Qualitative Profiling and Quantitative Analysis of Major Constituents in Jinmu-tang by UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative Analysis of Compounds in JMT by UHPLC-Q-Orbitrap-MS
2.2. Quantitative Analysis of Compounds in JMT by UPLC-TQ-MS/MS
2.3. Method Validation of Qualitative Analysis
2.4. Sample Analysis
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of JMT
3.3. Preparation of Standard and Sample Solutions
3.4. Qualitative Analysis
3.5. Quantitative Analysis
3.6. Method Validation of Quantitative Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Yang, Y.; Shi, Y.P. Simultaneous quantification of 12 active components in Yiqing granule by ultra-performance liquid chromatography: Application to quality control study. Biomed. Chromatogr. 2011, 25, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Seo, C.S.; Shin, H.K. Simultaneous analysis for quality control of traditional herbal medicine, Gungha-tang, using liquid chromatography-tandem mass spectrometry. Molecules 2022, 27, 1223. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lu, R.; Pang, Y.; Li, J.; Cao, Y.; Fu, H.; Fang, G.; Chen, Q.; Liu, B.; Wu, J.; et al. Zhen-Wu-Tang protects against IgA nephropathy in rats by regulating exosomes to inhibit the NF-kappaB/NLRP3 pathway. Front. Pharmacol. 2020, 11, 1080. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.L.; Wu, J.B.; Lai, J.M.; Ye, S.F.; Lin, J.; Ouyang, H.; Zhan, J.Y.; Zhou, J.Y. Protection effect of Zhen-Wu-Tang on adriamycin-induced nephrotic syndrome via inhibiting oxidative lesions and inflammation damage. Evid. Based Complement. Altern. Med. 2014, 2014, 131604. [Google Scholar] [CrossRef] [Green Version]
- La, L.; Wang, L.; Qin, F.; Jiang, J.; He, S.; Wang, C.; Li, Y. Zhen-wu-tang ameliorates adenine-induced chronic renal failure in rats: Regulation of canonical Wnt4/beta-catenin signaling in the kidneys. J. Ethnopharmacol. 2018, 219, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lu, R.; Li, H.; Zhou, Y.; Zhang, P.; Bai, L.; Chen, D.; Chen, J.; Li, J.; Yu, P.; et al. Zhen-wu-tang ameliorates membranous nephropathy in rats by inhibiting the NF-κB pathway and NLRP3 inflammasome. Phytomedicine 2019, 59, 152913. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, S.; He, Y.; Zhang, J.; Zeng, X.; Gong, F.; Liang, L. Protective effects of Zhen-Wu-Tang against cisplatin-induced acute kidney injury in rats. PLoS ONE 2017, 12, e0179137. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xiao, X.; Han, L.; Wang, Y.; Luo, G. Renoprotective effect of Zhenwu decoction against renal fibrosis by regulation of oxidative damage and energy metabolism disorder. Sci. Rep. 2018, 8, 14627. [Google Scholar] [CrossRef] [Green Version]
- Miao, H.; Li, M.-H.; Zhang, X.; Yuan, S.-J.; Ho, C.C.; Zhao, Y.-Y. The antihyperlipidemic effect of Fu-Ling-Pi was associated with abnormal fatty acid metabolism, as assessed by UPLC-HDMS-based lipidomics. RSC Adv. 2015, 5, 64208–64219. [Google Scholar] [CrossRef]
- Parker, S.; May, B.; Zhang, C.; Zhang, A.L.; Lu, C.; Xue, C.C. Ppharmacological review of bioactive constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch. Phytother. Res. 2016, 30, 1445–1473. [Google Scholar] [CrossRef]
- Wang, D.D.; Liang, J.; Yang, W.Z.; Hou, J.J.; Yang, M.; Da, J.; Wang, Y.; Jiang, B.H.; Liu, X.; Wu, W.Y.; et al. HPLC/qTOF-MS-oriented characteristic component dataset and chemometric analysis for the holistic quality control of complex TCM preparations: Niuhuang Shangqing pill as an example. J. Pharm. Biomed. Anal. 2014, 89, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zhang, G.; Wang, M.; Wang, J.; Zeng, W.; Gao, X. Simultaneous determination of nine active compounds of the traditional Chinese medicinal prescription Shaoyao-Gancao-Tang and analysis of the relationship between therapeutic effect and compatibility of medicines. Evid. -Based Complement. Altern. Med. 2014, 2014, 521038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Yang, Z.Y.; Yang, T.B.; Ye, Y.; Nie, J.; Hu, Y.; Yan, P. Chemometric-enhanced one-dimensional comprehensive two-dimensional gas chromatographic analysis for bioactive terpenoids and phthalides in Chaihu Shugan San essential oils. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1052, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Yu, Y.; Zhu, Z.; Deng, L.; Ren, B.; Zhang, M. Simultaneous determination of six main components in Bushen huoxue prescription by HPLC-CAD. J. Pharm. Biomed. Anal. 2021, 201, 114087. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, W.; Wang, Q.; Zhang, Y.; Ling, Y.; Zhao, T.; Zhang, H.; Li, P. A novel and comprehensive strategy for quality control in complex Chinese medicine formulas using UHPLC-Q-Orbitrap HRMS and UHPLC-MS/MS combined with network pharmacology analysis: Take the Tangshen formula as an example. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1183, 122889. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, A.A.; Yan, G.; Han, Y.; Sun, H. UHPLC-MS for the analytical characterization of traditional Chinese medicines. TrAC Trends Anal. Chem. 2014, 63, 180–187. [Google Scholar] [CrossRef]
- Zou, Y.T.; Long, F.; Wu, C.Y.; Zhou, J.; Zhang, W.; Xu, J.D.; Zhang, Y.Q.; Li, S.L. Dereplication strategy for identifying triterpene acid analogs in Poria cocos by comparing predicted and acquired UPLC-ESI-QTOF-MS/MS data. Phytochem. Anal. 2019, 30, 292–310. [Google Scholar] [CrossRef]
- Li, P.; Shen, J.; Wang, Z.; Liu, S.; Liu, Q.; Li, Y.; He, C.; Xiao, P. Genus Paeonia: A comprehensive review on traditional uses, phytochemistry, pharmacological activities, clinical application, and toxicology. J. Ethnopharmacol. 2021, 269, 113708. [Google Scholar] [CrossRef]
- Kondapalli, N.B.; Hemalatha, R.; Uppala, S.; Yathapu, S.R.; Mohammed, S.; Venkata Surekha, M.; Rajendran, A.; Bharadwaj, D.K. Ocimum sanctum, Zingiber officinale, and Piper nigrum extracts and their effects on gut microbiota modulation (prebiotic potential), basal inflammatory markers, and lipid levels: Oral supplementation study in healthy rats. Pharm. Biol. 2022, 60, 437–450. [Google Scholar] [CrossRef]
- Wu, C.Y.; Kong, M.; Zhang, W.; Long, F.; Zhou, J.; Zhou, S.S.; Xu, J.D.; Xu, J.; Li, S.L. Impact of sulfur fumigation on the chemistry of ginger. Food Chem. 2018, 239, 953–963. [Google Scholar] [CrossRef]
- Shan, G.S.; Zhang, L.X.; Zhao, Q.M.; Xiao, H.B.; Zhuo, R.J.; Xu, G.; Jiang, H.; You, X.M.; Jia, T.Z. Metabolomic study of raw and processed Atractylodes macrocephala Koidz by LC-MS. J. Pharm. Biomed. Anal. 2014, 98, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Zhao, X.; Liu, X.; Chao, R. Determination of five aminoalcohol-diterpenoid alkaloids in the lateral root of Aconitum carmichaeli by HPLC-ELSD with SPE. J. Chromatogr. Sci. 2017, 55, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.L.; Zhang, P.C.; Wu, J.B.; Liu, B.H.; Yu, H.; Lu, R.R.; Zhou, J.; Zhou, J.Y. Zhen-wu-tang attenuates adriamycin-induced nephropathy by regulating AQP2 and miR-92b. Biomed. Pharmacother. 2019, 109, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Huang, Z.; Tang, X.; Yi, J.; Chen, S.; Yang, A.; Yang, J. Dynamic variation patterns of aconitum alkaloids in daughter root of Aconitum Carmichaelii (Fuzi) in the decoction process based on the content changes of nine Aconitum alkaloids by HPLC-MS-MS. Iran. J. Pharm. Res. 2016, 15, 263–273. [Google Scholar]
- Sabaragamuwa, R.; Perera, C.O.; Fedrizzi, B. Ultrasound-assisted extraction and quantification of targeted bioactive compounds of Centella asiatica (Gotu Kola) by ultra-high-performance liquid MRM tandem mass spectroscopy. Food Chem. 2022, 371, 131187. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-L.; Wu, R.-T. Quantification of (+)-catechin and (−)-epicatechin in coconut water using LC–MS. Food Chem. 2011, 126, 710–717. [Google Scholar] [CrossRef]
- Lambert, M.; Meudec, E.; Verbaere, A.; Mazerolles, G.; Wirth, J.; Masson, G.; Cheynier, V.; Sommerer, N. Hhigh-throughput UHPLC-QqQ-MS method for polyphenol profiling of rose wine. Molecules 2015, 20, 7890–7914. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, Y.; Ye, J.; Cheng, T.; Liang, Y.; Zu, X.; Zhang, W. A comprehensive quality evaluation of Fuzi and its processed product through the integration of UPLC-QTOF/MS combined MS/MS-based mass spectral molecular networking with multivariate statistical analysis and HPLC-MS/MS. J. Ethnopharmacol. 2021, 266, 113455. [Google Scholar] [CrossRef]
- Sun, L.; You, G.; Cao, X.; Wang, M.; Ren, X. Comparative investigation of raw and processed Aconiti Lateralis radix using chemical UPLC-MS profiling and multivariate classification techniques. J. Food Drug. Anal. 2019, 27, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Chen, J.J.; Pan, Y.; He, X.F.; Wang, Y.; Zhang, X.M.; Geng, C.A. Chemical profiling and antidiabetic potency of Paeonia delavayi: Comparison between different parts and constituents. J. Pharm. Biomed. Anal. 2021, 198, 113998. [Google Scholar] [CrossRef]
- Rojas-Garbanzo, C.; Zimmermann, B.F.; Schulze-Kaysers, N.; Schieber, A. Characterization of phenolic and other polar compounds in the peel and flesh of pink guava (Psidium guajava L. cv. “Criolla”) by ultra-high performance liquid chromatography with diode array and mass spectrometric detection. Food Res. Int. 2017, 100, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qi, J.; Chang, Y.X.; Zhu, D.; Yu, B. Identification and determination of the major constituents in traditional Chinese medicinal formula Danggui-Shaoyao-San by HPLC-DAD-ESI-MS/MS. J. Pharm. Biomed. Anal. 2009, 50, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Cai, H.; Cao, G.; Duan, Y.; Pei, K.; Tu, S.; Zhou, J.; Xie, L.; Sun, D.; Zhao, J.; et al. Profiling and analysis of multiple constituents in Baizhu Shaoyao San before and after processing by stir-frying using UHPLC/Q-TOF-MS/MS coupled with multivariate statistical analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1083, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Zhou, D.; Gao, J.; Zhu, Y.; Sun, H.; Bi, K. Simultaneous determination of naringin, hesperidin, neohesperidin, naringenin, and hesperetin of Fractus aurantii extract in rat plasma by liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2012, 58, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Ying, X.; Liu, M.; Liang, Q.; Jiang, M.; Wang, Y.; Huang, F.; Xie, Y.; Shao, J.; Bai, G.; Luo, G. Identification and analysis of absorbed components and their metabolites in rat plasma and tissues after oral administration of ‘Ershiwuwei Shanhu’ pill extracts by UPLC-DAD/Q-TOF-MS. J. Ethnopharmacol. 2013, 150, 324–338. [Google Scholar] [CrossRef]
- Asamenew, G.; Kim, H.-W.; Lee, M.-K.; Lee, S.-H.; Kim, Y.J.; Cha, Y.-S.; Yoo, S.M.; Kim, J.-B. Characterization of phenolic compounds in normal ginger (Zingiber officinale Rosc.) and black ginger (Kaempferia parviflora Wall.) using UPLC–DAD–QToF–MS. Eur. Food Res. Technol. 2018, 245, 653–665. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Somogyi, A.; Timmermann, B.N.; Gang, D.R. Instrument dependence of electrospray ionization and tandem mass spectrometric fragmentation of gingerols. Rapid Commun. Mass. Spectrom. 2006, 20, 3089–3100. [Google Scholar] [CrossRef]
- Wang, S.P.; Liu, L.; Wang, L.L.; Jiang, P.; Zhang, J.Q.; Zhang, W.D.; Liu, R.H. Screening and analysis of the multiple absorbed bioactive components and metabolites in rat plasma after oral administration of Jitai tablets by high-performance liquid chromatography/diode array detection coupled with electrospray ionization tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2010, 24, 1641–1652. [Google Scholar] [CrossRef]
- Shi, Y.Y.; Guan, S.H.; Tang, R.N.; Tao, S.J.; Guo, D.A. Simultaneous determination of atractylenolide II and atractylenolide III by liquid chromatography-tandem mass spectrometry in rat plasma and its application in a pharmacokinetic study after oral administration of Atractylodes macrocephala rhizoma extract. Biomed. Chromatogr. 2012, 26, 1386–1392. [Google Scholar] [CrossRef]
- Li, Y.; Hong, Y.; Han, Y.; Wang, Y.; Xia, L. Chemical characterization and comparison of antioxidant activities in fresh, dried, stir frying, and carbonized ginger. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1011, 223–232. [Google Scholar] [CrossRef]
- Liu, B.; He, Y.; Lu, R.; Zhou, J.; Bai, L.; Zhang, P.; Ye, S.; Wu, J.; Liang, C.; Zhou, Y.; et al. Zhen-wu-tang protects against podocyte injury in rats with IgA nephropathy via the PPARgamma/NF-κB pathway. Biomed. Pharmacother. 2018, 101, 635–647. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Jeon, W.-Y.; Hwang, Y.-H.; Lee, M.-Y. Inhibitory effects of Gyeji-tang on MMP-9 activity and the expression of adhesion molecules in IL-4-and TNF-α-stimulated BEAS-2B cells. Plants 2021, 10, 951. [Google Scholar] [CrossRef] [PubMed]
- Center for Biologics Evaluation and Research (CBER). Guidance for Industry; ICH: Rockville, MD, USA, 1996. [Google Scholar]
No. | Rt (min) | Formula | Adduct | Predicted (m/z) | Measured (m/z) | Error (ppm) | MS/MS Fragment | Identification |
---|---|---|---|---|---|---|---|---|
1 | 4.84 | C21H36O10 | [M + HCO2]− | 493.2290 | 493.2290 | −0.032 | 447.2233, 285.1705, 179.0553, 119.0335 | Atractyloside A |
2 | 5.19 | C25H41NO9 | [M + H]+ | 500.2854 | 500.2855 | 0.225 | 500.2856 | Aconine |
3 | 5.22 | C16H18O9 | [M + H]+ | 355.1024 | 355.1026 | 0.676 | 163.0390 | Chlorogenic acid |
4 | 5.17 | C15H14O6 | [M + H]+ | 291.0863 | 291.0863 | 0.503 | 165.0547, 139.0391, 123.0444, | Catechin |
5 | 5.24 | C22H31NO3 | [M + H]+ | 358.2377 | 358.2377 | 0.173 | 358.2375, 340.2271 | Napellonine |
6 | 5.62 | C24H39NO7 | [M + H]+ | 454.2799 | 454.2800 | 0.151 | 454.2801, 436.2689 | Fuziline |
7 | 5.67 | C20H28O12 | [M + HCO2]− | 505.1563 | 505.1563 | 0.061 | 165.0545 | Paeonolide |
8 | 5.64 | C15H14O6 | [M + H]+ | 291.0863 | 291.0863 | 0.083 | 207.0652, 165.0547, 139.0391, 123.0444 | Epicatechin |
9 | 5.85 | C24H39NO6 | [M + H]+ | 438.2850 | 438.2852 | 0.334 | 438.2851 | Bullatine B |
10 | 6.07 | C23H28O11 | [M + H]+ | 481.1704 | 481.1707 | 0.445 | 105.0340 | Albiflorin |
11 | 6.28 | C24H39NO5 | [M + H]+ | 422.2901 | 422.2900 | −0.144 | 422.2901 | Talatisamine |
12 | 6.35 | C23H28O11 | [M + HCO2]− | 525.1614 | 525.1611 | −0.549 | 327.1086, 165.0546, 121.0280 | Paeoniflorin |
13 | 8.38 | C21H24O10 | [M − H]− | 435.1297 | 435.1292 | −1.054 | 273.0767, 169.0131 | Phlorizin |
14 | 10.90 | C30H32O12 | [M + HCO2]− | 629.1876 | 629.1871 | −0.806 | 121.0279 | Benzoylpaeoniflorin |
15 | 10.86 | C15H12O5 | [M + H]+ | 273.0758 | 273.0756 | −0.690 | 273.0755, 153.0182, 147.0441 | Naringenin |
16 | 14.59 | C17H26O4 | [M + Na]+ | 317.1723 | 317.1723 | −0.088 | 317.1724, 159.0417 | 6-Gingerol |
17 | 15.54 | C15H20O3 | [M + H]+ | 249.1485 | 249.1485 | 0.036 | 231.1382, 163.0754, 135.0442 | Atractylenolide III |
18 | 17.39 | C19H30O4 | [M+]+ | 322.2139 | 322.2140 | 0.306 | 304.2025, 205.0861, 150.0676, 137.0598 | 8-Gingerol |
19 | 17.53 | C15H20O2 | [M + H]+ | 233.1536 | 233.1537 | 0.590 | 233.1537, 215.1432, 187.1482, 151.0755 | Atractylenolide II |
20 | 18.22 | C30H48O4 | [M − H]− | 471.3480 | 471.3478 | −0.363 | 471.3474 | Hederagenin |
21 | 18.62 | C15H18O2 | [M + H]+ | 231.1380 | 231.1380 | 0.373 | 231.1380, 185.1326 | Atractylenolide I |
22 | 19.09 | C21H34O4 | [M+]+ | 350.2452 | 350.2453 | 0.401 | 332.2346, 150.0677, 137.0599 | 10-Gingerol |
23 | 20.68 | C33H52O5 | [M + H]+ | 529.3888 | 529.3890 | 0.544 | 451.3570, 295.2426, 187.1481 | Pachymic acid |
No. | Compound | Regression Equation | R2 | Linear Range (ng/mL) | LLOQ * (ng/mL) |
---|---|---|---|---|---|
1 | Atractyloside A | y = 0.0093x − 0.002551 | 0.9991 | 0.20–25.00 | 0.20 |
2 | Aconine | y = 0.0961x − 0.000319 | 0.9991 | 0.02–3.13 | 0.02 |
3 | Chlorogenic acid | y = 0.0289x − 0.000138 | 0.9990 | 0.05–6.25 | 0.05 |
4 | Catechin | y = 0.0144x − 0.000465 | 0.9992 | 0.20–25.00 | 0.20 |
5 | Napellonine | y = 1.1378x − 0.011170 | 0.9990 | 0.05–6.25 | 0.05 |
6 | Fuziline | y = 0.3022x − 0.002625 | 0.9990 | 0.05–6.25 | 0.05 |
7 | Paeonolide | y = 0.1614x + 0.000046 | 0.9990 | 0.02–3.13 | 0.02 |
8 | Epicatechin | y = 0.0139x − 0.000102 | 0.9993 | 0.10–12.50 | 0.10 |
9 | Bullatine B | y = 0.2041x − 0.003785 | 0.9991 | 0.10–12.50 | 0.10 |
10 | Albiflorin | y = 0.0142x − 0.002176 | 0.9991 | 0.78–100.00 | 0.78 |
11 | Talatisamine | y = 0.3650x − 0.003529 | 0.9991 | 0.05–6.25 | 0.05 |
12 | Paeoniflorin | y = 0.1239x − 0.228416 | 0.9991 | 12.50–1600.00 | 12.50 |
13 | Phlorizin | y = 0.1621x − 0.000523 | 0.9992 | 0.02–3.13 | 0.02 |
14 | Benzoylpaeoniflorin | y = 0.1539x − 0.010071 | 0.9991 | 0.39–50.00 | 0.39 |
15 | Naringenin | y = 0.0357x + 0.000024 | 0.9991 | 0.02–3.13 | 0.02 |
16 | 6-Gingerol | y = 0.0391x − 0.026660 | 0.9990 | 3.13–400.00 | 3.13 |
17 | Atractylenolide III | y = 0.0350x − 0.000607 | 0.9991 | 0.10–12.50 | 0.10 |
18 | 8-Gingerol | y = 0.1039x − 0.001756 | 0.9990 | 0.10–12.50 | 0.10 |
19 | Atractylenolide II | y = 0.0175x − 0.000245 | 0.9990 | 0.10–12.50 | 0.10 |
20 | Hederagenin | y = 0.0036x − 0.000036 | 0.9990 | 0.05–6.25 | 0.05 |
21 | Atractylenolide I | y = 0.0435x − 0.000087 | 0.9990 | 0.02–3.13 | 0.02 |
22 | 10-Gingerol | y = 0.0694x − 0.001277 | 0.9994 | 0.10–12.50 | 0.10 |
23 | Pachymic acid | y = 0.0138x − 0.000105 | 0.9992 | 0.05–6.25 | 0.05 |
No. | Compound | Spiked Concentration (ng/mL) | Measured Concentration (ng/mL) | Recovery (%) | RSD * (%) |
---|---|---|---|---|---|
1 | Atractyloside A | 14.48 | 15.58 | 107.60 | 0.82 |
10.31 | 9.94 | 96.41 | 0.83 | ||
8.23 | 7.16 | 87.00 | 2.03 | ||
2 | Aconine | 1.30 | 1.49 | 114.62 | 1.62 |
0.78 | 0.86 | 110.26 | 2.86 | ||
0.52 | 0.50 | 96.15 | 2.44 | ||
3 | Chlorogenic acid | 4.32 | 4.87 | 112.73 | 1.70 |
3.28 | 3.48 | 106.10 | 1.62 | ||
2.76 | 2.81 | 101.81 | 1.84 | ||
4 | Catechin | 17.96 | 18.49 | 102.95 | 1.94 |
13.80 | 12.55 | 90.94 | 1.57 | ||
11.71 | 10.14 | 86.59 | 1.27 | ||
5 | Napellonine | 3.27 | 3.57 | 109.17 | 3.13 |
2.23 | 2.12 | 95.07 | 1.75 | ||
1.71 | 1.50 | 87.72 | 2.36 | ||
6 | Fuziline | 3.39 | 3.62 | 106.78 | 3.11 |
2.35 | 2.22 | 94.47 | 2.40 | ||
1.83 | 1.61 | 87.98 | 2.16 | ||
7 | Paeonolide | 1.72 | 1.89 | 109.88 | 4.18 |
1.20 | 1.15 | 95.83 | 1.90 | ||
0.94 | 0.84 | 89.36 | 4.63 | ||
8 | Epicatechin | 7.68 | 7.53 | 98.05 | 3.76 |
5.60 | 5.02 | 89.64 | 2.33 | ||
4.56 | 4.08 | 89.47 | 1.17 | ||
9 | Bullatine B | 6.18 | 6.85 | 110.84 | 3.42 |
4.09 | 4.00 | 97.80 | 1.43 | ||
3.05 | 2.77 | 90.82 | 2.28 | ||
10 | Albiflorin | 73.91 | 77.19 | 104.44 | 1.12 |
57.24 | 54.79 | 95.72 | 0.56 | ||
48.91 | 44.42 | 90.82 | 0.85 | ||
11 | Talatisamine | 2.87 | 3.20 | 111.50 | 2.34 |
1.83 | 1.89 | 103.28 | 2.02 | ||
1.31 | 1.19 | 90.84 | 2.38 | ||
12 | Paeoniflorin | 1307.53 | 1322.90 | 101.18 | 0.82 |
1040.86 | 944.34 | 90.73 | 0.88 | ||
907.53 | 784.00 | 86.39 | 0.45 | ||
13 | Phlorizin | 1.25 | 1.43 | 114.40 | 2.78 |
0.73 | 0.83 | 113.70 | 2.99 | ||
0.47 | 0.46 | 97.87 | 5.80 | ||
14 | Benzoylpaeoniflorin | 31.01 | 32.74 | 105.58 | 1.74 |
22.68 | 20.82 | 91.80 | 1.99 | ||
18.51 | 16.16 | 87.30 | 0.66 | ||
15 | Naringenin | 1.17 | 1.32 | 112.82 | 1.87 |
0.65 | 0.72 | 110.77 | 1.60 | ||
0.39 | 0.41 | 105.13 | 4.89 | ||
16 | 6-Gingerol | 245.96 | 263.74 | 107.23 | 0.72 |
179.30 | 171.31 | 95.54 | 0.38 | ||
145.96 | 128.42 | 87.98 | 0.61 | ||
17 | Atractylenolide III | 7.83 | 7.86 | 100.38 | 1.89 |
5.75 | 5.46 | 94.96 | 1.03 | ||
4.70 | 4.09 | 87.02 | 1.87 | ||
18 | 8-Gingerol | 7.14 | 8.04 | 112.61 | 0.73 |
5.06 | 5.29 | 104.55 | 1.03 | ||
4.02 | 4.02 | 100.00 | 1.25 | ||
19 | Atractylenolide II | 9.42 | 9.17 | 97.35 | 1.18 |
7.34 | 6.92 | 94.28 | 2.17 | ||
6.30 | 5.43 | 86.19 | 1.02 | ||
20 | Hederagenin | 2.90 | 3.22 | 111.03 | 3.28 |
1.86 | 1.88 | 101.08 | 1.78 | ||
1.34 | 1.21 | 90.30 | 5.24 | ||
21 | Atractylenolide I | 1.48 | 1.61 | 108.78 | 2.00 |
0.96 | 0.94 | 97.92 | 1.83 | ||
0.70 | 0.64 | 91.43 | 3.06 | ||
22 | 10-Gingerol | 9.37 | 9.23 | 98.51 | 0.51 |
7.28 | 6.82 | 93.68 | 0.94 | ||
6.24 | 5.51 | 88.30 | 0.85 | ||
23 | Pachymic acid | 3.14 | 3.43 | 109.24 | 3.88 |
2.10 | 2.05 | 97.62 | 1.48 | ||
1.58 | 1.43 | 90.51 | 3.60 |
No. | Compound | Concentration (ng/mL) | Intraday | Interday | ||
---|---|---|---|---|---|---|
Precision (%) | Accuracy (%) | Precision (%) | Accuracy (%) | |||
1 | Atractyloside A | 16.67 | 1.26 | 103.17 | 1.25 | 101.82 |
8.33 | 2.11 | 100.98 | 0.20 | 101.20 | ||
4.17 | 1.44 | 97.30 | 2.45 | 98.30 | ||
2 | Aconine | 2.08 | 1.56 | 110.74 | 2.89 | 107.22 |
1.04 | 0.84 | 106.84 | 2.81 | 103.72 | ||
0.52 | 1.65 | 102.39 | 1.01 | 101.27 | ||
3 | Chlorogenic acid | 4.17 | 2.16 | 101.73 | 8.00 | 94.34 |
2.08 | 1.86 | 101.87 | 6.12 | 95.67 | ||
1.04 | 1.98 | 97.69 | 7.12 | 90.27 | ||
4 | Catechin | 16.67 | 0.78 | 104.79 | 3.36 | 101.65 |
8.33 | 0.82 | 101.26 | 2.81 | 98.90 | ||
4.17 | 1.16 | 98.64 | 2.48 | 96.13 | ||
5 | Napellonine | 4.17 | 1.37 | 109.19 | 2.14 | 106.58 |
2.08 | 1.36 | 104.06 | 2.09 | 101.62 | ||
1.04 | 1.02 | 101.73 | 2.15 | 99.41 | ||
6 | Fuziline | 4.17 | 0.98 | 107.73 | 2.19 | 105.09 |
2.08 | 0.73 | 103.55 | 2.18 | 101.01 | ||
1.04 | 1.34 | 100.58 | 1.41 | 99.23 | ||
7 | Paeonolide | 2.08 | 3.13 | 98.49 | 3.11 | 99.18 |
1.04 | 2.65 | 99.71 | 1.56 | 99.81 | ||
0.52 | 6.50 | 97.87 | 4.95 | 96.42 | ||
8 | Epicatechin | 8.33 | 3.25 | 100.84 | 4.75 | 96.43 |
4.17 | 2.22 | 98.22 | 2.54 | 96.14 | ||
2.08 | 1.85 | 96.56 | 3.39 | 93.85 | ||
9 | Bullatine B | 8.33 | 0.71 | 108.76 | 2.66 | 105.53 |
4.17 | 1.14 | 103.84 | 2.70 | 100.72 | ||
2.08 | 1.33 | 100.04 | 1.16 | 99.15 | ||
10 | Albiflorin | 66.67 | 1.30 | 102.73 | 5.95 | 98.64 |
33.33 | 0.99 | 99.52 | 6.86 | 95.92 | ||
16.67 | 1.08 | 97.58 | 4.33 | 94.69 | ||
11 | Talatisamine | 4.17 | 1.53 | 108.12 | 1.32 | 106.56 |
2.08 | 2.09 | 104.16 | 1.75 | 102.17 | ||
1.04 | 1.22 | 101.78 | 1.57 | 100.82 | ||
12 | Paeoniflorin | 1066.67 | 1.81 | 100.72 | 2.94 | 101.35 |
533.33 | 1.03 | 98.69 | 4.30 | 102.03 | ||
266.67 | 0.95 | 95.43 | 2.83 | 98.54 | ||
13 | Phlorizin | 2.08 | 3.79 | 99.81 | 1.99 | 99.93 |
1.04 | 1.64 | 95.61 | 2.17 | 98.07 | ||
0.52 | 1.94 | 94.21 | 3.21 | 96.51 | ||
14 | Benzoylpaeoniflorin | 33.33 | 2.47 | 100.43 | 2.39 | 99.72 |
16.67 | 1.84 | 97.41 | 1.90 | 98.23 | ||
8.33 | 2.42 | 94.20 | 3.43 | 96.19 | ||
15 | Naringenin | 2.08 | 2.29 | 105.08 | 4.73 | 102.26 |
1.04 | 2.10 | 102.13 | 4.62 | 98.89 | ||
0.52 | 2.48 | 101.28 | 2.59 | 98.63 | ||
16 | 6-Gingerol | 266.67 | 0.65 | 99.71 | 4.30 | 97.35 |
133.33 | 0.33 | 95.21 | 5.28 | 92.24 | ||
66.67 | 1.15 | 91.79 | 3.43 | 90.22 | ||
17 | Atractylenolide III | 8.33 | 1.11 | 101.56 | 3.91 | 98.88 |
4.17 | 0.92 | 98.07 | 3.85 | 94.73 | ||
2.08 | 1.49 | 97.14 | 3.50 | 93.75 | ||
18 | 8-Gingerol | 8.33 | 0.85 | 102.44 | 5.66 | 97.99 |
4.17 | 1.21 | 98.76 | 6.29 | 94.79 | ||
2.08 | 0.75 | 96.25 | 5.28 | 92.38 | ||
19 | Atractylenolide II | 8.33 | 1.97 | 100.15 | 4.89 | 97.13 |
4.17 | 1.75 | 98.61 | 3.19 | 96.14 | ||
2.08 | 2.05 | 94.20 | 1.15 | 93.10 | ||
20 | Hederagenin | 4.17 | 2.88 | 104.96 | 4.16 | 100.81 |
2.08 | 1.48 | 101.72 | 3.92 | 98.22 | ||
1.04 | 3.81 | 100.53 | 3.57 | 97.25 | ||
21 | Atractylenolide I | 2.08 | 1.95 | 102.43 | 3.94 | 98.06 |
1.04 | 1.28 | 97.79 | 2.32 | 95.25 | ||
0.52 | 1.84 | 98.14 | 3.47 | 94.36 | ||
22 | 10-Gingerol | 8.33 | 0.52 | 102.58 | 6.08 | 98.64 |
4.17 | 1.55 | 98.58 | 6.46 | 94.72 | ||
2.08 | 1.09 | 96.45 | 4.74 | 92.81 | ||
23 | Pachymic acid | 4.17 | 1.74 | 105.27 | 3.95 | 100.79 |
2.08 | 2.25 | 100.70 | 3.29 | 97.11 | ||
1.04 | 1.44 | 98.49 | 1.99 | 96.28 |
No. | Compound | JMT 1 | JMT 2 | JMT 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (mg/g) | SD | CV (%) | Mean (mg/g) | SD | CV (%) | Mean (mg/g) | SD | CV (%) | ||
1 | Atractyloside A | 0.283 | 0.009 | 3.054 | 0.254 | 0.010 | 4.134 | 0.277 | 0.014 | 5.137 |
2 | Aconine | 0.013 | 0.000 | 1.952 | 0.013 | 0.000 | 2.073 | 0.013 | 0.000 | 3.655 |
3 | Chlorogenic acid | 0.076 | 0.004 | 4.962 | 0.060 | 0.001 | 1.650 | 0.073 | 0.003 | 4.021 |
4 | Catechin | 0.329 | 0.006 | 1.922 | 0.314 | 0.005 | 1.633 | 0.327 | 0.006 | 1.719 |
5 | Napellonine | 0.041 | 0.001 | 1.749 | 0.040 | 0.000 | 0.811 | 0.041 | 0.000 | 0.910 |
6 | Fuziline | 0.049 | 0.001 | 1.909 | 0.048 | 0.001 | 2.668 | 0.048 | 0.001 | 1.229 |
7 | Paeonolide | 0.065 | 0.002 | 3.814 | 0.057 | 0.003 | 4.654 | 0.065 | 0.002 | 2.862 |
8 | Epicatechin | 0.123 | 0.003 | 2.607 | 0.116 | 0.003 | 2.968 | 0.121 | 0.003 | 2.204 |
9 | Bullatine B | 0.072 | 0.001 | 1.713 | 0.070 | 0.001 | 2.089 | 0.070 | 0.001 | 1.708 |
10 | Albiflorin | 2.323 | 0.043 | 1.835 | 2.198 | 0.041 | 1.887 | 2.276 | 0.051 | 2.233 |
11 | Talatisamine | 0.028 | 0.000 | 0.938 | 0.027 | 0.001 | 2.019 | 0.027 | 0.000 | 1.482 |
12 | Paeoniflorin | 27.876 | 0.413 | 1.483 | 25.694 | 0.465 | 1.811 | 27.143 | 0.464 | 1.711 |
13 | Phlorizin | 0.007 | 0.000 | 6.391 | 0.007 | 0.000 | 5.582 | 0.007 | 0.000 | 3.499 |
14 | Benzoylpaeoniflorin | 0.452 | 0.004 | 0.871 | 0.426 | 0.009 | 2.090 | 0.436 | 0.007 | 1.662 |
15 | Naringenin | 0.004 | 0.000 | 2.783 | 0.004 | 0.000 | 6.109 | 0.004 | 0.000 | 3.783 |
16 | 6-Gingerol | 4.919 | 0.056 | 1.139 | 4.877 | 0.082 | 1.674 | 4.724 | 0.067 | 1.419 |
17 | Atractylenolide III | 0.219 | 0.007 | 3.052 | 0.213 | 0.005 | 2.549 | 0.205 | 0.003 | 1.472 |
18 | 8-Gingerol | 0.083 | 0.002 | 2.312 | 0.082 | 0.002 | 2.451 | 0.077 | 0.002 | 2.958 |
19 | Atractylenolide II | 0.306 | 0.008 | 2.621 | 0.296 | 0.009 | 3.099 | 0.280 | 0.007 | 2.398 |
20 | Hederagenin | 0.008 | 0.001 | 6.901 | 0.006 | 0.000 | 5.404 | 0.006 | 0.000 | 5.918 |
21 | Atractylenolide I | 0.008 | 0.000 | 2.244 | 0.008 | 0.000 | 1.064 | 0.008 | 0.000 | 5.637 |
22 | 10-Gingerol | 0.029 | 0.001 | 3.462 | 0.028 | 0.001 | 2.735 | 0.027 | 0.000 | 1.604 |
23 | Pachymic acid | 0.008 | 0.000 | 1.677 | 0.008 | 0.000 | 1.924 | 0.008 | 0.000 | 2.193 |
Scientific Name | Part Used | Ratio (%) |
---|---|---|
Poria cocos Wolf | sclerotium | 24 |
Paeonia lactiflora Pallas | radix | 24 |
Zingiber officinale Roscoe | rhizome | 24 |
Atractylodes japonica Koidzumi | radix | 16 |
Aconitum carmichaeli Debeaux | lateral radix | 12 |
No. | Compound | Rt (min) | Molecular Weight | Ion Mode | Precursor Ion (m/z) | Product Ion (m/z) | Collision Energy (V) |
---|---|---|---|---|---|---|---|
1 | Atractyloside A | 3.64 | 448.5 | Negative | 493.2 | 447.2 | 14 |
2 | Aconine | 3.92 | 499.6 | Positive | 500.3 | 450.3 | 40 |
3 | Chlorogenic acid | 3.94 | 354.3 | Positive | 355.0 | 163.0 | 10 |
4 | Catechin | 3.99 | 290.3 | Positive | 291.0 | 139.0 | 14 |
5 | Napellonine | 4.02 | 357.5 | Positive | 358.2 | 340.2 | 30 |
6 | Fuziline | 4.31 | 453.6 | Positive | 454.3 | 436.3 | 34 |
7 | Paeonolide | 4.38 | 460.4 | Negative | 505.2 | 165.0 | 26 |
8 | Epicatechin | 4.42 | 290.3 | Positive | 291.0 | 139.0 | 14 |
9 | Bullatine B | 4.52 | 437.6 | Positive | 438.3 | 420.3 | 30 |
10 | Albiflorin | 4.78 | 480.5 | Positive | 481.2 | 105.0 | 22 |
11 | Talatisamine | 4.96 | 421.6 | Positive | 422.3 | 390.2 | 30 |
12 | Paeoniflorin | 5.07 | 480.5 | Negative | 525.2 | 449.1 | 10 |
13 | Phlorizin | 7.08 | 436.4 | Negative | 435.1 | 273.1 | 10 |
14 | Benzoylpaeoniflorin | 9.56 | 584.6 | Negative | 629.1 | 553.2 | 10 |
15 | Naringenin | 9.61 | 272.3 | Positive | 273.0 | 153.0 | 26 |
16 | 6-Gingerol | 13.27 | 294.4 | Positive | 277.1 | 177.1 | 10 |
17 | Atractylenolide III | 14.25 | 248.3 | Positive | 249.2 | 231.1 | 10 |
18 | 8-Gingerol | 16.17 | 322.4 | Positive | 305.2 | 177.1 | 10 |
19 | Atractylenolide II | 16.34 | 232.3 | Positive | 233.1 | 187.1 | 14 |
20 | Hederagenin | 17.08 | 472.7 | Positive | 455.3 | 189.1 | 30 |
21 | Atractylenolide I | 17.45 | 230.3 | Positive | 231.0 | 185.1 | 18 |
22 | 10-Gingerol | 17.93 | 350.5 | Positive | 333.2 | 177.0 | 10 |
23 | Pachymic acid | 19.49 | 528.8 | Positive | 511.3 | 451.3 | 18 |
IS1 | Warfarin | 13.70 | 307.1 | Positive | 309.0 | 163.0 | 14 |
IS2 | Warfarin | 13.71 | 307.1 | Negative | 307.0 | 250.0 | 22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, S.; Lee, A.; Hwang, Y.-H. Qualitative Profiling and Quantitative Analysis of Major Constituents in Jinmu-tang by UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS. Molecules 2022, 27, 7887. https://doi.org/10.3390/molecules27227887
Jang S, Lee A, Hwang Y-H. Qualitative Profiling and Quantitative Analysis of Major Constituents in Jinmu-tang by UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS. Molecules. 2022; 27(22):7887. https://doi.org/10.3390/molecules27227887
Chicago/Turabian StyleJang, Seol, Ami Lee, and Youn-Hwan Hwang. 2022. "Qualitative Profiling and Quantitative Analysis of Major Constituents in Jinmu-tang by UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS" Molecules 27, no. 22: 7887. https://doi.org/10.3390/molecules27227887
APA StyleJang, S., Lee, A., & Hwang, Y. -H. (2022). Qualitative Profiling and Quantitative Analysis of Major Constituents in Jinmu-tang by UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS. Molecules, 27(22), 7887. https://doi.org/10.3390/molecules27227887