, Z.; Xu, S.; Sahebkar, A. Medicinal Plants and Bioactive Natural Compounds as Inhibitors of HMG-CoA Reductase: A Literature Review. BioFactors 2020, 46, 1–19. [Google Scholar] [CrossRef]
- LIPI. Taka (Tacca Leontopetaloides) Untuk Kemandirian Pangan; Erlinawati, I., Lestari, P., Ruqayah, Ermayanti, T.M., Eds.; LIPI Press: Jakarta, Indonesia, 2018; ISBN 9789797999865.
- Jukema, J.; Paisooksantivatana, Y. Plant Resources of South-East Asia; Flach, M., Rumawas, F., Eds.; Backhuys Publisher: Leiden, The Netherlands, 1996; ISBN 907334851X. [Google Scholar]
- Lim, T.K. Edible Medicinal and Non-Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2016; Volume 12, ISBN 9783319260648. [Google Scholar]
- Keardrit, K.; Rujjanawate, C.; Amornierdpison, D. Analgesic, Antipyretic and Anti-Inflammatory Effects of Tacca Chantrieri Andre. J. Med. Plants Res. 2010, 4, 1991–1995. [Google Scholar] [CrossRef] [Green Version]
- Pradeepika, C.; Selvakumar, R.; Krishnakumar, T.; Nabi, S.U.; Sajeev, M.S. Pharmacology and Phytochemistry of Underexploited Tuber Crops: A Review. J. Pharmacogn. Phytochem. 2018, 7, 1007–1019. [Google Scholar]
- Ndouyang, C.; Nguimbou, R.; Njintang, Y.; Scher, J.; Facho, B.; Mbofung, C.; Cmf, M. In Vivo Assessment of the Nutritional and Subchronic Toxicity of Tacca Leontopetaloides (L.). Tubers. Sch. J. Agric. Sci. 2014, 4, 5–13. [Google Scholar]
- Aïssatou, D.S.; Metsagang, J.T.N.; Sokeng, D.; Njintang, N.Y. Antihyperlipidemic and Hypolipidemic Properties of Tacca Leontopetaloides (L) Kuntze ( Dioscoreales: Dioscoreaceae ) Tuber’ s Aqueous Extracts in the Rats. Brazilian J. Biol. Sci. 2017, 4, 67–80. [Google Scholar] [CrossRef]
- Dhanani, T.; Shah, S.; Gajbhiye, N.A.; Kumar, S. Effect of Extraction Methods on Yield, Phytochemical Constituents and Antioxidant Activity of Withania Somnifera. Arab. J. Chem. 2017, 10, S1193–S1199. [Google Scholar] [CrossRef] [Green Version]
- Seriana, I.; Akmal, M.; Darusman; Wahyuni, S.; Khairan, K.; Sugito. Phytochemicals Characterizations of Neem (Azadirachta Indica a. Juss) Leaves Ethanolic Extract: An Important Medicinal Plant as Male Contraceptive Candidate. Rasayan J. Chem. 2021, 14, 343–350. [Google Scholar] [CrossRef]
- Upadhyay, S.; Dixit, M. Role of Polyphenols and Other Phytochemicals on Molecular Signaling. Oxid. Med. Cell. Longev. 2015, 2015, 504253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maheshwari, V. Phytochemicals Effective in Lowering Low-Density Lipoproteins. J. Biol. Eng. Res. Rev. 2020, 7, 16–23. [Google Scholar]
- Ma, C.; Yin, Z.; Zhu, P.; Luo, J.; Shi, X.; Gao, X. Blood Cholesterol in Late-Life and Cognitive Decline: A Longitudinal Study of the Chinese Elderly. Mol. Neurodegener. 2017, 12, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and Their Derivatives: Structural Diversity, Distribution, Metabolism, Analysis, and Health-Promoting Uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Babalola, O.O. Oilseed Crop Sunflower (Helianthus Annuus) as a Source of Food: Nutritional and Health Benefits. Food Sci. Nutr. 2020, 8, 4666–4684. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Shukla, S. Impact of Various Factors Responsible for Fluctuation in Plant Secondary Metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Gahukar, R.T. Factors Affecting Content and Bioefficacy of Neem (Azadirachta Indica A. Juss.) Phytochemicals Used in Agricultural Pest Control: A Review. Crop Prot. 2014, 62, 93–99. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, P.; Kumar, R. Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of the Tools for Its Alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef]
- Caddick, L.R.; Wilkin, P.; Rudall, P.J.; Hedderson, T.A.J.; Chase, W.; Caddick, L.R.; Wilkini, P.; Rudalll, P.J.; Hedderson, T.A.J.; Mark, W. Yams Reclassified: A Recircumscription of Dioscoreaceae and Dioscoreales. Taxon 2002, 51, 103–114. [Google Scholar] [CrossRef]
- Jagtap, S.; Satpute, R. Chemical Fingerprinting of Flavonoids in Tuber Extracts of Tacca Leontopetaloides (L.) O. Ktze. J. Acad. Ind. Res. 2015, 3, 485–489. [Google Scholar]
- Cao, Y.; Bei, W.; Hu, Y.; Cao, L.; Huang, L.; Wang, L.; Luo, D.; Chen, Y.; Yao, X.; He, W.; et al. Hypocholesterolemia of Rhizoma Coptidis Alkaloids Is Related to the Bile Acid by Up-Regulated CYP7A1 in Hyperlipidemic Rats. Phytomedicine 2012, 19, 686–692. [Google Scholar] [CrossRef]
- Kim, K.; Vance, T.M.; Chun, O.K. Greater Flavonoid Intake Is Associated with Improved CVD Risk Factors in US Adults. Br. J. Nutr. 2016, 115, 1481–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.H.; Yang, H.M.; Wang, Y.L.; Chen, Y.G. Phytochemical and Pharmacological Studies of the Genus Tacca: A Review. Trop. J. Pharm. Res. 2014, 13, 63–648. [Google Scholar] [CrossRef] [Green Version]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remón, A.; Martínez-González, M.A.; de la Torre, R.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; Arós, F.; et al. Inverse Association between Habitual Polyphenol Intake and Incidence of Cardiovascular Events in the PREDIMED Study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 639–647. [Google Scholar] [CrossRef]
- Starlin, T.; Saravana Prabha, P.; Thayakumar, B.K.A.; Gopalakrishnan, V.K. Screening and GC-MS Profiling of Ethanolic Extract of Tylophora Pauciflora. Bioinformation 2019, 15, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Uma, G.; Balasubramaniam, V. GC-MS Analysis of Nothapodytes Nimmoniana [J. Graham] Mabberly Leaves. J. Chem. Pharm. Res. 2012, 4, 4417–4419. [Google Scholar]
- Sathish, S.S. Phytochemical Analysis of Vitex Altissima L. Using UV-VIS, FTIR and GC-MS. Int. J. Pharm. Sci. Drug Res. 2012, 4, 56–62. [Google Scholar]
- Ben, W. Dr. Duke’s Phytochemical and Ethnobotanical Databases. Choice Rev. Online 2001, 38, 38–3317. [Google Scholar] [CrossRef]
- Balamurugan, R.; Stalin, A.; Aravinthan, A.; Kim, J.H. γ-Sitosterol a Potent Hypolipidemic Agent: In Silico Docking Analysis. Med. Chem. Res. 2015, 24, 124–130. [Google Scholar] [CrossRef]
- Sirikhansaeng, P.; Tanee, T.; Sudmoon, R.; Chaveerach, A. Major Phytochemical as γ -Sitosterol Disclosing and Toxicity Testing in Lagerstroemia Species. Evidence-based Complement. Altern. Med. 2017, 2017, 7209851. [Google Scholar] [CrossRef] [Green Version]
- Santas, J.; Rafecas, M.; Codony, R. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Springer: Berlin, Germany, 2013; pp. 1–4242. [Google Scholar] [CrossRef]
- De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med. Chem. 2016, 59, 4035–4061. [Google Scholar] [CrossRef] [PubMed]
- Pfefferkorn, J.A.; Choi, C.; Larsen, S.D.; Auerbach, B.; Hutchings, R.; Park, W.; Askew, V.; Dillon, L.; Hanselman, J.C.; Lin, Z.; et al. Substituted Pyrazoles as Hepatoselective HMG-CoA Reductase Inhibitors: Discovery of (3R,5R)-7-[2-(4-Fluoro-Phenyl)-4-Isopropyl-5-(4-Methyl- Benzylcarbamoyl)-2H-Pyrazol-3-Yl]-3,5-Dihydroxyheptanoic Acid (PF-3052334) as a Candidate for the Treatment of Hype. J. Med. Chem. 2008, 51, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Vahouny, G.V.; Connor, W.E.; Subramaniam, S.; Lin, D.S.; Gallo, L.L. Comparative Lymphatic Absorption of Sitosterol, Stigmasterol, and Fucosterol and Differential Inhibition of Cholesterol Absorption. Am. J. Clin. Nutr. 1983, 37, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Batta, A.K.; Xu, G.; Honda, A.; Miyazaki, T.; Salen, G. Stigmasterol Reduces Plasma Cholesterol Levels and Inhibits Hepatic Synthesis and Intestinal Absorption in the Rat. Metabolism 2006, 55, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Izar, M.C.; Tegani, D.M.; Kasmas, S.H.; Fonseca, F.A. Phytosterols and Phytosterolemia: Gene-Diet Interactions. Genes Nutr. 2011, 6, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunarto, N.; Aini, N.; Oktoberia, I.S.; Sulistyowati, I.; Kurniatri, A.A. Aktivitas Antioksidan Serta Penghambatan HMG CoA Dan Lipase Dari Kombinasi Ekstrak Daun Binahong-Rimpang Temu Lawak. J. Kefarmasian Indones. 2019, 9, 89–96. [Google Scholar] [CrossRef]
- Carbonell, T.; Freire, E. Binding Thermodynamics of Statins to HMG-CoA Reductase. Biochemistry 2005, 44, 11741–11748. [Google Scholar] [CrossRef]
- Departemen Kesehatan, R.I. Paramater Standar Umum Ekstrak Tumbuhan Obat; Departemen Kesehatan RI: Kota Palembang, Indonesia, 2000.
- Harbone, J. Phytochemical Methodes; Chapman Hall: London, UK, 1991. [Google Scholar]
- Kemala, P.; Idroes, R.; Khairan, K.; Ramli, M.; Jalil, Z.; Idroes, G.M.; Tallei, T.E.; Helwani, Z.; Safitri, E.; Iqhrammullah, M.; et al. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles Using Calotropis Gigantea from Ie Seu-Um Geothermal Area, Aceh Province, Indonesia. Molecules 2022, 27, 5310. [Google Scholar] [CrossRef]
- Dineshkumar, G.; Rajakumar, R. Gc-Ms Evaluation of Bioactive Molecules from The Methanolic Leaf Extract of Azadirachta Indica (A. Juss). Asian J. Pharm. Sci. Technol. 2015, 5, 64–69. [Google Scholar]
- Jasmine, J.M.; Vanaja, R. In Silico Analysis of Phytochemical Compounds for Optimizing the Inhibitors of HMG CoA Reductase. J. Appl. Pharm. Sci. Vol. 2013, 3, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.H.; Huang, K.J.; Weng, C.F.; Shiuan, D. Exploration of Natural Product Ingredients as Inhibitors of Human HMg-Coareductase through Structure-Based Virtual Screening. Drug Des. Devel. Ther. 2015, 9, 3313–3324. [Google Scholar]
- Tallei, T.E.; Tumilaar, S.G.; Niode, N.J.; Fatimawali, F.; Kepel, B.J.; Idroes, R.; Effendi, Y. Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study. Scientifica 2020, 2020, 6307457. [Google Scholar] [CrossRef]
- Maulydia, N.B.; Tallei, T.E.; Ginting, B.; Idroes, R.; Illian, D.N.; Faradilla, M. Analysis of Flavonoid Compounds of Orange (Citrus sp.) Peel as Anti-Main Protease of SARS-CoV-2: A Molecular Docking Study. IOP Conf. Ser. Earth Environ. Sci. 2022, 951, 012078. [Google Scholar] [CrossRef]
- Sulistiyani; Sari, R.K.; Triwahyuni, W. Eksplorasi Tumbuhan Obat Hutan Berkhasiat Inhibitor HMG-KoA Reduktase (Exploration of Medicinal Forest Plants with HMG-CoA Reductase Inhibitory Activity. J. Ilmu Teknol. Kayu Trop. 2017, 15, 141–154. [Google Scholar]
- Pangestika, I.; Oksal, E.; Sifzizul, T.; Muhammad, T.; Amir, H.; Syamsumir, D. Inhibitory Effects of Tangeretin and Trans-Ethyl Caffeate on the HMG-CoA Reductase Activity. Potential agents reducing Cholest levels. Saudi J. Biol. 2020, 27, 1947–1960. [Google Scholar] [CrossRef] [PubMed]
Taxonomic Rank | Taxon |
---|---|
Regnum/kingdom Sub regnum/sub kingdom: | Plantae Tracheobionta |
Super divisio/super division: | Spermatophyta |
Divisio/division: | Magnoliophyta |
Classis/class: | Liliopsida |
Sub classis/sub class: | Liliidae |
Ordo/order: | Liliales |
Familia/family: | Taccaceae |
Genus/genus: | Tacca J.R. Forst. & G. Forst |
Species/species: | Tacca leontopetaloides (L.) Kuntze |
No | Retention Time (RT) | Area (%) | Name of the Compound | Quality (%) |
---|---|---|---|---|
1 | 7.12 | 1.16 | 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one | 94 |
2 | 10.24 | 2.12 | Furancarboxaldehyde, 5-hydroxymethyl | 90 |
3 | 26.82 | 1.23 | 1-Octadecene | 98 |
4 | 27.92 | 3.33 | 1-isopropyl-2-methoxycarbonyl-1-aza-cyclopropane | 18 |
5 | 28.56 | 1.02 | Silane, ethoxytrimethyl | 46 |
6 | 28.76 | 3.98 | Hexadecanoic acid | 99 |
7 | 29.39 | 1.75 | Methyl(9Z,12Z)-9,12-octadecadienoate | 99 |
8 | 29.58 | 0.77 | E-8-methyl-9-tetradecen-1-ol-acetate | 91 |
9 | 29.86 | 7.00 | 9,12-octadecadienoic acid | 99 |
10 | 30.70 | 1.34 | Beta-pinone | 46 |
11 | 30.91 | 2.12 | Hexanedioic acid, BIS(2-ethyhexyl) ester | 81 |
12 | 31.21 | 1.03 | ZZ, 10,12-hexadecadien-1-ol-acetat | 55 |
13 | 31.43 | 0.97 | 6,8-Dioxabicyclo(3,2,1)OCT-3-ENE | 64 |
14 | 31.78 | 44.39 | 1,2-Benzenedicarboxylic acid, dinonyl ester | 91 |
15 | 32.15 | 0.85 | 1,9,12,15-octadecatetraene-1-methoxy | 51 |
16 | 32.93 | 2.74 | Phthalic acid, bis (7-methyloctyl) ester | 80 |
17 | 33.31 | 10.91 | 1,2 Benzenedicarxylic acid, mono (2-ethylhexyl) ester | 50 |
18 | 37.58 | 0.62 | Campesterol | 99 |
19 | 38.06 | 0.78 | Stigmasterol | 99 |
20 | 39.06 | 1.53 | Gamma sitosterol | 99 |
Ligan (The Active Compounds) | Binding Affinity (Kcal/mol) | Amino Acid Residue |
---|---|---|
Simvastatin | −8.0 | Van der Waals: ASP516, PRO513, ARG515, GLN510, TYR514, PRO813 Hydrogen: ARG515, ASP516, TYR533 Alkyl: PRO535, TYR517, PRO513, TYR511 |
2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one | −5.3 | Van der Waals: ASN518, TYR533, LEU812, TYR511 Hydrogen: ASP516 Alkyl: PRO535, TYR533, PRO813, TYR511 |
Furancarboxaldehyde, 5-hydromethyl | −5.5 | Van der Waals: ALA585, THR636, LYS606, LEU584, ILE638, PRO798, ILE699, TRP698, GLY701 Hydrogen: SER705, GLU700 Carbon hidrogen: SER637 |
1-octadecene | −4.5 | Van der Waals: THR809, GLN766, GLY765, ASP767, GLY807, GLU559 Hydrogen: GLY808, THR558 Alkyl: MET655 |
1-isopropyl-2-methoxycarbonyl-1-aza-cyclopropane | −5.2 | Van der Waals: TYR514, TYR533, ARG515, ASP516, TYR517, PRO535, PRO813, TYR511, GLN510, LEU812, ASN518 Alkyl:PRO513 |
Silane, ethoxytrimethyl | −7.6 | Van der Waals: ARG496, TYR514, ARG515, ASP516, TYR533, TYR517, PRO535, PRO813, TYR511, GLN510, ASN518 Alkyl: PRP513 |
Hexadecanoic acid | −4.4 | Van der Waals: ASN518, TYR517, ARG51, PRO813, PRO513, PRO535 Hydrogen: TYR533, ASP516 |
Methyl(9Z,12Z)-9,12-octadecadienoate | −4.0 | Van der Waals ILE733, GLU730, GLU726, GLU789, ASN788, THR725 Hydrogen: ASN788 Alkyl: ILE729, ALA783 |
E-8-Methyl-9tetradecen-1-ol-acetate | −6.5 | Van der Waals:GLY491, ILE485,ILE494, ILE467, LYS474, LEU452, ASN445 Unfavourable donor: ARG495 Alkyl: VAL471, LEU470, ALA473, LEU449 |
9,12-octadecadienoic acid | −5.0 | Van der Waals: PRO813, PRO535, PRO513, TYR533, TYR511, ASP516, ASN518, TYR517 |
Beta pinone | −6.4 | Van der Waals: CYS568, GLU528, ASN529, ASN567, LYS474, PRO477, ALA478 Pi-Sigma: TYR479 Alkyl: AL564 |
ZZ,10,12-hexadecadien-1-ol-acetate | −4.0 | Van der Waals: GLU726, GLU730, ASN788, ILE7333, GLU782, ASN734 Hydrogen: MET781 Alkyl: ILE729, ALA783 |
6,8-Dioxabicyclo(3,2,1)OCT-3-ENE | −4.8 | Van der Waals: ASP516, ARG515, TYR533, TYR517, TYR511, ASN518, LEU812, PRO535 Alkyl: ARG515, TYR514, TYR533, PRO513, PRO813 |
1,2 Benzenedicarboxylic acid, dinonil ester | −4.9 | Van der Waals: MET781, ASN734, GLU782, GLU730, ARG595, ASN788, Hydrogen: GLU730 Alkyl: LEU780, ILE733, LEU737, ILE729, ALA783 |
1,9,12,15, octadecatetraene-1-methoxy | −4.3 | Van der Waals: ALA585, ILE699, GLU700, THR636, SER637, MET742, THR796, PRO798, LEU584, SER705, LYS606, GLY701 Hydrogen: ILE638 |
Campesterol | −4.9 | Van der Waals: ASN755, GLY560, CYS561, GLU559, LYS735, ARG590, LYS691, ALA751, ASP690 Hydrogen: SER684, LYS692 Alkyl: LEU853, HIS752, LEU562, LEU857, VAL683, ALA856 |
Stigmasterol | −7.2 | Van der Waals: ASN518, ASP516, PRO535, ARG515, TYR533, TYR514, GLN510 Alkyl: TYR533, PRO813, TYR511, TYR517, PRO513, ARG515 |
Gamma sitosterol | −4.5 | Van der Waals: LYS633, HIS63, ARG646, GLN632, GLN648, LYS606, THR636, GLY701, SER705, SER637, MET742, PRO798, THR796 Unfavorable donor: ILE638 Alkyl: ALA585, LEU584 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rachmawati, R.; Idroes, R.; Suhartono, E.; Maulydia, N.B.; Darusman, D. In Silico and In Vitro Analysis of Tacca Tubers (Tacca leontopetaloides) from Banyak Island, Aceh Singkil Regency, Indonesia, as Antihypercholesterolemia Agents. Molecules 2022, 27, 8605. https://doi.org/10.3390/molecules27238605
Rachmawati R, Idroes R, Suhartono E, Maulydia NB, Darusman D. In Silico and In Vitro Analysis of Tacca Tubers (Tacca leontopetaloides) from Banyak Island, Aceh Singkil Regency, Indonesia, as Antihypercholesterolemia Agents. Molecules. 2022; 27(23):8605. https://doi.org/10.3390/molecules27238605
Chicago/Turabian StyleRachmawati, Rachmawati, Rinaldi Idroes, Eko Suhartono, Nur Balqis Maulydia, and Darusman Darusman. 2022. "In Silico and In Vitro Analysis of Tacca Tubers (Tacca leontopetaloides) from Banyak Island, Aceh Singkil Regency, Indonesia, as Antihypercholesterolemia Agents" Molecules 27, no. 23: 8605. https://doi.org/10.3390/molecules27238605
APA StyleRachmawati, R., Idroes, R., Suhartono, E., Maulydia, N. B., & Darusman, D. (2022). In Silico and In Vitro Analysis of Tacca Tubers (Tacca leontopetaloides) from Banyak Island, Aceh Singkil Regency, Indonesia, as Antihypercholesterolemia Agents. Molecules, 27(23), 8605. https://doi.org/10.3390/molecules27238605