Pharmacological Activities and Characterization of Phenolic and Flavonoid Compounds in Solenostemma argel Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials and Sample Preparation
2.3. Extraction Process
2.4. Antioxidant Capacity Assay
2.5. Antimicrobial Activity
2.5.1. Microorganism
2.5.2. Paper Disc Diffusion Assay
2.5.3. Determination of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC)
2.6. Cell Viability and Cytotoxic Effects
2.6.1. Mammalian Cell Lines
2.6.2. Propagation of Cell Lines
2.6.3. Cytotoxicity Assay
2.7. In Vitro Anti-Inflammatory Activity
2.7.1. Erythrocyte Suspension Preparation
2.7.2. Hypotonic Solution-Induced Erythrocyte Hemolysis
2.8. Determination of the Phenolic Acids and Flavonoids of Solenostemma argel Methanolic Extract
2.9. Determination of the Volatile Components of Solenostemma argel Methanolic Extract
2.10. Statistical Analysis
3. Results and Discussion
3.1. DPPH Radical Scavenging Activity of Solenostemma argel Extracts
3.2. Antimicrobial Activity of Solenostemma argel Extracts
3.3. Anti-Proliferative Effects on A549, Caco-2, and MDA-MB-231 Cells
3.4. In Vitro Anti-Inflammatory Activity (Membrane Stabilization %) of Solenostemma argel Methanolic Extract
3.5. Identification of Phenolic Acids and Flavonoids of Solenostemma argel Methanolic Extract
3.6. Determination of the Volatile Components of Solenostemma argel Methanolic Extract
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, G.; Madhuri, S. Some medicinal plants as natural anticancer agents. Pharmacogn. Rev. 2009, 3, 259. [Google Scholar]
- Akinyemi, O.; Oyewole, S.O.; Jimoh, K.A. Medicinal plants and sustainable human health: A review. Hortic. Int. J. 2018, 2, 194–195. [Google Scholar]
- Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant activity of flavonoids from Licania licaniaeflora. J. Ethnopharmacol. 2002, 79, 379–381. [Google Scholar] [CrossRef]
- Fan, C.; Lei, X.; Guo, L.; Zhang, A. Predicting the associations between microbes and diseases by integrating multiple data sources and path based HeteSim scores. Neurocomputing 2019, 323, 76–85. [Google Scholar] [CrossRef]
- Lobo, V.; Paitl, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Lushchak, V.L. Free Radicals, Reactive Oxygen Species, Oxidative Stress and Its Classification. Chem. Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Marrelli, M. Medicinal Plants. Plants 2021, 10, 1355. [Google Scholar] [CrossRef]
- Kaur, R.; Kapoor, K.; Kaur, H. Plants as a source of anticancer agents. J. Nat. Prod. Plant Resour. 2011, 1, 119–124. [Google Scholar]
- Nagai, H.; Kim, Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis. 2017, 9, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Gennari, C.; Castoldi, D.; Sharon, O. Product with taxol-like tumor activity: Approaches to eleutherobin and dicytostatin. Pure Appl. Chem. 2007, 79, 173–180. [Google Scholar] [CrossRef]
- Gezici, S.; Şekeroğlu, N. Current perspectives in the application of medicinal plants against cancer: Novel Therapeutic Agents. Anti-Cancer Agents Med. Chem. 2019, 19, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Kelloff, G.J. Perspectives on cancer chemoprevention research and drug development. Adv. Cancer Res. 2008, 78, 199–334. [Google Scholar]
- Soliman, A.S.; Samad, S.; Banerjee, M.; Chamberlain, R.M.; Robert, M.; Aziz, Z. Brief Continuing Medical Education (CME) Module Raises Knowledge of Developing Country Physicians International Electronic. J. Health Educ. 2006, 9, 31–41. [Google Scholar]
- Aiello, P.; Sharghi, M.; Mansourkhani, S.M.; Ardekan, A.P.; Jouybari, L.; Daraei, N.; Peiro, K.; Mohamadian, S.; Rezaei, M.; Heidari, M.; et al. Medicinal plants in the prevention and treatment of colon cancer. Oxidative Med. Cell. Longev. 2019, 2019, 2075614. [Google Scholar] [CrossRef] [Green Version]
- Kamble, S.S.; Gacche, R.N. Evaluation of anti-breast cancer, anti-angiogenic, and antioxidant properties of selected medicinal plants. Eur. J. Integr. Med. 2019, 25, 13–19. [Google Scholar] [CrossRef]
- Asadi-Samani, M.; Rafieian-Kopaei, M.; Lorigooini, Z.; Shirzad, H. A screening of growth inhibitory activity of Iranian medicinal plants on prostate cancer cell lines. BioMedicine 2018, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Awaad, A.S.; Al-Jaber, N.A.; Moses, J.E.; El-Meligy, R.M.; Zain, M.E. Antiulcerogenic activities of the extracts and isolated flavonoids of Euphorbia cuneata Vahl. Phytother. Res. 2013, 27, 126–130. [Google Scholar] [CrossRef]
- Ounaissia, K.; Pertuit, D.; Mitaine-Offer, A.C.; Miyamoto, T.; Tanaka, C.; Delemasure, S.; Dutartre, P.; Smati, D.; Lacaille-Dubois, M.A. New pregnane and phenolic glycosides from Solenostemma argel. Fitoterapia 2016, 114, 98–104. [Google Scholar] [CrossRef]
- Benmaarouf, D.K.; Pinto, D.C.G.A.; China, B.; Zenia, S.; Bendesari, K.B. Chemical analysis, antioxidant, anti-inflammatory and antinociceptive effects of acetone extract of Algerian Solenostemma argel (Delile) Hayne leaves. Int. J. Curr. Pharm. Res. 2020, 12, 72–81. [Google Scholar] [CrossRef]
- McCue, P.; Horii, A.; Shetty, K. Mobilization of phenolic antioxidants from defatted soybean powders by Lentinus edodes during solid-state bioprocessing1 is associated with enhanced production of laccase. Innov. Food Sci. Emerg. Technol. 2004, 5, 385–392. [Google Scholar] [CrossRef]
- Hassan, G.O.; Karamova, N.S.; Abu Mraheil, M.; Mohamed, W.; Chakraborty, T.; Ilinskaya, O.A. Comparative evaluation of antimicrobial effect of Thymus capitatus ethanolic extract on the different respiratory tract infections isolates. BioNanoScience 2017, 7, 644–647. [Google Scholar] [CrossRef]
- Cheesbrough, M. District Laboratory Practice in Tropical Countries: Part 2; Cambridge University Press: Cambridge, UK, 2005; pp. 105–194. [Google Scholar]
- Koo, H.; Rosalen, P.L.; Cury, J.A.; Park, Y.K.; Bowen, W.H. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrob. Agents Chemother. 2002, 46, 1302–1309. [Google Scholar] [CrossRef] [Green Version]
- Aamer, A.A.; Abdul-Hafeez, M.M.; Sayed, S.M. Minimum Inhibitory and Bactericidal Concentrations (MIC and MBC) of Honey and Bee Propolis against Multi-Drug Resistant (MDR) Staphylococcus sp. Isolated from Bovine Clinical Mastitis. Altern. Integr. Med. 2014, 3, 171. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Shinde, U.; Phadke, A.S.; Nair, A.; Mungantiwar, A.; Dikshit, V.; Saraf, M. Membrane stabilizing activity—A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia 1999, 70, 251–257. [Google Scholar] [CrossRef]
- Mattila, P.; Astola, J.; Kumpulainen, J. Determination of flavonoids in plant material by HPLC with diode-array and electroarray detections. J. Agric. Food Chem. 2000, 48, 5834–5841. [Google Scholar] [CrossRef]
- Kebbab-Massime, R.; Labed, B.; Boutamine-Sahki, R. Evaluation of Antimicrobial and Antioxidant Activities of Methanolic Extracts of Flavonoids Obtained from the Leaves of Solenostemma argel Plant Collected in the Region of Tamanrasset, Algeria. J. Plant Biochem. Physiol. 2017, 5, 1–5. [Google Scholar]
- Al-Deen, A.T.; Al-Naqeb, G. Hypoglycemic effect and in vitro antioxidant activity of methanolic extract from Argel (Solenostemma argel) plant. Int. J. Herb. Med. 2014, 2, 128–131. [Google Scholar]
- Al-Juhaimi, F.Y.; Ahmed, I.A.A.; Adiamo, O.Q.; Adisa, A.R.; Ghafoor, K.; Ozcan, M.M. Effect of Argel (Solenstemma argel) leaf powder on the quality attributes of camel patties during cold storage. J. Food Process. Preserv. 2017, 42, e13496. [Google Scholar]
- Sulieman, A.E.; Elzobair, W.M.; Abdelrahim, A.M. Antimicrobial activity of the extract of Solenostemma argel (harjal) plant. J. Sci. Technol. 2009, 10, 120–134. [Google Scholar]
- Tharib, S.M.; El Migirab, S.; Veitch, G.B. A Preliminary Investigation of the Potential Antimicrobial Activity of Solenostemma argel. Int. J. Crude Drug Res. 2008, 24, 101–104. [Google Scholar] [CrossRef]
- Megeressa, M.; Bisrat, D.; Mazumder, A.; Asres, K. Structural elucidation of some antimicrobial constituents from the leaf latex of Aloe trigonantha L.C. Leach. BMC Complement. Altern. Med. 2015, 15, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamadnalla, H.M.Y.; El Jack, M.M. Phytochemical Screening and Antibacterial Activity of Solenostemma argel: A Medicinal Plant. Open Access J. Environ. Soil Sci. 2019, 2, 2–4. [Google Scholar]
- Abouzaid, O.A.R.; Mansour, S.Z.; Sabbah, F. Evaluation of the antitumor activity of Solenostemma argel in the treatment of lung carcinoma induced in rats. Benha Vet. Med. J. 2018, 35, 178–189. [Google Scholar] [CrossRef]
- Hanafi, N.; Mansour, S.Z. Antitumor efficacy of Solenostemma argel and or γ irradiation against Ehrlich carcinoma. J. Biol. Sci. 2010, 10, 468–479. [Google Scholar] [CrossRef] [Green Version]
- Innocenti, G.S.; Acqua, S.D.; Sosa, S.; Altinier, G.; Loggia, R.D. Topical anti-inflammatory activity of Solenostemma argel leaves. J. Ethnopharmacol. 2005, 10, 307–310. [Google Scholar] [CrossRef]
- Ibrahim, E.A.; Gaafar, A.A.; Salama, Z.A.; El Baz, F.K. Anti-inflammatory and Antioxidant Activity of Solenostemma argel extract. Int. J. Pharmacogn. Phytochem. Res. 2015, 7, 635–664. [Google Scholar]
- Ismaiel, S.M.O.; Mahmoud, E.N.; Mahmoud, A.M. Anti-Inflammatory Activity of Some Indigenous Sudanese Plants. Res. J. Pharmacogn. Phytochem. 2014, 6, 30–32. [Google Scholar]
- El-Sonbaty, S.M.; Mansour, S.Z.; Mahdy, E.M.E.; El-Mezayen, H.A.; Salem, F.A.M. Gas Chromatography/Mass Spectrography (GC/MS) Analysis and Biological Properties of Probiotic Fermented Solenostemma argel. Eur. J. Med. Plants 2016, 16, EJMP.27662. [Google Scholar] [CrossRef]
Conc. (µg/mL) | * Radical Scavenging Activities of Extracts | ||||||||
---|---|---|---|---|---|---|---|---|---|
Water | Acetone | Chloroform | Methylene Chloride | Ether | Methanol | Ethanol | Ethyl Acetate | Group Mean ± S.E | |
1280 | 96.53 ± 0.79 | 94.78 ± 0.86 | 93.84 ± 0.92 | 96.82 ± 0.64 | 94.59 ± 1.07 | 98.47 ± 0.59 | 95.06 ± 0.62 | 89.94 ± 0.78 | 94.37 ± 0.78 a |
640 | 91.65 ± 1.23 | 91.36 ± 0.72 | 82.59 ± 1.37 | 90.96 ± 1.32 | 86.24 ± 1.83 | 96.29 ± 0.63 | 92.82 ± 0.74 | 85.86 ± 1.32 | 89.72 ± 1.14 b |
320 | 76.24 ± 1.48 | 85.16 ± 1.34 | 57.06 ± 2.86 | 82.24 ± 1.78 | 78.47 ± 1.59 | 94.65 ± 0.41 | 89.41 ± 0.65 | 71.29 ± 1.53 | 79.31 ± 1.45 c |
160 | 56.98 ± 1.76 | 76.35 ± 1.97 | 37.88 ± 3.94 | 67.06 ± 1.92 | 60.59 ± 2.65 | 92.12 ± 0.86 | 78.57 ± 1.33 | 55.53 ± 2.71 | 65.63 ± 2.13 d |
80 | 38.62 ± 3.44 | 55.43 ± 2.81 | 21.76 ± 1.83 | 50.76 ± 1.89 | 42.71 ± 3.13 | 87.35 ± 0.97 | 67.75 ± 1.44 | 43.18 ± 2.84 | 50.94 ± 2.29 e |
40 | 25.76 ± 1.28 | 40.88 ± 2.76 | 16.24 ± 1.62 | 31.88 ± 2.36 | 29.70 ± 2.34 | 74.06 ± 1.42 | 53.62 ± 1.94 | 27.65 ± 1.97 | 37.47 ± 1.96 f |
20 | 18.56 ± 0.73 | 28.41 ± 2.93 | 10.43 ± 0.81 | 20.82 ± 1.42 | 13.94 ± 1.52 | 57.18 ± 2.98 | 31.48 ± 2.36 | 19.42 ± 1.06 | 25.03 ± 1.72 g |
10 | 7.65 ± 0.19 | 15.82 ± 1.74 | 2.94 ± 0.54 | 14.58 ± 0.78 | 4.35 ± 0.61 | 34.47 ± 3.15 | 19.76 ± 1.42 | 7.76 ± 0.82 | 12.16 ± 1.15 h |
Group mean ± S.E | 51.49 ± 1.24 e | 61.77 ± 1.77 c | 40.34 ± 1.54 g | 56.81 ± 1.54 d | 51.32 ± 2.23 f | 79.36 ± 1.12 a | 66.17 ± 1.52 b | 50.1 ± 1.75 f |
Type of Extract | IC50 (µg/mL) |
---|---|
Water | 129.60 ± 5.48 |
Acetone | 65.10 ± 3.1 |
Chloroform | 26.10 ± 17.4 |
Methylene chloride | 78.40 ± 2.84 |
Ether | 112.60 ± 4.6 |
Methanol | 16.80 ± 0.62 |
Ethanol | 36.70 ± 3.2 |
Ethyl acetate | 124.20 ± 6.4 |
Isolates | Extracts | |||||||
---|---|---|---|---|---|---|---|---|
Water | Methanol | Acetone | Ethanol | Chloroform | Ether | Ethyl Acetate | Methylene Chloride | |
S. aureus | NI ** | 16.5 ± 2.1 * | 22.5 ± 3.5 | NI | 22.5 ± 0.7 | NI | 24.5± 0.7 | 15 ± 0 |
S. epidermidis | NI | 16 ± 1.4 | 18.5 ± 2.1 | NI | 27 ± 0 | NI | 19 ± 0 | NI |
E. faecalis | NI | 14 ± 1.4 | 13.5 ± 0.7 | NI | NI | NI | NI | NI |
E. coli | NI | 19.5 ± 3.5 | 23 ± 0 | NI | 21.5 ± 2.1 | NI | 19.5 ± 3.5 | 14 ± 1.4 |
E. cloacae | NI | 18.5 ± 2.1 | 23.5 ± 2.1 | NI | 17.5 ± 0.7 | NI | 23.5 ± 0.7 | 14.5 ± 0.7 |
P. aeruginosa | NI | 17.5 ± 0.7 | 23 ± 2.8 | NI | 22.5 ± 2.1 | NI | 24.5 ± 0.7 | 13.5 ± 0.7 |
A. baumannii | NI | 16 ± 1.4 | 23 ± 0 | NI | 21 ± 1.4 | NI | 22.5 ± 3.5 | 15 ± 0 |
C. tropicalis | NI | 17.5 ± 3.5 | 23 ± 1.4 | NI | 19.5 ± 0.7 | NI | 26 ± 1.4 | 15 ± 0 |
Isolates | Extracts | |||||
---|---|---|---|---|---|---|
(MIC) * (mg/mL) | (MBC) ** (mg/mL) | |||||
Acetone mg/mL | Chloroform mg/mL | Ethyl Acetate mg/mL | Acetone mg/mL | Chloroform mg/mL | Ethyl Acetate mg/mL | |
S. aureus | 12.5 | 25 | 25 | 50 | 100 | 100 |
S. epidermidis | 12.5 | 6.25 | 25 | 50 | 12.5 | 25 |
E. faecalis | 25 | N | N | 100 | N | N |
E. coli | 25 | 25 | 25 | 100 | 25 | 100 |
E. cloacae | 25 | 25 | 25 | 100 | 25 | 100 |
P. aeruginosa | 25 | 25 | 12.5 | 100 | 25 | 50 |
A. baumannii | 25 | 25 | 25 | 25 | 25 | 25 |
C. tropicalis | 25 | 25 | 25 | 25 | 100 | 100 |
Samples Conc. (µg/mL) | Solenostemma argel Methanol Extract | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cancer Cell Lines | |||||||||
# A-549 | ## CACO2 | ### MDA-MB-231 | |||||||
Viability (%) | Inhibitory (%) | S.D. (±) | Viability (%) | Inhibitory (%) | S.D. (±) | Viability (%) | Inhibitory (%) | S.D. (±) | |
1000 | 7.83 | 92.17 | 1.09 | 13.95 | 86.05 | 1.09 | 34.59 | 65.41 | 2.37 |
500 | 21.67 | 78.33 | 1.75 | 32.76 | 67.24 | 3.42 | 63.73 | 36.73 | 3.91 |
250 | 37.85 | 62.15 | 3.49 | 48.52 | 51.48 | 2.86 | 80.95 | 19.05 | 2.83 |
125 | 59.21 | 40.79 | 2.37 | 76.31 | 23.96 | 3.97 | 93.83 | 6.17 | 1.95 |
62.5 | 78.04 | 21.96 | 1.78 | 88.42 | 11.58 | 2.64 | 99.56 | 0.44 | 0.48 |
31.25 | 95.26 | 4.74 | 0.82 | 97.16 | 2.84 | 1.32 | 100 | 0 | 0 |
15.6 | 99.13 | 0.78 | 0.51 | 100 | 0 | 0 | 100 | 0 | 0 |
7.8 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 |
0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 |
Samples Concentration (µg/mL) | Anti-Inflammatory Activity (Membrane Stabilization %) | |||
---|---|---|---|---|
Solenostemma argel Methanolic Extract | Indomethacin (as Positive Control) | |||
Membrane Stabilization (%) | S.D. | Membrane Stabilization (%) | S.D. | |
1000 | 82.73 | 2.1 | 100 | 0 |
500 | 76.44 | 0.63 | 95.35 | 0.63 |
250 | 71.35 | 0.68 | 78.34 | 2.1 |
125 | 68.47 | 0.58 | 72.35 | 0.58 |
62.5 | 62.95 | 2.1 | 68.35 | 1.5 |
31.25 | 57.95 | 1.6 | 56.38 | 1.3 |
15.6 | 39.96 | 1.4 | 49.38 | 0.72 |
7.8 | 28.12 | 0.94 | 41.18 | 1.3 |
0 | 0 | 0 | 0 | 0 |
IC50 | 24.4 ± 0.96 | 17.02 ± 0.91 |
No. | Retention Time (min) | Compound Name | Peak Area% |
---|---|---|---|
1 | 4.8 | Syringic acid | 5.22 |
2 | 6.0 | P-coumaric acid | 5.14 |
3 | 8.0 | Caffeic acid | 4.69 |
4 | 10.0 | Gallic acid | 10.42 |
5 | 10.9 | Ferulic acid | 3.08 |
6 | 4.8 | Rutin | 0.59 |
7 | 6.8 | Quercetin | 4.86 |
8 | 8.0 | Kaempferol | 3.87 |
9 | 9.1 | Luteolin | 4.63 |
10 | 11.0 | Catechin | 12.45 |
No. | Compound Name | Retention Time (min) | Molecular Formula | m/z Fragments | Peak Area Percentage # |
---|---|---|---|---|---|
1 | Cis-2,6-dimethyl-2,6-octadiene | 6.43 | C10H18 | 41, 53, 69 *, 81, 95, 109, 123, 138 | 8.95 |
2 | 2,6-octadiene, 2,6 dimethyl- | 6.73 | C10H18 | 27, 41, 53, 69 *, 81, 95, 109,128, 138 | 4.19 |
3 | cyclohexene, 1-methyl-4-(1 methylethenyl)-, (S)- | 7.07 | C10H16 | 27, 41, 53, 68 *, 79, 93, 107, 121, 136 | 2.70 |
4 | 1,3-dioxolane,4-methyl-2-pentadecyl | 7.34 | C19H38O2 | 30,43, 46, 57 *, 69, 81, 87, 105 | 9.69 |
5 | Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl) | 7.84 | C10H16 | 41, 69, 77, 93 *, 105, 121, 121 | 1.64 |
6 | N,N′-bis(3-aminopropyl) ethylenediamine | 8.12 | C8H22N4 | 30, 44 *, 58, 71, 87, 100, 154, 175 | 3.33 |
7 | 2-furanmethanol, 5-ethenyltetrahydro-à,à,5-trimethyl-, cis | 8.44 | C10H18O2 | 43, 55, 59 *, 68, 81,94, 111, 155 | 5.01 |
8 | 2-furanmethanol,5-ethenyltetrahydro-à,à,5-trimethyl-, cis | 8.85 | C10H18O2 | 43, 59 *, 68, 81, 94, 111, 155 | 4.41 |
9 | linalool | 9.23 | C10H18O | 41, 55, 71 *, 80, 93, 107, 121, 136 | 2.87 |
10 | Nonanoic acid, 9-oxo-, methyl ester | 10.99 | C10H18O3 | 55, 69, 74 *, 87, 100, 127, 143, 186 | 3.33 |
11 | Methyl 3-methylbutanoate | 11.19 | C8H16O5 | 41, 57, 69, 74 *, 85, 101, 116 | 7.34 |
12 | Hexanoic acid, methyl ester | 11.77 | C7H14O2 | 18, 29, 43, 55, 59, 74 *, 87, 99,130 | 10.93 |
13 | Cis-3-hexenyllactate | 12.34 | C9H16O3 | 45, 55, 67, 82 *, 89, 99, 141, 157, 172 | 2.97 |
14 | Phenol, 2-(1,1-dimethylethyl)- | 15.31 | C10H14O | 65, 77, 91, 107, 115, 135, 135 *, 150 | 8.50 |
15 | 2-(5-methyl-5 vinyl tetrahydro-2-furanyl)-2-propanol | 17.82 | C10H18O2 | 43, 59 *, 68, 94, 111, 137, 155 | 11.63 |
16 | 1,3,5-triazine-2,4-diamine, 6-chloro-n-ethyl | 27.44 | C5H8ClN5 | 43 *, 55, 71, 85, 97, 111, 125, 125, 145, 158, 173 | 3.12 |
17 | Hexadecanoic acid, methyl ester | 29.10 | C17H34O2 | 43, 74 *, 87, 97, 129, 143, 185, 227, 270 | 4.80 |
18 | 9,12-octadecadienoic acid (z,z)-, methyl ester | 32.33 | C19H34O2 | 67 *, 81, 95, 220, 293, 294 | 1.85 |
19 | 10-octadecenoic acid, methyl ester | 32.44 | C19H36O2 | 41, 55 *, 69, 111, 180, 222, 264, 296 | 2.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsanhoty, R.M.; Soliman, M.S.M.; Khidr, Y.A.; Hassan, G.O.O.; Hassan, A.R.A.; Aladhadh, M.; Abdella, A. Pharmacological Activities and Characterization of Phenolic and Flavonoid Compounds in Solenostemma argel Extract. Molecules 2022, 27, 8118. https://doi.org/10.3390/molecules27238118
Elsanhoty RM, Soliman MSM, Khidr YA, Hassan GOO, Hassan ARA, Aladhadh M, Abdella A. Pharmacological Activities and Characterization of Phenolic and Flavonoid Compounds in Solenostemma argel Extract. Molecules. 2022; 27(23):8118. https://doi.org/10.3390/molecules27238118
Chicago/Turabian StyleElsanhoty, Rafaat M., Mohamed S. M. Soliman, Yehia A. Khidr, Gamal O. O. Hassan, Ahmed R. A. Hassan, Mohammed Aladhadh, and Asmaa Abdella. 2022. "Pharmacological Activities and Characterization of Phenolic and Flavonoid Compounds in Solenostemma argel Extract" Molecules 27, no. 23: 8118. https://doi.org/10.3390/molecules27238118
APA StyleElsanhoty, R. M., Soliman, M. S. M., Khidr, Y. A., Hassan, G. O. O., Hassan, A. R. A., Aladhadh, M., & Abdella, A. (2022). Pharmacological Activities and Characterization of Phenolic and Flavonoid Compounds in Solenostemma argel Extract. Molecules, 27(23), 8118. https://doi.org/10.3390/molecules27238118