Substituent-Dependent Divergent Synthesis of 2-(3-Amino-2,4-dicyanophenyl)pyrroles, Pyrrolyldienols and 3-Amino-1-acylethylidene-2-cyanopyrrolizines via Reaction of Acylethynylpyrroles with Malononitrile
Abstract
:1. Introduction8b 5t
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthesis of 2-(3-amino-2,4-dicyanophenyl)pyrroles (3a–m), pyrrolyldienols (4a–c) and pyrrolizines (6b,c) (General Procedure)
3.3. Characterization Data of Products 3, 4, 6b,c
3.4. The synthesis of (Z)-3-amino-1-(2-oxo-2-phenylethylidene)-1H-pyrrolizine-2-carbonitrile (6a)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- O’Malley, D.P.; Li, K.; Maue, M.; Zografos, A.L.; Baran, P.S. Total Synthesis of Dimeric Pyrrole−Imidazole Alkaloids: Sceptrin, Ageliferin, Nagelamide E, Oxysceptrin, Nakamuric Acid, and the Axinellamine Carbon Skeleton. J. Am. Chem. Soc. 2007, 129, 4762–4775. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Peng, J.; Hamann, M.T.; Hu, J.-F. Lamellarins and Related Pyrrole-Derived Alkaloids from Marine Organisms. Chem. Rev. 2007, 108, 264–287. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.C.; Prieto-Davo, A.; Jensen, P.R.; Fenical, W. The Marinopyrroles, Antibiotics of an Unprecedented Structure Class from a Marine Streptomyces sp. Org. Lett. 2008, 10, 629–631. [Google Scholar] [CrossRef] [Green Version]
- Li, R. Marinopyrroles: Unique Drug Discoveries Based on Marine Natural Products. Med. Res. Rev. 2015, 36, 169–189. [Google Scholar] [CrossRef]
- Gholap, S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem. 2016, 110, 13–31. [Google Scholar] [CrossRef]
- Bianco, M.d.C.A.D.; Marinho, D.I.L.F.; Hoelz, L.V.B.; Bastos, M.M.; Boechat, N. Pyrroles as Privileged Scaffolds in the Search for New Potential HIV Inhibitors. Pharmaceuticals 2021, 14, 893. [Google Scholar] [CrossRef] [PubMed]
- Jeelan Basha, N.; Basavarajaiah, S.M.; Shyamsunder, K. Therapeutic potential of pyrrole and pyrrolidine analogs: An update. Mol. Divers. 2022, 26, 2915–2937. [Google Scholar] [CrossRef]
- Mir, R.H.; Mir, P.A.; Mohi-Ud-Din, R.; Sabreen, S.; Maqbool, M.; Shah, A.J.; Shenmar, K.; Raza, S.N.; Pottoo, F.H. A Comprehensive Review on Journey of Pyrrole Scaffold Against Multiple Therapeutic Targets. Anticancer Agents Med. Chem. 2022, 22, 3291–3303. [Google Scholar] [CrossRef]
- Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem. 2011, 7, 442–495. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyrrole: A resourceful small molecule in key medicinal hetero-aromatics. RSC Adv. 2015, 5, 15233–15266. [Google Scholar] [CrossRef]
- Kaur, R.; Rani, V.; Abbot, V.; Kapoor, Y.; Konar, D.; Kumar, K. Recent synthetic and medicinal perspectives of pyrroles: An overview. J. Pharm. Chem. Sci. 2017, 1, 17–32. [Google Scholar]
- Ahmad, S.; Alam, O.; Naim, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Iqbal, M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur. J. Med. Chem. 2018, 157, 527–561. [Google Scholar] [CrossRef] [PubMed]
- Li Petri, G.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M.V.; Barraja, P.; Montalbano, A. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem. 2020, 208, 112783. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.-W.; Hwang, H.; Lee, C.-H. Synthesis of a Strapped Calix[4]pyrrole: Structure and Anion Binding Properties. Angew. Chem. Int. Ed. 2002, 41, 1757–1759. [Google Scholar] [CrossRef]
- Gale, P.A. Structural and Molecular Recognition Studies with Acyclic Anion Receptors. Acc. Chem. Res. 2006, 39, 465–475. [Google Scholar] [CrossRef]
- Plitt, P.; Gross, D.E.; Lynch, V.M.; Sessler, J.L. Dipyrrolyl-Functionalized Bipyridine-Based Anion Receptors for Emission-Based Selective Detection of Dihydrogen Phosphate. Chem. Eur. J. 2007, 13, 1374–1381. [Google Scholar] [CrossRef]
- Piliego, C.; Holcombe, T.W.; Douglas, J.D.; Woo, C.H.; Beaujuge, P.M.; Fréchet, J.M.J. Synthetic Control of Structural Order in N-Alkylthieno[3,4-c]pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells. J. Am. Chem. Soc. 2010, 132, 7595–7597. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, T.; Li, S.; Yu, T.; Zhang, X.; Hu, R.; Feng, J.; Wang, S.; Liang, T.; Chen, J.; et al. Ultrasensitive reversible chromophore reaction of BODIPY functions as high ratio double turn on probe. Nat. Commun. 2018, 9, 362. [Google Scholar] [CrossRef] [Green Version]
- Biava, M.; Porretta, G.C.; Poce, G.; Supino, S.; Deidda, D.; Pompei, R.; Molicotti, P.; Manetti, F.; Botta, M. Antimycobacterial Agents. Novel Diarylpyrrole Derivatives of BM212 Endowed with High Activity toward Mycobacterium tuberculosis and Low Cytotoxicity. J. Med. Chem. 2006, 49, 4946–4952. [Google Scholar] [CrossRef]
- Bellina, F.; Rossi, R. Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron 2006, 62, 7213–7256. [Google Scholar] [CrossRef]
- Krim, O.; Bouachrine, M.; Hammouti, B.; Elidrissi, A.; Hamidi, M. 2,5-Difuryl-N-Methylpyrrole as Corrosion Inhibitor for Steel in 1 M HCl. Port. Electrochim. Acta 2007, 26, 283–289. [Google Scholar] [CrossRef]
- Onnis, V.; De Logu, A.; Cocco, M.T.; Fadda, R.; Meleddu, R.; Congiu, C. 2-Acylhydrazino-5-arylpyrrole derivatives: Synthesis and antifungal activity evaluation. Eur. J. Med. Chem. 2009, 44, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.-L.; Ko, C.-C.; Lam, W.H.; Zhu, N.; Yam, V.W.-W. Design and Synthesis of a New Class of Photochromic Diarylethene-Containing Dithieno[3,2-b:2′,3′-d]pyrroles and Their Switchable Luminescence Properties. Chem. Eur. J. 2009, 15, 10005–10009. [Google Scholar] [CrossRef]
- Gomha, S.M.; Eldebss, T.M.A.; Abdulla, M.M.; Mayhoub, A.S. Diphenylpyrroles: Novel p53 activators. Eur. J. Med. Chem. 2014, 82, 472–479. [Google Scholar] [CrossRef]
- Cheon, K.H.; Cho, J.; Kim, Y.-H.; Chung, D.S. Thin Film Transistor Gas Sensors Incorporating High-Mobility Diketopyrrolopyrole-Based Polymeric Semiconductor Doped with Graphene Oxide. ACS Appl. Mater. Interfaces 2015, 7, 14004–14010. [Google Scholar] [CrossRef]
- Jung, E.-K.; Leung, E.; Barker, D. Synthesis and biological activity of pyrrole analogues of combretastatin A-4. Bioorg. Med. Chem. Lett. 2016, 26, 3001–3005. [Google Scholar] [CrossRef]
- Mishra, S.J.; Ghosh, S.; Stothert, A.R.; Dickey, C.A.; Blagg, B.S.J. Transformation of the Non-Selective Aminocyclohexanol-Based Hsp90 Inhibitor into a Grp94-Seletive Scaffold. ACS Chem. Biol. 2017, 12, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Li, Y.; Sun, Y.; Zhang, M.; Guo, C.; Mirza, I.A.; Li, Y.-Q. Vonoprazan: A Novel and Potent Alternative in the Treatment of Acid-Related Diseases. Dig. Dis. Sci. 2017, 63, 302–311. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Miao, Z.-H. Marine-derived angiogenesis inhibitors for cancer therapy. Mar. Drugs 2013, 11, 903–933. [Google Scholar] [CrossRef] [Green Version]
- Alešković, M.; Basarić, N.; Halasz, I.; Liang, X.; Qin, W.; Mlinarić-Majerski, K. Aryl substituted adamantane–dipyrromethanes: Chromogenic and fluorescent anion sensors. Tetrahedron 2013, 69, 1725–1734. [Google Scholar] [CrossRef]
- Cai, Z.; Lei, Y.; Dong, Y. Synthesis of Multi-phenyl-substituted Pyrrole (MPP)-based AIE Materials and Their Applications. Handb. Aggreg. -Induc. Emiss. 2022, 195–220. [Google Scholar] [CrossRef]
- Loudet, A.; Burgess, K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107, 4891–4932. [Google Scholar] [CrossRef] [PubMed]
- Sobenina, L.N.; Vasil’tsov, A.M.; Petrova, O.V.; Petrushenko, K.B.; Ushakov, I.A.; Clavier, G.; Meallet-Renault, R.; Mikhaleva, A.I.; Trofimov, B.A. General Route to Symmetric and Asymmetric meso-CF3-3(5)-Aryl(hetaryl)- and 3,5-Diaryl(dihetaryl)-BODIPY Dyes. Org. Lett. 2011, 13, 2524–2527. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Qi, F.; Ma, H.; Wang, X.; Pan, Y.; Chen, R.; Shen, Z.; Liu, Z.; Huang, L.; Huang, W. Domino-like multi-emissions across red and near infrared from solid-state 2-/2,6-aryl substituted BODIPY dyes. Nat. Commun. 2018, 9, 2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Ma, S.; She, M.; Chen, J.; Wang, Z.; Liu, P.; Zhang, S.; Li, J. Structural modification of BODIPY: Improve its applicability. Chin. Chem. Lett. 2019, 30, 1815–1824. [Google Scholar] [CrossRef]
- Marfin, Y.; Merkushev, D.; Khalabudin, D. Fast Synthesis of Tetra-Aryl-Substituted Aza-BODIPYs. J. Phys. Conf. Ser. 2021, 1822, 012004. [Google Scholar] [CrossRef]
- Gadomska, A.V.; Nevidimov, A.V.; Tovstun, S.A.; Petrova, O.V.; Sobenina, L.N.; Trofimov, B.A.; Razumov, V.F. Fluorescence from 3,5-diphenyl-8-CF3-BODIPYs with amino substituents on the phenyl rings: Quenching by aromatic molecules. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 254, 119632. [Google Scholar] [CrossRef]
- Harman, W.H.; Chang, C.J. N2O Activation and Oxidation Reactivity from a Non-Heme Iron Pyrrole Platform. J. Am. Chem. Soc. 2007, 129, 15128–15129. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, F.; Zhang, S.F. Synthesis of 5-Aryl-1,2-dihydro-1-pyrrolizinones. Chin. Chem. Lett. 2003, 14, 565–568. [Google Scholar]
- Belal, A.; El-Gendy, B.E.-D.M. Pyrrolizines: Promising scaffolds for anticancer drugs. Biorg. Med. Chem. 2014, 22, 46–53. [Google Scholar] [CrossRef]
- Wang, X.; Lane, B.S.; Sames, D. Direct C-Arylation of Free (NH)-Indoles and Pyrroles Catalyzed by Ar−Rh(III) Complexes Assembled In Situ. J. Am. Chem. Soc. 2005, 127, 4996–4997. [Google Scholar] [CrossRef] [PubMed]
- Swartz, D.L.; Odom, A.L. Synthesis, Structure, and Hydroamination Kinetics of (2,2‘-Diaryldipyrrolylmethane)- and Bis(2-arylpyrrolyl)titanium Complexes. Organometallics 2006, 25, 6125–6133. [Google Scholar] [CrossRef]
- Lee, P.H. Synthesis of 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene DyesBearing New Aryl Substituents at C3- and C5-Positions. Bull. Korean Chem. Soc. 2008, 29, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Qin, S.; Ma, L.-F.; Dong, L.; Zhang, J.; Liu, S.-S.; Duan, Y.-S.; Chen, S.-Y.; Hu, C.-W.; Yu, X.-Q. Iron-Mediated Direct Suzuki−Miyaura Reaction: A New Method for the ortho-Arylation of Pyrrole and Pyridine. Org. Lett. 2010, 12, 2694–2697. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.Y.; Wong, K.L.; Zhang, M.W.; Kwok, T.Y.; To, C.T.; Chan, K.S. Catalytic C–H arylation of unactivated heteroaromatics with aryl halides by cobalt porphyrin. Tetrahedron Lett. 2012, 53, 1571–1575. [Google Scholar] [CrossRef]
- Wen, J.; Zhang, R.-Y.; Chen, S.-Y.; Zhang, J.; Yu, X.-Q. Direct Arylation of Arene and N-Heteroarenes with Diaryliodonium Salts without the Use of Transition Metal Catalyst. J. Org. Chem. 2011, 77, 766–771. [Google Scholar] [CrossRef]
- Cui, K.; Gao, M.; Zhao, H.; Zhang, D.; Yan, H.; Huang, H. An Efficient Synthesis of Aryl-Substituted Pyrroles by the Suzuki⁻Miyaura Coupling Reaction of SEM-Protected Pyrroles. Molecules 2019, 24, 1594. [Google Scholar] [CrossRef] [Green Version]
- Prati, F.; Spaggiari, A.; Vaccari, D.; Davoli, P. The Triphenyl Phosphite-Chlorine Reagent in the Synthesis of Pyrroles from N-Allylamides. Synthesis 2006, 2006, 995–998. [Google Scholar] [CrossRef]
- Du, W.; Zhao, M.-N.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Copper-catalyzed 5-endo-trig cyclization of ketoxime carboxylates: A facile synthesis of 2-arylpyrroles. Chem. Commun. 2014, 50, 7437. [Google Scholar] [CrossRef]
- Kaewchangwat, N.; Sukato, R.; Vchirawongkwin, V.; Vilaivan, T.; Sukwattanasinitt, M.; Wacharasindhu, S. Direct synthesis of aryl substituted pyrroles from calcium carbide: An underestimated chemical feedstock. Green Chem. 2015, 17, 460–465. [Google Scholar] [CrossRef]
- Karimi, S.; Ma, S.; Liu, Y.; Ramig, K.; Greer, E.M.; Kwon, K.; Berkowitz, W.F.; Subramaniam, G. Substituted pyrrole synthesis from nitrodienes. Tetrahedron Lett. 2017, 58, 2223–2227. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Mikhaleva, A.b.I.; Schmidt, E.Y.; Sobenina, L.N. Chemistry of Pyrroles; CRC Press Inc.: Boca-Raton, FL, USA, 2014. [Google Scholar]
- Singh, F.V.; Parihar, A.; Chaurasia, S.; Singh, A.B.; Singh, S.P.; Tamrakar, A.K.; Srivastava, A.K.; Goel, A. 5,6-Diarylanthranilo-1,3-dinitriles as a new class of antihyperglycemic agents. Bioorg. Med. Chem. Lett. 2009, 19, 2158–2161. [Google Scholar] [CrossRef] [PubMed]
- Saleem, F.; Kanwal; Khan, K.M.; Chigurupati, S.; Andriani, Y.; Solangi, M.; Hameed, S.; Abdel Monem Abdel Hafez, A.; Begum, F.; Arif Lodhi, M.; et al. Dicyanoanilines as potential and dual inhibitors of α-amylase and α-glucosidase enzymes: Synthesis, characterization, in vitro, in silico, and kinetics studies. Arab. J. Chem. 2022, 15, 103651. [Google Scholar] [CrossRef]
- Borate, H.B.; Kudale, A.S.; Agalave, S.G. Synthesis of Substituted 2,6-Dicyanoanilines and Related Compounds. A Review. Org. Prep. Proced. Int. 2012, 44, 467–521. [Google Scholar] [CrossRef]
- Yi, C.; Blum, C.; Liu, S.-X.; Frei, G.; Neels, A.; Stoeckli-Evans, H.; Leutwyler, S.; Decurtins, S. An efficient one-pot synthesis of strongly fluorescent (hetero)arenes polysubstituted with amino and cyano groups. Tetrahedron 2008, 64, 9437–9441. [Google Scholar] [CrossRef] [Green Version]
- Zonouzi, A.; Izakian, Z.; Abdi, K.; Ng, S.W. Synthesis of Fluorescent 2,6-Dicyano-3,5-Disubstituted Anilines Using Cellulose Sulfuric Acid in Aqueous Media. Helv. Chim. Acta 2016, 99, 355–360. [Google Scholar] [CrossRef]
- Kulkarni, R.C.; Samundeeswari, S.; Shaikh, F.; Naik, N.S.; Madar, J.M.; Shastri, L.A.; Sunagar, V.A. Synthesis of Naked-eye Detectable Fluorescent 2H-chromen-2-One 2, 6-Dicyanoanilines: Effect of Substituents and pH on Its Luminous Behavior. J. Fluoresc. 2017, 27, 1613–1619. [Google Scholar] [CrossRef]
- Kudale, A.S.; Kamble, S.B.; Gore, A.H.; Pisal, M.M.; Salokhe, A.T.; Kolekar, G.B.; Helavi, V.B. One-pot three-component synthesis and photophysical properties of highly fluorescent novel 4-alkyl-3-aryl-2,6-dicyanoanilines by using tris(hydroxymethyl)aminomethane as a catalyst. Chem. Data Collect. 2019, 19, 100172. [Google Scholar] [CrossRef]
- Cardozo, T.M.; Nascimento, M.A.C. New class of molecules predicted to exhibit non-linear optical properties. J. Mater. Sci. 2005, 40, 3549–3551. [Google Scholar] [CrossRef]
- Plass, F.; Bönisch, S.; Held, F.; Ullrich, T.; Fischer, F.E.J.; Guryev, A.; Görling, A.; Kahnt, A.; Tsogoeva, S.B. Controlling and Fine-Tuning Charge-Transfer Emission in 2,6-Dicyanoaniline Multichromophores Prepared through Domino Reactions: Entry to a Potentially New Class of OLEDs. J. Org. Chem. 2021, 86, 6111–6125. [Google Scholar] [CrossRef]
- Pisal, M.M.; Annadate, R.A.; Athalye, M.C.; Kumar, D.; Chavan, S.P.; Sarkar, D.; Borate, H.B. Synthesis and cell imaging applications of fluorescent mono/di/tri-heterocyclyl-2,6-dicyanoanilines. Bioorg. Med. Chem. Lett. 2017, 27, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Kandeel, A.; Vernon, J.M.; Dransfield, T.A.; Fouli, F.A.; Youssef, A.S.A. Reactions of malononitrile with acetylenic esters and ketones. J. Chem. Res. Synop. 1990, 9, 276–277. [Google Scholar]
- Yi, C.; Blum, C.; Liu, S.-X.; Frei, G.; Neels, A.; Renaud, P.; Leutwyler, S.; Decurtins, S. An Efficient and Facile Synthesis of Highly Substituted 2,6-Dicyanoanilines. J. Org. Chem. 2008, 73, 3596–3599. [Google Scholar] [CrossRef]
- He, J.; Li, Z. Synthesis of 3,5-Diaryl-2,6-dicyanoanilines from Tandem Reactions of Ynones with Malononitrile. ChemistrySelect 2019, 4, 5732–5734. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Stepanova, Z.V.; Sobenina, L.N.; Mikhaleva, A.b.I.; Ushakov, I.A. Ethynylation of pyrroles with 1-acyl-2-bromoacetylenes on alumina: A formal ‘inverse Sonogashira coupling’. Tetrahedron Lett. 2004, 45, 6513–6516. [Google Scholar] [CrossRef]
- Trofimov, B.; Sobenina, L.; Stepanova, Z.; Ushakov, I.; Petrova, O.; Tarasova, O.; Volkova, K.; Mikhaleva, A. Regioselective Cross-Coupling of 1-Vinylpyrroles with Acylbromoacetylenes on Al2O3: Synthesis of 2-(2-Acylethynyl)-1-vinylpyrroles. Synthesis 2007, 2007, 447–451. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Sobenina, L.N. Ethynylation of pyrrole nucleus with haloacetylenes on active surfaces. In Targets in Heterocyclic Chemistry; Attanasi, O.A., Spinelli, D., Eds.; Societa Chimica Italiana: Rome, Italy, 2009; pp. 92–119. [Google Scholar]
- Sobenina, L.N.; Tomilin, D.N.; Petrova, O.V.; Gulia, N.; Osowska, K.; Szafert, S.; Mikhaleva, A.I.; Trofimov, B.A. Cross-coupling of 4,5,6,7-tetrahydroindole with functionalized haloacetylenes on active surfaces of metal oxides and salts. Russ. J. Org. Chem. 2010, 46, 1373–1377. [Google Scholar] [CrossRef]
- Sobenina, L.N.; Petrova, O.V.; Tomilin, D.N.; Gotsko, M.D.; Ushakov, I.A.; Klyba, L.V.; Mikhaleva, A.I.; Trofimov, B.A. Ethynylation of 2-(furan-2-yl)- and 2-(thiophen-2-yl)pyrroles with acylbromoacetylenes in the Al2O3 medium: Relative reactivity of heterocycles. Tetrahedron 2014, 70, 9506–9511. [Google Scholar] [CrossRef]
- Sobenina, L.N.; Tomilin, D.N.; Trofimov, B.A. C-Ethynylpyrroles: Synthesis and reactivity. Russ. Chem. Rev. 2014, 83, 475–501. [Google Scholar] [CrossRef]
- Sobenina, L.N.; Trofimov, B.A. Recent Strides in the Transition Metal-Free Cross-Coupling of Haloacetylenes with Electron-Rich Heterocycles in Solid Media. Molecules 2020, 25, 2490. [Google Scholar] [CrossRef]
- Tomilin, D.N.; Sobenina, L.N.; Saliy, I.V.; Ushakov, I.A.; Belogolova, A.M.; Trofimov, B.A. Substituted pyrrolyl-cyanopyridines on the platform of acylethynylpyrroles their 1 : 2 annulation with acetonitrile under the action of lithium metal. New J. Chem. 2022, 46, 13149–13155. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gotsko, M.D.; Saliy, I.V.; Ushakov, I.A.; Sobenina, L.N.; Trofimov, B.A. Substituent-Dependent Divergent Synthesis of 2-(3-Amino-2,4-dicyanophenyl)pyrroles, Pyrrolyldienols and 3-Amino-1-acylethylidene-2-cyanopyrrolizines via Reaction of Acylethynylpyrroles with Malononitrile. Molecules 2022, 27, 8528. https://doi.org/10.3390/molecules27238528
Gotsko MD, Saliy IV, Ushakov IA, Sobenina LN, Trofimov BA. Substituent-Dependent Divergent Synthesis of 2-(3-Amino-2,4-dicyanophenyl)pyrroles, Pyrrolyldienols and 3-Amino-1-acylethylidene-2-cyanopyrrolizines via Reaction of Acylethynylpyrroles with Malononitrile. Molecules. 2022; 27(23):8528. https://doi.org/10.3390/molecules27238528
Chicago/Turabian StyleGotsko, Maxim D., Ivan V. Saliy, Igor A. Ushakov, Lyubov N. Sobenina, and Boris A. Trofimov. 2022. "Substituent-Dependent Divergent Synthesis of 2-(3-Amino-2,4-dicyanophenyl)pyrroles, Pyrrolyldienols and 3-Amino-1-acylethylidene-2-cyanopyrrolizines via Reaction of Acylethynylpyrroles with Malononitrile" Molecules 27, no. 23: 8528. https://doi.org/10.3390/molecules27238528
APA StyleGotsko, M. D., Saliy, I. V., Ushakov, I. A., Sobenina, L. N., & Trofimov, B. A. (2022). Substituent-Dependent Divergent Synthesis of 2-(3-Amino-2,4-dicyanophenyl)pyrroles, Pyrrolyldienols and 3-Amino-1-acylethylidene-2-cyanopyrrolizines via Reaction of Acylethynylpyrroles with Malononitrile. Molecules, 27(23), 8528. https://doi.org/10.3390/molecules27238528