In Vitro Influence of ZnO, CrZnO, RuZnO, and BaZnO Nanomaterials on Bacterial Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of CrZnO, RuZnO, and BaZnO Nanomaterials
2.2. Characterizations Nanomaterials
2.3. Bacterial Cultures
2.4. Agar Well-Diffusion Method
2.5. Minimum Inhibitory Concentration (MIC) Test
2.6. Minimum Bactericidal Concentration (MBC) Test
2.7. Statistical Analysis
3. Results and Discussion
3.1. Structural Report of Nanomaterials
3.2. Morphology and Chemical Composition
3.3. FTIR Analysis of Fabricated Nanomaterials
3.4. Antibacterial Potential
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kulakova, I.; Lisichkin, G. Potential Directions in the Use of Graphene Nanomaterials in Pharmacology and Biomedicine. Pharm. Chem. J. 2022, 56, 1–11. [Google Scholar] [CrossRef]
- Salem, S.S.; Hammad, E.N.; Mohamed, A.A.; El-Dougdoug, W.; Salem, S.; Hammad, E.; Mohamed, A.; El-Dougdoug, W. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem. 2022, 13, 41. [Google Scholar]
- Mohseni, S.; Aghayan, M.; Ghorani-Azam, A.; Behdani, M.; Asoodeh, A. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle. Braz. J. Microbiol. 2014, 45, 1393–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, E.M. Plants: An alternative source for antimicrobials. J. Appl. Pharm. Sci. 2011, 1, 16–20. [Google Scholar]
- Gigante, V.; Sati, H.; Beyer, P. Recent advances and challenges in antibacterial drug development. ADMET DMPK 2022, 10, 147–151. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, Y.; Masterson, C.M.; Jang, W.; Xiao, Z.; Bohloul, A.; Rojas, D.G.; Puppala, H.L.; Bennett, G.; Colvin, V.L. When function is biological: Discerning how silver nanoparticle structure dictates antimicrobial activity. Iscience 2022, 25, 104475. [Google Scholar] [CrossRef]
- Awad, M.; Thomas, N.; Barnes, T.J.; Prestidge, C.A. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J. Control. Release 2022, 346, 300–316. [Google Scholar] [CrossRef]
- Zahmatkesh, S.; Hajiaghaei-Keshteli, M.; Bokhari, A.; Sundaramurthy, S.; Panneerselvam, B.; Rezakhani, Y. Wastewater treatment with nanomaterials for the future: A state-of-the-art review. Environ. Res. 2022, 216, 114652. [Google Scholar] [CrossRef]
- Lencova, S.; Zdenkova, K.; Jencova, V.; Demnerova, K.; Zemanova, K.; Kolackova, R.; Hozdova, K.; Stiborova, H. Benefits of polyamide nanofibrous materials: Antibacterial activity and retention ability for Staphylococcus aureus. Nanomaterials 2021, 11, 480. [Google Scholar] [CrossRef]
- Bandow, J.E.; Metzler-Nolte, N. New ways of killing the beast: Prospects for inorganic–organic hybrid nanomaterials as antibacterial agents. ChemBioChem 2009, 10, 2847–2850. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 2014, 44, 278–284. [Google Scholar] [CrossRef]
- Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Nikam, A.P.; Ratnaparkhiand, M.P.; Chaudhari, S.P. Nanoparticles—An overview. Int. J. Res. Dev. Pharm. Life Sci. 2014, 3, 1121–1127. [Google Scholar]
- Mohammed, A.E.; Al-Keridis, L.A.; Rahman, I.; Alotaibi, M.O.; Suliman, R.S.; Alrajhi, A.M.; Elobeid, M.M.; Alothman, M.R.; Alhomaidi, E.A.; Korany, S.M. Silver Nanoparticles Formation by Jatropha integerrima and LC/MS-QTOF-Based Metabolite Profiling. Nanomaterials 2021, 11, 2400. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, E.M.; Mujawah, A.A.; Al Mijalli, S.H. GC-MS and Antibacterial Potential of Methanolic Extract Hyphaene Thebaica L Fruit Pulp against Antibiotics-resistant Pathogens. J. Pure Appl. Microbiol. 2021, 15, 1655–1665. [Google Scholar] [CrossRef]
- Mustafa, B.; Modwi, A.; Ismail, M.; Makawi, S.; Hussein, T.; Abaker, Z.; Khezami, L. Adsorption performance and Kinetics study of Pb (II) by RuO2–ZnO nanocomposite: Construction and Recyclability. Int. J. Environ. Sci. Technol. 2022, 19, 327–340. [Google Scholar] [CrossRef]
- Kumar, R.; Umar, A.; Kumar, G.; Nalwa, H.S. Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Int. 2017, 43, 3940–3961. [Google Scholar] [CrossRef]
- Sadaiyandi, K.; Kennedy, A.; Sagadevan, S.; Chowdhury, Z.Z.; Johan, M.; Bin, R.; Aziz, F.A.; Rafique, R.F.; Thamiz Selvi, R. Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett. 2018, 13, 1–13. [Google Scholar]
- Terohid, S.; Heidari, S.; Jafari, A.; Asgary, S. Effect of growth time on structural, morphological and electrical properties of tungsten oxide nanowire. Appl. Phys. A 2018, 124, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bidier, S.A.; Hashim, M.; Al-Diabat, A.M.; Bououdina, M. Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 88, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Modwi, A.; Khezami, L.; Taha, K.K.; Idriss, H. Flower buds like MgO nanoparticles: From characterisation to indigo carmine elimination. Z. Nat. A 2018, 73, 975–983. [Google Scholar] [CrossRef]
- Panicker, C.Y.; Varghese, H.T.; Philip, D.; Nogueira, H.I. FT-IR, FT-Raman and SERS spectra of pyridine-3-sulfonic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 64, 744–747. [Google Scholar] [CrossRef] [PubMed]
- Sathya, M.; Pushpanathan, K. Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 2018, 449, 346–357. [Google Scholar] [CrossRef]
- Lee, C.T. Fabrication methods and luminescent properties of ZnO materials for light-emitting diodes. Materials 2010, 3, 2218–2259. [Google Scholar] [CrossRef] [Green Version]
- Alam, R.S.; Moradi, M.; Rostami, M.; Nikmanesh, H.; Moayedi, R.; Bai, Y. Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 2015, 381, 1–9. [Google Scholar] [CrossRef]
- Singh, M.; Singh, N.; Singh, P.K.; Singh, S.K.; Tandon, P. Development of polyaniline/ZnO-Ru nanocomposite as a potential LPG sensing material operable at room temperature. J. Mater. Sci. Mater. Electron. 2021, 32, 6110–6122. [Google Scholar] [CrossRef]
- Abdellatif, A.A.; Alhathloul, S.S.; Aljohani, A.S.; Maswadeh, H.; Abdallah, E.M.; Hamid Musa, K.; El Hamd, M.A. Green Synthesis of Silver Nanoparticles Incorporated Aromatherapies Utilized for Their Antioxidant and Antimicrobial Activities against Some Clinical Bacterial Isolates. Bioinorg. Chem. Appl. 2022, 2022, 2432758. [Google Scholar] [CrossRef]
- Dadi, R.; Azouani, R.; Traore, M.; Mielcarek, C.; Kanaev, A. Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Mater. Sci. Eng. C 2019, 104, 109968. [Google Scholar] [CrossRef]
- Yamamoto, O. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 2001, 3, 643–646. [Google Scholar] [CrossRef]
- Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008, 279, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aleaghil, S.A.; Fattahy, E.; Baei, B.; Saghali, M.; Bagheri, H.; Javid, N.; Ghaemi, E.A. Antibacterial activity of zinc oxide nanoparticles on Staphylococcus aureus. Int. J. Adv. Biotechnol. Res. 2016, 7, 1569–1575. [Google Scholar]
- Mousavi, S.F.; Hossaini, Z.; Rostami-Charati, F.; Nami, N. Synthesis of Benzochromene Derivatives Using Reusable Fe3O4/ZnO Magnetic Nanoparticles: Study of Antioxidant and Antibacterial Activity. Polycycl. Aromat. Compd. 2022, 42, 6732–6749. [Google Scholar] [CrossRef]
- Weyesa, A.; Eswaramoorthy, R.; Melaku, Y.; Mulugeta, E. Antibacterial, Docking, DFT and ADMET Properties Evaluation of Chalcone-Sulfonamide Derivatives Prepared Using ZnO Nanoparticle Catalysis. Adv. Appl. Bioinform. Chem. AABC 2021, 14, 133. [Google Scholar] [CrossRef]
- Mulugeta, D.; Abdisa, B.; Belay, A.; Endale, M. Synthesis of Chalcone and Flavanone Derivatives using ZnO Nanoparticle as Catalyst for Antibacterial Activity. Synthesis 2018, 10, 1–11. [Google Scholar]
- Naskar, A.; Lee, S.; Kim, K.-s. Antibacterial potential of Ni-doped zinc oxide nanostructure: Comparatively more effective against Gram-negative bacteria including multi-drug resistant strains. RSC Adv. 2020, 10, 1232–1242. [Google Scholar] [CrossRef] [Green Version]
- Khalid, A.; Ahmad, P.; Alharthi, A.I.; Muhammad, S.; Khandaker, M.U.; Faruque, M.R.I.; Din, I.U.; Alotaibi, M.A.; Khan, A. Synergistic effects of Cu-doped ZnO nanoantibiotic against Gram-positive bacterial strains. PLoS ONE 2021, 16, e0251082. [Google Scholar] [CrossRef]
- Vikal, S.; Gautam, Y.K.; Ambedkar, A.K.; Gautam, D.; Singh, J.; Pratap, D.; Kumar, A.; Kumar, S.; Gupta, M.; Singh, B.P. Structural, optical and antimicrobial properties of pure and Ag-doped ZnO nanostructures. J. Semicond. 2022, 43, 032802. [Google Scholar] [CrossRef]
- Danial, E.N.; Hjiri, M.; Abdel-Wahab, M.S.; Alonizan, N.; El Mir, L.; Aida, M. Antibacterial activity of In-doped ZnO nanoparticles. Inorg. Chem. Commun. 2020, 122, 108281. [Google Scholar] [CrossRef]
- Rooshde, M.S.; Abdullah, W.R.W.; Amran, A.Z.; Ibrahim, N.F.; Ariffin, F.; Ghazali, M.S.M. Antimicrobial Activity of Photoactive Cerium Doped Zinc Oxide. In Solid State Phenomena; Trans Tech Publications Ltd.: Bäch, Switzerland, 2020; pp. 217–222. [Google Scholar]
- Abebe, B.; Zereffa, E.A.; Tadesse, A.; Murthy, H.C. A review on enhancing the antibacterial activity of ZnO: Mechanisms and microscopic investigation. Nanoscale Res. Lett. 2020, 15, 190. [Google Scholar] [CrossRef] [PubMed]
- Djeussi, D.E.; Noumedem, J.A.; Seukep, J.A.; Fankam, A.G.; Voukeng, I.K.; Tankeo, S.B.; Nkuete, A.H.; Kuete, V. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria. BMC Complement. Altern. Med. 2013, 13, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayala-Núñez, N.V.; Lara Villegas, H.H.; del Carmen Ixtepan Turrent, L.; Rodríguez Padilla, C. Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant Staphylococcus aureus: Nanoscale does matter. Nanobiotechnology 2009, 5, 2–9. [Google Scholar] [CrossRef]
- Patil, S.M.; Patel, P. Bactericidal and Bacteriostatic Antibiotics. In Infections and Sepsis Development; IntechOpen: London, UK, 2021; p. 3. [Google Scholar]
- Bernatová, S.; Samek, O.; Pilát, Z.; Šerý, M.; Ježek, J.; Jákl, P.; Šiler, M.; Krzyžánek, V.; Zemánek, P.; Holá, V.; et al. Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecules 2013, 18, 13188–13199. [Google Scholar] [CrossRef]
- May, J.; Shannon, K.; King, A.; French, G. Glycopeptide tolerance in Staphylococcus aureus. J. Antimicrob. Chemother. 1998, 42, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, T.; Sun, D.; Su, J.; Zhang, H.; Sue, H.J. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157: H7. J. Food Sci. 2009, 74, M46–M52. [Google Scholar] [CrossRef]
- Harun, N.H.; Mydin, R.B.S.; Sreekantan, S.; Saharudin, K.A.; Basiron, N.; Aris, F.; Wan Mohd Zain, W.N.; Seeni, A. Bactericidal capacity of a heterogeneous TiO2/ZnO nanocomposite against multidrug-resistant and non-multidrug-resistant bacterial strains associated with nosocomial infections. ACS Omega 2020, 5, 12027–12034. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 2021, 9, 641481. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [Green Version]
- Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fiévet, F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006, 6, 866–870. [Google Scholar] [CrossRef]
- Li, M.; Zhu, L.; Lin, D. Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components. Environ. Sci. Technol. 2011, 45, 1977–1983. [Google Scholar] [CrossRef] [PubMed]
- Jesline, A.; John, N.P.; Narayanan, P.; Vani, C.; Murugan, S. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl. Nanosci. 2015, 5, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Vandebriel, R.J.; De Jong, W.H. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol. Sci. Appl. 2012, 5, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, C. The question of toxicity of nanomaterials and nanoparticles. J. Control. Release 2019, 304, 288. [Google Scholar] [CrossRef]
Samples | 2θ (101) | FWHM | D (nm) | Lattice Parameters | c/a | d (Å) | |
---|---|---|---|---|---|---|---|
a (Å) | c (Å) | ||||||
Pure ZnO | 36.19 | 0.263 | 33.20 | 3.254 | 5.214 | 1.602 | 2.482 |
Cr-doped ZnO | 36.20 | 0.391 | 22.00 | 3.254 | 5.214 | 1.602 | 2.479 |
Ru-doped ZnO | 36.18 | 0.254 | 34.38 | 3.252 | 5.210 | 1.602 | 2.482 |
Ba-doped ZnO | 36.35 | 0.412 | 21.21 | 3.2537 | 5.217 | 1.603 | 2.469 |
Nanomaterial | Concentration | Zone of Inhibition | Gram-Positive | Gram-Negative | Reference |
---|---|---|---|---|---|
Ni/ZnO | 2 mg/mL | 18.0 0.0 14.0 11.0 | - - S. aureus S. epidermidis | E. coli A. baumannii - - | [37] |
Cu/ZnO | 1 mg/mL | 24.0 20.0 18.0 17.0 | S. aureus S. pyogenes - - | - - E. coli K. Pneumoniae | [38] |
Ag/ZnO | 1 wt% | 19.0 | S. aureus | - | [39] |
In-doped ZnO | 3% | 12.0 18.0 16.0 14.0 | S. aureus Bacillus subtilis - - | - - E. coli P. aeruginosa | [40] |
Ce/ZnO | 0.4 mol % | 16.0 0.0 | S. aureus - | - E. coli | [41] |
Ba/ZnO | 1 mg/mL | 15.5 8.7 11.2 12.0 | S. aureus - - - | - E. coli K. pneumoniae P. aeruginosa | Present study |
Ru/ZnO | 1 mg/mL | 13.2 10.7 12.7 19.2 | S. aureus - - - | - E. coli K. pneumoniae P. aeruginosa | Present study |
Cr/ZnO | 1 mg/mL | 16.7 12.2 16.2 19.7 | S. aureus - - - | - E. coli K. pneumoniae P. aeruginosa | Present study |
Bacterial Strains | MICs (mg/mL) | MBCs (mg/mL) | MBC/MIC Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ZnO | Ba/ ZnO | Ru/ ZnO | Cr/ ZnO | ZnO | Ba/ ZnO | Ru/ ZnO | Cr/ ZnO | ZnO | Ba/ ZnO | Ru/ ZnO | Cr/ ZnO | |
E. coli | 0.2 | 0.2 | 0.2 | 0.2 | 2.0 | 2.0 | 2.0 | 2.0 | 10.0 | 10.0 | 10.0 | 10.0 |
S. aureus | 0.02 | 0.2 | 0.2 | 0.2 | 0.2 | 2.0 | 2.0 | 2.0 | 10.0 | 10.0 | 10.0 | 10.0 |
K. pneumoniae | 0.02 | 0.2 | 0.02 | 0.2 | 0.2 | 2.0 | 0.2 | 2.0 | 10.0 | 10.0 | 100 | 10.0 |
P. aeruginosa | 0.2 | 0.2 | 0.2 | 0.02 | 2.0 | 2.0 | 2.0 | 0.2 | 10.0 | 10.0 | 10.0 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdallah, E.M.; Modwi, A.; Al-Mijalli, S.H.; Mohammed, A.E.; Idriss, H.; Omar, A.S.; Afifi, M.; AL-Farga, A.; Goh, K.W.; Ming, L.C. In Vitro Influence of ZnO, CrZnO, RuZnO, and BaZnO Nanomaterials on Bacterial Growth. Molecules 2022, 27, 8309. https://doi.org/10.3390/molecules27238309
Abdallah EM, Modwi A, Al-Mijalli SH, Mohammed AE, Idriss H, Omar AS, Afifi M, AL-Farga A, Goh KW, Ming LC. In Vitro Influence of ZnO, CrZnO, RuZnO, and BaZnO Nanomaterials on Bacterial Growth. Molecules. 2022; 27(23):8309. https://doi.org/10.3390/molecules27238309
Chicago/Turabian StyleAbdallah, Emad M., Abueliz Modwi, Samiah H. Al-Mijalli, Afrah E. Mohammed, Hajo Idriss, Abdulkader Shaikh Omar, Mohamed Afifi, Ammar AL-Farga, Khang Wen Goh, and Long Chiau Ming. 2022. "In Vitro Influence of ZnO, CrZnO, RuZnO, and BaZnO Nanomaterials on Bacterial Growth" Molecules 27, no. 23: 8309. https://doi.org/10.3390/molecules27238309
APA StyleAbdallah, E. M., Modwi, A., Al-Mijalli, S. H., Mohammed, A. E., Idriss, H., Omar, A. S., Afifi, M., AL-Farga, A., Goh, K. W., & Ming, L. C. (2022). In Vitro Influence of ZnO, CrZnO, RuZnO, and BaZnO Nanomaterials on Bacterial Growth. Molecules, 27(23), 8309. https://doi.org/10.3390/molecules27238309