Improved Thermoelectric Properties of SrTiO3 via (La, Dy and N) Co-Doping: DFT Approach
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, G.; Li, P.; Xu, D.; Luo, B.; Hong, Y.; Shi, W.; Liu, C. Hydrothermal Synthesis and Visible-Light-Driven Photocatalytic Degradation for Tetracycline of Mn-Doped SrTiO3 Nanocubes. Appl. Surf. Sci. 2015, 333, 39–47. [Google Scholar] [CrossRef]
- Jayabal, P.; Sasirekha, V.; Mayandi, J.; Jeganathan, K.; Ramakrishnan, V. A Facile Hydrothermal Synthesis of SrTiO3 for Dye Sensitized Solar Cell Application. J. Alloys Compd. 2014, 586, 456–461. [Google Scholar] [CrossRef]
- Okamoto, Y.; Fukui, R.; Fukazawa, M.; Suzuki, Y. SrTiO3/TiO2 Composite Electron Transport Layer for Perovskite Solar Cells. Mater. Lett. 2017, 187, 111–113. [Google Scholar] [CrossRef] [Green Version]
- Aravinthkumar, K.; John Peter, I.; Anandha Babu, G.; Navaneethan, M.; Karazhanov, S.; Raja Mohan, C. Enhancing the Short Circuit Current of a Dye-Sensitized Solar Cell and Photocatalytic Dye Degradation Using Cr Doped SrTiO3 Interconnected Spheres. Mater. Lett. 2022, 319, 132284. [Google Scholar] [CrossRef]
- Huang, S.-T.; Lee, W.W.; Chang, J.-L.; Huang, W.-S.; Chou, S.-Y.; Chen, C.-C. Hydrothermal Synthesis of SrTiO3 Nanocubes: Characterization, Photocatalytic Activities, and Degradation Pathway. J. Taiwan Inst. Chem. Eng. 2014, 45, 1927–1936. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, Y.; Shi, J.; Zhang, Z.; Ma, Z.; Yao, B.; Yu, X.; Wang, X. Microwave-Based Preparation of γ-Fe2O3/SrTiO3 Photocatalyst for Efficient Degradation of Organic Pollutants in Water. Mater. Chem. Phys. 2022, 288, 126357. [Google Scholar] [CrossRef]
- Valian, M.; Soofivand, F.; Yusupov, M.M.; Salavati-Niasari, M. Facile Synthesis of SrTiO3/CoAlMnO4 Nanocomposite: A Rechargeable Heterojunction Photocatalyst with Superior Hydrogen Storage Capability. Int. J. Hydrog. Energy 2022, 47, 31624–31637. [Google Scholar] [CrossRef]
- Niishiro, R.; Tanaka, S.; Kudo, A. Hydrothermal-Synthesized SrTiO3 Photocatalyst Codoped with Rhodium and Antimony with Visible-Light Response for Sacrificial H2 and O2 Evolution and Application to Overall Water Splitting. Appl. Catal. B Environ. 2014, 150, 187–196. [Google Scholar] [CrossRef]
- Sakata, Y.; Miyoshi, Y.; Maeda, T.; Ishikiriyama, K.; Yamazaki, Y.; Imamura, H.; Ham, Y.; Hisatomi, T.; Kubota, J.; Yamakata, A.; et al. Photocatalytic Property of Metal Ion Added SrTiO3 to Overall H2O Splitting. SI:Photocatalysis 2016, 521, 227–232. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, C.; Chang, Y.; Feng, Y.; Yang, Z.; Yang, T.; Lou, L.-L.; Liu, S. Novel Three-Dimensionally Ordered Macroporous SrTiO3 Photocatalysts with Remarkably Enhanced Hydrogen Production Performance. Appl. Catal. B Environ. 2017, 200, 514–520. [Google Scholar] [CrossRef]
- Muta, H.; Kurosaki, K.; Yamanaka, S. Thermoelectric Properties of Rare Earth Doped SrTiO3. J. Alloys Compd. 2003, 350, 292–295. [Google Scholar] [CrossRef]
- Fu, Q.-Q.; Gu, H.; Xing, J.-J.; Cao, Z.; Wang, J. Controlling the A-Site Deficiency and Oxygen Vacancies by Donor-Doping in Pre-Reductive-Sintered Thermoelectric SrTiO3 Ceramics. Acta Mater. 2022, 229, 117785. [Google Scholar] [CrossRef]
- Ma, Z.; Qi, Y.; Wang, J.; Bi, X.; Liu, X.; Li, X.; Li, J.; Sun, X. Effect of Annealing Temperature in Carbon Powder on Thermoelectric Properties of the SrTiO3−δ Single Crystal in the [111] Crystal Orientation. Ceram. Int. 2022, 48, 18876–18883. [Google Scholar] [CrossRef]
- Sun, J.; Singh, D.J. Thermoelectric Properties of N-Type SrTiO3. APL Mater. 2016, 4, 104803. [Google Scholar] [CrossRef] [Green Version]
- Zhou, E.; Raulot, J.-M.; Xu, H.; Hao, H.; Shen, Z.; Liu, H. Structural, Electronic, and Optical Properties of Rare-Earth-Doped SrTiO3 Perovskite: A First-Principles Study. Phys. B Condens. Matter 2022, 643, 414160. [Google Scholar] [CrossRef]
- Fadlallah, M.M.; Gogova, D. Theoretical Study on Electronic, Optical, Magnetic and Photocatalytic Properties of Codoped SrTiO3 for Green Energy Application. Micro Nanostructures 2022, 168, 207302. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, P.; Qin, M.; Lou, Z.; Gong, L.; Xu, J.; Kong, J.; Yan, H.; Gao, F. Effect of La3+, Ag+ and Bi3+ Doping on Thermoelectric Properties of SrTiO3: First-Principles Investigation. Ceram. Int. 2022, 48, 13803–13816. [Google Scholar] [CrossRef]
- S, C.P.; Jose, R.; Vijay, A.; P, V.; K, V.S. Tuning Thermoelectric Properties of Nb and Ta Co-Doped SrTiO3 Ceramics. Int. Conf. Adv. Mater. Innov. Sustain. 2022, 64, 464–467. [Google Scholar] [CrossRef]
- Suen, C.H.; Zhang, L.; Yang, K.; He, M.Q.; Chai, Y.S.; Zhou, K.; Wang, H.; Zhou, X.Y.; Dai, J.-Y. High Thermoelectric Performance of ZrTe2/SrTiO3 Heterostructure. J. Mater. 2022, 8, 570–576. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Jiang, X.; Kang, H.; Yang, X.; Zhang, X.; Wang, T. Ultrahigh Electrical Conductivities and Low Lattice Thermal Conductivities of La, Dy, and Nb Co-Doped SrTiO3 Thermoelectric Materials with Complex Structures. J. Mater. Sci. Technol. 2020, 52, 172–179. [Google Scholar] [CrossRef]
- Shang, P.-P.; Zhang, B.-P.; Li, J.-F.; Ma, N. Effect of Sintering Temperature on Thermoelectric Properties of La-Doped SrTiO3 Ceramics Prepared by Sol–Gel Process and Spark Plasma Sintering. Solid State Sci. 2010, 12, 1341–1346. [Google Scholar] [CrossRef]
- Zhang, T.; Wan, R.; Guo, Y.; Ahmed, A.J.; Lei, Y.; Tian, G. Lanthanum-Doped SrTiO3 Theoretical Thermoelectric Properties. Ionics 2022, 28, 2021–2028. [Google Scholar] [CrossRef]
- Gillani, S.S.A.; Ahmad, R.; Islah-u-din; Rizwan, M.; Shakil, M.; Rafique, M.; Murtaza, G.; Jin, H.B. First-Principles Investigation of Structural, Electronic, Optical and Thermal Properties of Zinc Doped SrTiO3. Optik 2020, 201, 163481. [Google Scholar] [CrossRef]
- Gillani, S.S.A.; Jawad, A.; Zeba, I.; Shakil, M.; Tahir, M.B.; Ahmad, R. Effect of Li, K and Be Doping on Phase Stability, Band Structure and Optoelectronic Response of SrTiO3 Perovskite for Semiconductor Devices: A Computational Insight. Optik 2021, 227, 166044. [Google Scholar] [CrossRef]
- Wang, H.C.; Wang, C.L.; Su, W.B.; Liu, J.; Zhao, Y.; Peng, H.; Zhang, J.L.; Zhao, M.L.; Li, J.C.; Yin, N.; et al. Enhancement of Thermoelectric Figure of Merit by Doping Dy in La0.1Sr0.9TiO3 Ceramic. Mater. Res. Bull. 2010, 45, 809–812. [Google Scholar] [CrossRef]
- Ito, M.; Matsuda, T. Thermoelectric Properties of Non-Doped and Y-Doped SrTiO3 Polycrystals Synthesized by Polymerized Complex Process and Hot Pressing. J. Alloys Compd. 2009, 477, 473–477. [Google Scholar] [CrossRef]
- Dadgostar, S.; Pura Ruiz, J.L.; Serrano Gutierrez, J.; Lepine, B.; Schieffer, P.; Jimenez, J. Luminescence in Undoped and Nb-Doped SrTiO3 Crystals: Bulk and Surface Emission. Mater. Sci. Eng. B 2022, 283, 115830. [Google Scholar] [CrossRef]
- Blennow, P.; Hagen, A.; Hansen, K.K.; Wallenberg, L.R.; Mogensen, M. Defect and Electrical Transport Properties of Nb-Doped SrTiO3. Solid State Ion. 2008, 179, 2047–2058. [Google Scholar] [CrossRef]
- Kikuchi, A.; Okinaka, N.; Akiyama, T. A Large Thermoelectric Figure of Merit of La-Doped SrTiO3 Prepared by Combustion Synthesis with Post-Spark Plasma Sintering. Scr. Mater. 2010, 63, 407–410. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Jia, Y.Z.; Jing, Y.; Yao, Y.; Ma, J.; Sun, J.H. Effects of N Concentration on Electronic Structure and Optical Absorption Properties of N-Doped SrTiO3 from First Principles. Mater. Sci. Forum 2013, 749, 561–568. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, G.K.H.; Singh, D.J. BoltzTraP. A Code for Calculating Band-Structure Dependent Quantities. Comput. Phys. Commun. 2006, 175, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W. VASPKIT: A Pre- and Post-Processing Program for VASP Code. arXiv 2019, arXiv:1908.0826. [Google Scholar]
- Okuda, T.; Nakanishi, K.; Miyasaka, S.; Tokura, Y. Large Thermoelectric Response of Metallic Perovskites: Sr1−xLaxTiO3 (0<~ x<~0.1). Phys. Rev. B 2001, 63, 113104. [Google Scholar] [CrossRef]
- Oliveira, F.S.; Guimarães, L.G.; dos Santos, C.A.M.; de Lima, B.S.; da Luz, M.S. Electrical and Thermodynamic Study of SrTiO3 Reduction Using the van Der Pauw Method. Mater. Chem. Phys. 2021, 263, 124428. [Google Scholar] [CrossRef]
- Sikam, P.; Moontragoon, P.; Sararat, C.; Karaphun, A.; Swatsitang, E.; Pinitsoontorn, S.; Thongbai, P. DFT Calculation and Experimental Study on Structural, Optical and Magnetic Properties of Co-Doped SrTiO3. Appl. Surf. Sci. 2018, 446, 92–113. [Google Scholar] [CrossRef]
- Fo, Y.; Wang, M.; Ma, Y.; Dong, H.; Zhou, X. Origin of Highly Efficient Photocatalyst NiO/SrTiO3 for Overall Water Splitting: Insights from Density Functional Theory Calculations. J. Solid State Chem. 2020, 292, 121683. [Google Scholar] [CrossRef]
- Sikam, P.; Sararat, C.; Moontragoon, P.; Kaewmaraya, T.; Maensiri, S. Enhanced Thermoelectric Properties of N-Doped ZnO and SrTiO3: A First-Principles Study. Appl. Surf. Sci. 2018, 446, 47–58. [Google Scholar] [CrossRef]
- Atkinson, I.; Parvulescu, V.; Pandele Cusu, J.; Anghel, E.M.; Voicescu, M.; Culita, D.; Somacescu, S.; Munteanu, C.; Šćepanović, M.; Popovic, Z.V.; et al. Influence of Preparation Method and Nitrogen (N) Doping on Properties and Photo-Catalytic Activity of Mesoporous SrTiO3. J. Photochem. Photobiol. Chem. 2019, 368, 41–51. [Google Scholar] [CrossRef]
- Bilotti, E.; Fenwick, O.; Schroeder, B.; Baxendale, M.; Taroni-Junior, P.; Degousée, T.; Liu, Z. 6.14 Organic Thermoelectric Composites Materials. In Comprehensive Composite Materials II; Beaumont, P.W.R., Zweben, C.H., Eds.; Elsevier: Oxford, UK, 2018; pp. 408–430. [Google Scholar] [CrossRef]
- Lv, X.; Chen, G.; Wei, K.; Dai, R.; Wang, M.; Yu, K.; Geng, S. Influence of La Doping Concentration and A-Site Deficiency on Electrical Conductivity of La Substituted SrTiO3 and Its Chemical Compatibility with ScSZ. Ceram. Int. 2022, 48, 27527–27535. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Lei, W.; Sinclair, D.C.; Reaney, I.M. High-Figure-of-Merit Thermoelectric La-Doped A-Site-Deficient SrTiO3 Ceramics. Chem. Mater. 2016, 28, 925–935. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-H.; Yang, L.M.; Ganz, E. Electrocatalytic reduction of CO2 by two-dimensional transition metal porphyrin sheets. J. Mater. Chem. A 2019, 7, 11944–11952. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, H.; Cheng, X. Electronic and magnetic properties of all 3d transition-metal-doped ZnO monolayers. Int. J. Quantum Chem. 2013, 113, 2243–2250. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikam, P.; Thirayatorn, R.; Kaewmaraya, T.; Thongbai, P.; Moontragoon, P.; Ikonic, Z. Improved Thermoelectric Properties of SrTiO3 via (La, Dy and N) Co-Doping: DFT Approach. Molecules 2022, 27, 7923. https://doi.org/10.3390/molecules27227923
Sikam P, Thirayatorn R, Kaewmaraya T, Thongbai P, Moontragoon P, Ikonic Z. Improved Thermoelectric Properties of SrTiO3 via (La, Dy and N) Co-Doping: DFT Approach. Molecules. 2022; 27(22):7923. https://doi.org/10.3390/molecules27227923
Chicago/Turabian StyleSikam, Pornsawan, Ruhan Thirayatorn, Thanayut Kaewmaraya, Prasit Thongbai, Pairot Moontragoon, and Zoran Ikonic. 2022. "Improved Thermoelectric Properties of SrTiO3 via (La, Dy and N) Co-Doping: DFT Approach" Molecules 27, no. 22: 7923. https://doi.org/10.3390/molecules27227923
APA StyleSikam, P., Thirayatorn, R., Kaewmaraya, T., Thongbai, P., Moontragoon, P., & Ikonic, Z. (2022). Improved Thermoelectric Properties of SrTiO3 via (La, Dy and N) Co-Doping: DFT Approach. Molecules, 27(22), 7923. https://doi.org/10.3390/molecules27227923