Secondary Structure Characterization of Glucagon Products by Circular Dichroism and Nuclear Magnetic Resonance Spectroscopy
Abstract
:1. Introduction
2. Results
2.1. Secondary Structure Evaluation by CD Spectroscopy
2.2. Structure Characterization of Glucagon by NMR
3. Discussion and Conclusions
4. Materials and Methods
4.1. Circular Dichroism Study
4.2. Nuclear Magnetic Resonance (NMR) Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hall-Boyer, K.; Zaloga, G.P.; Chernow, B. Glucagon: Hormone or therapeutic agent? Crit. Care Med. 1984, 12, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Ghodke, S.; Nielsen, S.B.; Christiansen, G.; Hjuler, H.A.; Flink, J.; Otzen, D. Mapping out the multistage fibrillation of glucagon. FEBS J. 2012, 279, 752–765. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, B.S.; Ghomi, H.T.; Lill, M.A.; Topp, E.M. Structural transitions and interactions in the early stages of human glucagon amyloid fibrillation. Biophys J. 2015, 108, 937–948. [Google Scholar] [CrossRef]
- Wilson, L.M.; Castle, J.R. Stable Liquid Glucagon: Beyond Emergency Hypoglycemia Rescue. J. Diabetes Sci. Technol. 2018, 12, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Pang, E.; Chong, W.; Luke, M.C. Scientific and Regulatory Considerations for the Approval of the First Generic Glucagon. J. Endocr. Soc. 2021, 5 (Suppl. 1), A324–A325. [Google Scholar] [CrossRef]
- Glucagon (rDNA Origin). Prescribing Information for Glucagon for Injection (rDNA Origin). Indianapolis, IN: Eli Lilly and Company. 2021. Available online: http://pi.lilly.com/us/rglucagon-pi.pdf (accessed on 4 November 2022).
- Mäde, V.; Els-Heindl, S.; Beck-Sickinger, A.G. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J. Org. Chem. 2014, 10, 1197–1212. [Google Scholar] [CrossRef]
- BACHEM. Bachem Peptide Guide—Pioneering Partner for Peptides. Bachem Holding AG: Bubendorf, Switzerland, 2009. [Google Scholar]
- Srere, P.A.; Brooks, G.C. The circular dichroism of glucagon solutions. Arch. Biochem. Biophys. 1969, 129, 708–710. [Google Scholar] [CrossRef]
- Tran, C.D.; Beddard, G.S.; Osborne, A.D. Secondary structure and dynamics of glucagon in solution. Biochim. Biophys. Acta. 1982, 709, 256–264. [Google Scholar] [CrossRef]
- Boesch, C.; Bundi, A.; Oppliger, M.; Wüthrich, K. 1H nuclear-magnetic-resonance studies of the molecular conformation of monomeric glucagon in aqueous solution. Eur. J. Biochem. 1978, 91, 209–214. [Google Scholar] [CrossRef]
- Hall, V.; Sklepari, M.; Rodger, A. Protein secondary structure prediction from circular dichroism spectra using a self-organizing map with concentration correction. Chirality 2014, 26, 471–482. [Google Scholar] [CrossRef]
- Dodero, V.I.; Quirolo, Z.B.; Sequeira, M.A. Biomolecular studies by circular dichroism. Front. Biosci. 2011, 16, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Whitmore, L.; Wallace, B.A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 2008, 89, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890. [Google Scholar] [CrossRef] [PubMed]
- Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y.H.; Goto, Y.; Réfrégiers, M.; Kardos, J. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. USA 2015, 112, E3095–E3103. [Google Scholar] [CrossRef]
- Castiglia, F.; Zevolini, F.; Riolo, G.; Brunetti, J.; De Lazzari, A.; Moretto, A.; Manetto, G.; Fragai, M.; Algotsson, J.; Evenas, J.; et al. NMR Study of the Secondary Structure and Biopharmaceutical Formulation of an Active Branched Antimicrobial Peptide. Molecules 2019, 24, 4290. [Google Scholar] [CrossRef]
- Wüthrich, K. The way to NMR structures of proteins. Nat. Struct. Biol. 2001, 8, 923–925. [Google Scholar] [CrossRef]
- Otara, C.B.; Jones, C.E.; Younan, N.D.; Viles, J.H.; Elphick, M.R. Structural analysis of the starfish SALMF amide neuropeptides S1 and S2: The N-terminal region of S2 facilitates self-association. Biochem. Biophs Acta 2014, 1844, 358–365. [Google Scholar]
- Kline, A.D.; Justice, R.M., Jr. Complete sequence-specific 1H NMR assignments for human insulin. Biochemistry 1990, 29, 2906–2913. [Google Scholar] [CrossRef]
- Wüthrich, K. NMR of Protein and Nucleic Acids; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Georgiev, D.D.; Glazebrook, J.F. Quantum transport and utilization of free energy in protein α-helices. Adv. Quantum Chem. 2020, 82, 253–300. [Google Scholar] [CrossRef]
- Wüthrich, K.; Wider, G.; Wagner, G.; Braun, W. Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proteins nuclear magnetic resonance. J. Mol. Biol. 1982, 155, 311–319. [Google Scholar] [CrossRef]
- Wüthrich, K.; Billeter, M.; Braun, W. Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton–proton distances. In NMR in Structural Biology: A Collection of Papers by Kurt Wüthrich; World Scientific: Singapore, 1995; pp. 218–243. [Google Scholar]
- Markoska, T.; Vasiljevic, T.; Huppertz, T. Unravelling Conformational Aspects of Milk Protein Structure-Contributions from Nuclear Magnetic Resonance Studies. Foods 2020, 9, 1128. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.; Choi, B.; Kim, H. The conformation of glucagon in dilute aqueous solution as studied by 1H NMR. Biochem. Int. 1992, 28, 519–524. [Google Scholar] [PubMed]
- Rodbell, M.; Birnbaumer, L.; Pohl, S.; Sundby, F. The reaction of glucagon with its receptor: Evidence for discrete regions of activity and binding in the glucagon molecule. Proc. Nat. Acad. Sci. USA 1971, 68, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Braun, W.; Wider, G.; Lee, K.; Wuthrich, K. Confirmation of Glucagon in a Lipid-Water Interphase by 1H Nuclear Magnetic Resonance. J. Mol. Biol. 1983, 169, 921–948. [Google Scholar] [CrossRef]
- Svane, A.; Jahn, K.; Deva, T.; Malmednal, A.; Otzen, D.; Dittmer, J.; Nielsen, N. Early stages of Amyloid Fibril Formation Studied by Liquid-State NMR: The Peptide Hormone Glucagon. Biophyisical J. 2008, 95, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Ying, J.; Ahn, J.; Jacobsen, N.; Brown, M.; Hruby, V. NMR Solution Structure of the Glucagon Antagonist [desHis1, desPhe6, Glu9] Glucagon Amide in the Presence of Perdeuterated Dodecylphophochoine Micelles. Biochemistry 2003, 42, 2825–2835. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Keller, D.; O’Donoghue, S.; Led, J. NMR studies of the aggregation of glucagon-like peptide-1: Formation of a symmetric helical dimer. FEBS Lett. 2002, 515, 165–170. [Google Scholar] [CrossRef]
Products | Time for Shelf Life | Lot Number | Secondary Structure Tested by CD | |||
---|---|---|---|---|---|---|
α Helix % | β Strand % | Turn % | Unordered % | |||
AMP-glucagon | At release | 102017 | 14.4 | 17.5 | 14.6 | 53.6 |
102017A | 13.9 | 17.4 | 14.6 | 54.1 | ||
102017B | 13.8 | 17.9 | 14.3 | 54.1 | ||
ELI-glucagon | Recently manufactured | C304844A | 14.3 | 17.4 | 14.6 | 53.7 |
C304844C | 14.1 | 17.3 | 14.6 | 53.9 | ||
C283822C | 14.4 | 17.3 | 14.6 | 53.8 | ||
AMP-glucagon | Expired > 3 years | 21914 | 14.3 | 18.2 | 14.4 | 53.0 |
021914A | 13.9 | 18.5 | 14.5 | 53.2 | ||
021914B | 15.8 | 16.9 | 14.1 | 53.1 | ||
ELI-glucagon | End of shelf life | C494099D | 16.7 | 15.4 | 14 | 53.9 |
C505143A | 17.1 | 16.8 | 13.6 | 52.6 | ||
C502399D | 14.1 | 16.7 | 14.5 | 54.8 |
Equivalence Evaluation Type | Establishment of EEC & Equivalence Evaluation | Secondary Structure, Tested by CD | |||||
---|---|---|---|---|---|---|---|
α Helix (%) | β Strand (%) | Turn(%) | Unordered (%) | ||||
AMP-glucagon vs. ELI-glucagon at release | Extreme of ELI-glucagon, fresh lots (n = 3) | RMin | 14.1 | 17.3 | 14.6 | 53.7 | |
RMax | 14.4 | 17.4 | 14.6 | 53.9 | |||
EEC at release * | Lower | 12.7 | 15.6 | 13.1 | 48.3 | ||
Upper | 15.8 | 19.1 | 16.1 | 59.3 | |||
AMP-glucagon meets EEC? | AMP-glucagon lot No. | 102017 | √ | √ | √ | √ | |
102017A | √ | √ | √ | √ | |||
102017B | √ | √ | √ | √ | |||
AMP-glucagon vs. ELI-glucagon at expiration | Extreme of ELI-glucagon, Expired lots (n = 3) | RMin | 14.1 | 15.4 | 13.6 | 52.6 | |
RMax | 17.1 | 16.8 | 14.5 | 54.8 | |||
EEC at expiration * | Lower | 12.7 | 13.9 | 12.2 | 47.3 | ||
Upper | 18.8 | 18.5 | 16.0 | 60.3 | |||
AMP-glucagon meets EEC? | AMP-glucagon lot No. | 21914 | √ | √ | √ | √ | |
021914A | √ | √ | √ | √ | |||
021914B | √ | √ | √ | √ |
Glucagon Amino Acid Sequence | Val23-Gln24-Trp25-Leu26 | Phe22-Val23-Gln24-Trp25 | ||||||
---|---|---|---|---|---|---|---|---|
Amino acid residue | Val23 | Trp25 | Leu26 | Phe22 | Gln24 | Trp25 | ||
αH | NH | NH | αH | NH | NH | |||
i | i+2 | i+3 | i | i+2 | i+3 | |||
NOE cross-peak chemical shift (ppm) | N-H | 7.89 | 8.00 | 7.96 | 8.08 | 8.12 | 8.00 | |
α-H | 3.85 | 3.85 | 3.85 | 4.45 | 4.45 | 4.45 | ||
NOESY cross-peak intensity (abs, 105) | AMP-glucagon (at release) | 102017 | - | 2.1 | 1.2 | - | 0.3 | 0.2 |
102017A | - | 2.0 | 1.2 | - | 0.3 | 0.2 | ||
102017B | - | 1.9 | 1.2 | - | 0.3 | 0.2 | ||
ELI-glucagon (recently manufactured) | C734350C | - | 1.5 | 0.9 | - | 0.2 | Visible | |
C699511C | - | 1.4 | 0.8 | - | Visible | 0.2 | ||
C753564A | - | 1.7 | 0.9 | - | 0.2 | Visible | ||
AMP-glucagon (expired) | 21914 | - | 1.6 | 0.9 | - | 0.2 | 0.2 | |
021914A | - | 2.0 | 1.3 | - | 0.3 | 0.2 | ||
021914B | - | 1.7 | 1.1 | - | 0.3 | 0.2 | ||
ELI-glucagon (expired) | C505143A | - | 1.6 | 0.9 | - | 0.2 | 0.2 | |
C502399D | - | 1.8 | 1.0 | - | 0.2 | Visible | ||
C404099D | - | 1.7 | 0.9 | - | 0.2 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Z.; Cheng, Y.-C.; Wei, J.J.; Luo, M.Z.; Zhang, J.Y. Secondary Structure Characterization of Glucagon Products by Circular Dichroism and Nuclear Magnetic Resonance Spectroscopy. Molecules 2022, 27, 7805. https://doi.org/10.3390/molecules27227805
Bao Z, Cheng Y-C, Wei JJ, Luo MZ, Zhang JY. Secondary Structure Characterization of Glucagon Products by Circular Dichroism and Nuclear Magnetic Resonance Spectroscopy. Molecules. 2022; 27(22):7805. https://doi.org/10.3390/molecules27227805
Chicago/Turabian StyleBao, Zhongli, Ya-Chi Cheng, Justin Jun Wei, Mary Ziping Luo, and Jack Yongfeng Zhang. 2022. "Secondary Structure Characterization of Glucagon Products by Circular Dichroism and Nuclear Magnetic Resonance Spectroscopy" Molecules 27, no. 22: 7805. https://doi.org/10.3390/molecules27227805
APA StyleBao, Z., Cheng, Y. -C., Wei, J. J., Luo, M. Z., & Zhang, J. Y. (2022). Secondary Structure Characterization of Glucagon Products by Circular Dichroism and Nuclear Magnetic Resonance Spectroscopy. Molecules, 27(22), 7805. https://doi.org/10.3390/molecules27227805