Enantioselective Recognition of Lysine and Phenylalanine Using an Imidazole Salt-Type Fluorescent Probe Based on H8-BINOL
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fluorescence Experiments of (R)-1 on Lysine
2.2. Fluorescence Experiments of (R)-1 on Phenylalanine
3. Conclusions
4. Methods and Materials
4.1. Experimental
- Step 1: Synthesis and Characterization of Compound 1
- Step 2: Synthesis and Characterization of Compound 2
- Step 3: Synthesis and Characterization of Compound 3
- Step 4: Synthesis and Characterization of Compound 4
4.1.1. Synthesis and Characterization (R)-1
4.1.2. Synthesis and Characterization (S)-1
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wang, Q.; Wu, X.; Pu, L. Excitation of one fluorescent probe at two different wavelengths to determine the concentration and enantiomeric composition of amino acids. Org. Lett. 2019, 21, 9036–9039. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Kojima, S.; Hamedpour, V.; Kubota, R.; Takizawa, S.-Y.; Yoshikawa, I.; Houjou, H.; Kubo, Y.; Minami, T. Accurate chiral pattern recognition for amines from just a single chemosensor. Chem. Sci. 2020, 11, 3790–3796. [Google Scholar] [CrossRef]
- Tian, J.; Yu, S.; Guo, H.; Zhu, M.; Lu, K.; Jiang, Y.; Yang, J.; Yu, X.; Pu, L. Enantioselective Fluorescent Recognition of β-Amino Alcohols by Stereoselective Cyclization. Eur. J. Org. Chem. 2022, 2022, e202200283. [Google Scholar] [CrossRef]
- Pu, L. Enantioselective fluorescent recognition of free amino acids: Challenges and opportunities. Angew. Chem. 2020, 132, 21998–22012. [Google Scholar] [CrossRef]
- Newar, R.; Akhtar, N.; Antil, N.; Kumar, A.; Shukla, S.; Begum, W.; Manna, K. Amino Acid-Functionalized Metal-Organic Frameworks for Asymmetric Base–Metal Catalysis. Angew. Chem. Int. Ed. 2021, 60, 10964–10970. [Google Scholar] [CrossRef]
- Zhao, F.; Du, Y.; Tian, J.; Shi, D.; Wang, Y.; Hu, L.; Yu, S.; Yu, X.; Pu, L. Enantioselective fluorescent recognition of amino acids in aqueous solution by using a chiral aldehyde probe. Eur. J. Org. Chem. 2018, 2018, 1891–1895. [Google Scholar] [CrossRef]
- Huo, B.; Lu, K.; Tian, J.; Zhao, F.; Wang, Y.; Yu, S.; Yu, X.; Pu, L. From MonoBINOL to BisBINOL: Expanded Enantioselective Fluorescent Recognition of Amino Acids. J. Org. Chem. 2021, 86, 6780–6786. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Wu, X.D.; Abed, M.; Gu, S.X.; Pu, L. Biphasic enantioselective fluorescent recognition of amino acids by a fluorophilic probe. Chem.–A Eur. J. 2019, 25, 7866–7873. [Google Scholar] [CrossRef]
- Nian, S.; Pu, L. Racemic fluorescence probe for enantiomeric excess determination: Application of cononsolvency of a polymer in sensing. J. Org. Chem. 2018, 84, 909–913. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, X.; Pu, L. Enhanced Enantioselectivity in the Fluorescent Recognition of a Chiral Diamine by Using a Bisbinaphthyl Dialdehyde. ACS Omega 2018, 3, 12545–12548. [Google Scholar] [CrossRef]
- Peng, R.; Lin, L.; Wu, X.; Liu, X.; Feng, X. Fluorescent sensor based on BINOL for recognition of cysteine, homocysteine, and glutathione. J. Org. Chem. 2013, 78, 11602–11605. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Cao, Y.; Zhao, G.; Pu, L. Fluorescent recognition of Zn2+ by two diastereomeric salicylaldimines: Dramatically different responses and spectroscopic investigation. Inorg. Chem. 2017, 56, 4395–4399. [Google Scholar] [CrossRef] [PubMed]
- Pu, L. Simultaneous determination of concentration and enantiomeric composition in fluorescent sensing. Acc. Chem. Res. 2017, 50, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- DeBerardinis, A.M.; Turlington, M.; Ko, J.; Sole, L.; Pu, L. Facile synthesis of a family of H8BINOL-amine compounds and catalytic asymmetric arylzinc addition to aldehydes. J. Org. Chem. 2010, 75, 2836–2850. [Google Scholar] [CrossRef]
- Yue, Y.; Turlington, M.; Yu, X.Q.; Pu, L. 3,3′-Anisyl-Substituted BINOL, H4BINOL, and H8BINOL Ligands: Asymmetric Synthesis of Diverse Propargylic Alcohols and Their Ring-Closing Metathesis to Chiral Cycloalkenes. J. Org. Chem. 2009, 74, 8681–8689. [Google Scholar] [CrossRef]
- Ying, J.; Wu, X.D.; Wang, D.; Pu, L. Catalytic Asymmetric Addition of Alkyl and Aryl Alkynes to N-(Diphenylphosphinoyl) imines. J. Org. Chem. 2016, 81, 8900–8905. [Google Scholar] [CrossRef]
- Yu, S.; DeBerardinis, A.M.; Turlington, M.; Pu, L. Study of the Fluorescent Properties of partially hydrogenated 1,1′-Bi-2-naphthol-amine molecules and their use for enantioselective fluorescent recognition. J. Org. Chem. 2011, 76, 2814–2819. [Google Scholar] [CrossRef]
- Lin, W.; Xie, X.; Wang, Y.; Chen, J. A New Fluorescent Probe for Selective Cd2+ Detection and Cell Imaging. Z. Anorg. Allg. Chem. 2019, 645, 645–648. [Google Scholar] [CrossRef]
- Bhatta, S.R.; Mondal, B.; Vijaykumar, G.; Thakur, A. ICT–isomerization-induced turn-on fluorescence probe with a large emission shift for mercury ion: Application in combinational molecular logic. Inorg. Chem. 2017, 56, 11577–11590. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, L.; Xu, X.; Qiao, D.; Shen, T.; Yin, Z.; Shang, L. An ICT-Based Mitochondria-Targeted Fluorescent Probe for Hydrogen Peroxide with a Large Turn-On Fluorescence Signal. ChemistrySelect 2019, 4, 1330–1336. [Google Scholar] [CrossRef]
- Suzuki, Y.; Yokoyama, K. Design and synthesis of ICT-based fluorescent probe for high-sensitivity protein detection and application to rapid protein staining for SDS-PAGE. Proteomics 2008, 8, 2785–2790. [Google Scholar] [CrossRef] [PubMed]
- Badugu, R.; Lakowicz, J.R.; Geddes, C.D. Enhanced fluorescence cyanide detection at physiologically lethal levels: Reduced ICT-based signal transduction. J. Am. Chem. Soc. 2005, 127, 3635–3641. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Tang, S.; Sun, X.; Hu, Y. Enantioselective Recognition of Lysine and Phenylalanine Using an Imidazole Salt-Type Fluorescent Probe Based on H8-BINOL. Molecules 2022, 27, 8470. https://doi.org/10.3390/molecules27238470
Wei Z, Tang S, Sun X, Hu Y. Enantioselective Recognition of Lysine and Phenylalanine Using an Imidazole Salt-Type Fluorescent Probe Based on H8-BINOL. Molecules. 2022; 27(23):8470. https://doi.org/10.3390/molecules27238470
Chicago/Turabian StyleWei, Zhaoqin, Shi Tang, Xiaoxia Sun, and Yu Hu. 2022. "Enantioselective Recognition of Lysine and Phenylalanine Using an Imidazole Salt-Type Fluorescent Probe Based on H8-BINOL" Molecules 27, no. 23: 8470. https://doi.org/10.3390/molecules27238470
APA StyleWei, Z., Tang, S., Sun, X., & Hu, Y. (2022). Enantioselective Recognition of Lysine and Phenylalanine Using an Imidazole Salt-Type Fluorescent Probe Based on H8-BINOL. Molecules, 27(23), 8470. https://doi.org/10.3390/molecules27238470