In vitro Antitumor Properties of Fucoidan-Coated, Doxorubicin-Loaded, Mesoporous Polydopamine Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication of MPDA
2.2. Effect of MPDA to FU Ratio on Particle Size and Surface Potential of MPDA-DOX@FU-SS
2.3. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Analysis
2.4. Analysis of Fourier Transform Infrared Spectrometer (FTIR) and Analysis of Thermogravimetric Analyzer (TGA)
2.5. LC and Encapsulation Efficiency (EE)
2.6. Drug Release Studies In Vitro
2.7. XPS Analysis
2.8. Photothermal Effect and N2 Adsorption and Desorption Analysis
2.9. Cytotoxicity
2.10. Fluorescent Staining of HCT-116 Cells
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. MPDA Preparation
3.2.2. MPDA-DOX@FU-SS Preparation
3.2.3. Material Characterization
3.2.4. LC and EE
3.2.5. Drug Release In Vitro
3.2.6. Nanoparticle Cytotoxicity Assessment
3.2.7. Nanocarrier Cellular Uptake Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Teng, F.; Deng, P.; Meng, N.; Song, Z.; Feng, R. Recent Progress of Nano-drug Delivery System for Liver Cancer Treatment. Anti-Cancer Agents Med. Chem. 2017, 17, 1884–1897. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Sun, C.; Jiang, T.; Gao, Y.; Yang, Y.; Zhao, Q.; Wang, S. Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 105, 110103. [Google Scholar] [CrossRef] [PubMed]
- An, P.; Fan, F.; Gu, D.; Gao, Z.; Hossain, A.M.S.; Sun, B. Photothermal-reinforced and glutathione-triggered in Situ cascaded nanocatalytic therapy. J. Control. Release 2020, 321, 734–743. [Google Scholar] [CrossRef]
- Phung, C.D.; Tran, T.H.; Pham, L.M.; Nguyen, H.T.; Jeong, J.-H.; Yong, C.S.; Kim, J.O. Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia. J. Control. Release 2020, 324, 413–429. [Google Scholar] [CrossRef]
- Pu, Y.; Zhu, Y.; Qiao, Z.; Xin, N.; Chen, S.; Sun, J.; Jin, R.; Nie, Y.; Fan, H. A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a strong MR/PA dual-modal imaging agent for PTT/PDT synergistic therapy. J. Mater. Chem. B 2021, 9, 1846–1857. [Google Scholar] [CrossRef]
- Baetke, S.C.; Lammers, T.; Kiessling, F. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol. 2015, 88, 20150207. [Google Scholar] [CrossRef]
- Wu, H.; Wei, M.; Xu, Y.; Li, Y.; Zhai, X.; Su, P.; Ma, Q.; Zhang, H. PDA-Based Drug Delivery Nanosystems: A Potential Approach for Glioma Treatment. Int. J. Nanomed. 2022, 17, 3751–3775. [Google Scholar] [CrossRef]
- Fan, L.H.; Lu, Y.Q.; Ouyang, X.K.; Ling, J.H. Development and characterization of soybean protein isolate and fucoidan nanoparticles for curcumin encapsulation. Int. J. Biol. Macromol. 2021, 169, 194–205. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, H.Z.; Ling, J.H.; Ouyang, X.K.; Song, X.Y. Enhancing the stability of zein/fucoidan composite nanoparticles with calcium ions for quercetin delivery. Int. J. Biol. Macromol. 2021, 193, 2070–2078. [Google Scholar] [CrossRef]
- Guerra Dore, C.M.P.; Faustino Alves, M.G.d.C.; Pofirio Will, L.S.E.; Costa, T.G.; Sabry, D.A.; de Souza Rego, L.A.R.; Accardo, C.M.; Rocha, H.A.O.; Filgueira, L.G.A.; Leite, E.L. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydr. Polym. 2013, 91, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Etman, S.M.; Elnaggar, Y.S.R.; Abdallah, O.Y. Fucoidan, a natural biopolymer in cancer combating: From edible algae to nanocarrier tailoring. Int. J. Biol. Macromol. 2020, 147, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, Y.F.; Fan, L.H.; Ling, J.H.; Yang, L.Y.; Wang, N.; Ouyang, X.K. Delivery of curcumin by fucoidan-coated mesoporous silica nanoparticles: Fabrication, characterization, and in vitro release performance. Int. J. Biol. Macromol. 2022, 211, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.L.; Ling, J.H.; Wang, N.; Jiang, Y.J.; Lu, Y.Q.; Yang, L.Y.; Ouyang, X.K. Delivery of doxorubicin by dual responsive carboxymethyl chitosan based nanogel and in vitro performance. Mater. Today Commun. 2022, 31, 103781. [Google Scholar] [CrossRef]
- Yi, G.; Ling, J.; Jiang, Y.; Lu, Y.; Yang, L.-Y.; Ouyang, X.k. Fabrication, characterization, and in vitro evaluation of doxorubicin-coupled chitosan oligosaccharide nanoparticles. J. Mol. Struct. 2022, 1268, 133688. [Google Scholar] [CrossRef]
- Das, S.; Filippone, S.M.; Williams, D.S.; Das, A.; Kukreja, R.C. Beet root juice protects against doxorubicin toxicity in cardiomyocytes while enhancing apoptosis in breast cancer cells. Mol. Cell. Biochem. 2016, 421, 89–101. [Google Scholar] [CrossRef]
- Xu, J.; Du, W.W.; Wu, N.; Li, F.; Li, X.; Xie, Y.; Wang, S.; Yang, B.B. The circular RNA circNlgn mediates doxorubicin-induced cardiac remodeling and fibrosis. Mol. Ther. -Nucleic Acids 2022, 28, 175–189. [Google Scholar] [CrossRef]
- Gao, M.; Deng, H.; Zhang, W. Hyaluronan-based Multifunctional Nano-carriers for Combination Cancer Therapy. Curr. Top. Med. Chem. 2021, 21, 126–139. [Google Scholar] [CrossRef]
- Gannimani, R.; Walvekar, P.; Naidu, V.R.; Aminabhavi, T.M.; Govender, T. Acetal containing polymers as pH-responsive nano-drug delivery systems. J. Control. Release 2020, 328, 736–761. [Google Scholar] [CrossRef]
- Kumar, S.; Singhal, A.; Narang, U.; Mishra, S.; Kumari, P. Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Curr. Med. Chem. 2020, 27, 6015–6056. [Google Scholar] [CrossRef]
- Palminteri, M.; Dhakar, N.K.; Ferraresi, A.; Caldera, F.; Vidoni, C.; Trotta, F.; Isidoro, C. Cyclodextrin nanosponge for the GSH-mediated delivery of Resveratrol in human cancer cells. Nanotheranostics 2021, 5, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xie, P.W.; Pei, M.L.; Li, G.P.; Wang, Z.Y.; Liu, P. Facile construction of fluorescent traceable prodrug nanosponges for tumor intracellular pH/hypoxia dual-triggered drug delivery. Colloid Interface Sci. Commun. 2022, 46, 100576. [Google Scholar] [CrossRef]
- Zhang, S.-Q.; Liu, X.; Sun, Q.-X.; Johnson, O.; Yang, T.; Chen, M.-L.; Wang, J.-H.; Chen, W. CuS@PDA-FA nanocomposites: A dual stimuli-responsive DOX delivery vehicle with ultrahigh loading level for synergistic photothermal-chemotherapies on breast cancer. J. Mater. Chem. B 2020, 8, 1396–1404. [Google Scholar] [CrossRef]
- Cheng, Y.-W.; Chao, L.; Wang, Y.-M.; Ho, K.-S.; Shen, S.-Y.; Hsieh, T.-H.; Wang, Y.-Z. Branched and phenazinized polyaniline nanorod prepared in the presence of meta-phenylenediamine. Synth. Met. 2013, 168, 48–57. [Google Scholar] [CrossRef]
- Huang, Z.H.; Sun, X.Y.; Li, Y.; Ge, W.; Wang, J.D. Adsorption behaviors of chitosan and the analysis of FTIR spectra. Spectrosc. Spectr. Anal. 2005, 25, 698–700. [Google Scholar]
- Wu, X.; Zhang, T.; Wu, B.; Zhou, H. Identification of lambda-cyhalothrin residues on Chinese cabbage using fuzzy uncorrelated discriminant vector analysis and MIR spectroscopy. Int. J. Agric. Biol. Eng. 2022, 15, 217–224. [Google Scholar] [CrossRef]
- Zare-Zardini, H.; Yazdi, S.V.N.; Zandian, A.; Zare, F.; Miresmaeili, S.M.; Dehghan-Manshadi, M.; Fesahat, F. Synthesis, characterization, and biological evaluation of doxorubicin containing silk fibroin micro- and nanoparticles. J. Indian Chem. Soc. 2021, 98, 100161. [Google Scholar] [CrossRef]
- Xia, Z.; Fu, Y.K.; Gu, T.X.; Li, Y.Y.; Liu, H.; Ren, Z.H.; Li, X.; Han, G.R. Fibrous CaF2:Yb,Er@Sio(2)-PAA ‘tumor patch’ with NIR-triggered and trackable DOX release. Mater. Des. 2017, 119, 85–92. [Google Scholar] [CrossRef]
- Ding, M.; Miao, Z.; Zhang, F.; Liu, J.; Shuai, X.; Zha, Z.; Cao, Z. Catalytic rhodium (Rh)-based (mesoporous polydopamine) MPDA nanoparticles with enhanced phototherapeutic efficiency for overcoming tumor hypoxia. Biomater. Sci. 2020, 8, 4157–4165. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, R.; Guo, W.; Yan, T.; He, X.; Hu, F.; Ren, F.; Ma, X.; Lei, J.; Zheng, W. PEGylated-PLGA Nanoparticles Coated with pH-Responsive Tannic Acid-Fe(III) Complexes for Reduced Premature Doxorubicin Release and Enhanced Targeting in Breast Cancer. Mol. Pharm. 2021, 18, 2161–2173. [Google Scholar] [CrossRef]
- Anitha, A.; Deepagan, V.G.; Rani, V.V.D.; Menon, D.; Nair, S.V.; Jayakumar, R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohydr. Polym. 2011, 84, 1158–1164. [Google Scholar] [CrossRef]
- Wen, J.; Chen, Q.; Ye, L.; Zhang, H.; Zhang, A.; Feng, Z. The preparation of pH and GSH dual responsive thiolated heparin/DOX complex and its application as drug carrier. Carbohydr. Polym. 2020, 230, 115592. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wu, W.; Wang, C. Determination of Specific Surface Area of Magnesium Stearate by Static Volumetric Method Based on BET Adsorption Theory. Chin. J. Pharm. 2016, 47, 1546–1548, 1567. [Google Scholar]
- Chhikara, B.S.; Mandal, D.; Parang, K. Synthesis, Anticancer Activities, and Cellular Uptake Studies of Lipophilic Derivatives of Doxorubicin Succinate. J. Med. Chem. 2012, 55, 1500–1510. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tian, Y.; Tian, Y.; Wang, Y.; Yang, W. Carbon-Dot-Based Nanosensors for the Detection of Intracellular Redox State. Adv. Mater. 2015, 27, 7156–7160. [Google Scholar] [CrossRef]
- Liu, P.-Y.; Miao, Z.-H.; Li, K.; Yang, H.; Zhen, L.; Xu, C.-Y. Biocompatible Fe3+–TA coordination complex with high photothermal conversion efficiency for ablation of cancer cells. Colloids Surf. B Biointerfaces 2018, 167, 183–190. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, J.; Qin, Y.; Jiang, B.; Zhang, T. Zein/fucoidan-based composite nanoparticles for the encapsulation of pterostilbene: Preparation, characterization, physicochemical stability, and formation mechanism. Int. J. Biol. Macromol. 2020, 158, 461–470. [Google Scholar] [CrossRef]
- Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev. 2013, 65, 1866–1879. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Nie, J.; Xu, L.; Liang, C.; Peng, Y.; Liu, G.; Wang, T.; Mei, L.; Huang, L.; Zeng, X. pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. Acs Appl. Mater. Interfaces 2017, 9, 18462–18473. [Google Scholar] [CrossRef]
- Dittfeld, C.; Dietrich, A.; Peickert, S.; Hering, S.; Baumann, M.; Grade, M.; Ried, T.; Kunz-Schughart, L.A. CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell line HCT-116. Radiother. Oncol. 2010, 94, 375–383. [Google Scholar] [CrossRef]
- Zurgil, N.; Shafran, Y.; Fixler, D.; Deutsch, M. Analysis of early apoptotic events in individual cells by fluorescence intensity and polarization measurements. Biochem. Biophys. Res. Commun. 2002, 290, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Ramonaite, R.; Petrolis, R.; Unay, S.; Kiudelis, G.; Skieceviciene, J.; Kupcinskas, L.; Bilgin, M.D.; Krisciukaitis, A. Mathematical morphology-based imaging of gastrointestinal cancer cell motility and 5-aminolevulinic acid-induced fluorescence. Biomed. Eng.-Biomed. Tech. 2019, 64, 711–720. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Ling, J.; Zhao, H.; Xu, X.; Ouyang, X.-k.; Song, X. In vitro Antitumor Properties of Fucoidan-Coated, Doxorubicin-Loaded, Mesoporous Polydopamine Nanoparticles. Molecules 2022, 27, 8455. https://doi.org/10.3390/molecules27238455
Xu H, Ling J, Zhao H, Xu X, Ouyang X-k, Song X. In vitro Antitumor Properties of Fucoidan-Coated, Doxorubicin-Loaded, Mesoporous Polydopamine Nanoparticles. Molecules. 2022; 27(23):8455. https://doi.org/10.3390/molecules27238455
Chicago/Turabian StyleXu, Hongping, Junhong Ling, Han Zhao, Xinyi Xu, Xiao-kun Ouyang, and Xiaoyong Song. 2022. "In vitro Antitumor Properties of Fucoidan-Coated, Doxorubicin-Loaded, Mesoporous Polydopamine Nanoparticles" Molecules 27, no. 23: 8455. https://doi.org/10.3390/molecules27238455
APA StyleXu, H., Ling, J., Zhao, H., Xu, X., Ouyang, X. -k., & Song, X. (2022). In vitro Antitumor Properties of Fucoidan-Coated, Doxorubicin-Loaded, Mesoporous Polydopamine Nanoparticles. Molecules, 27(23), 8455. https://doi.org/10.3390/molecules27238455