Valorization of CO2 through the Synthesis of Cyclic Carbonates Catalyzed by ZIFs
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pescarmona, P.P. Cyclic carbonates synthesised from CO2: Applications, challenges and recent research trends. Curr. Opin. Green Sustain. Chem. 2021, 29, 100457. [Google Scholar] [CrossRef]
- Kamphuis, A.J.; Picchioni, F.; Pescarmona, P.P. CO2-fixation into cyclic and polymeric carbonates: Principles and applications. Green Chem. 2019, 21, 406–448. [Google Scholar] [CrossRef]
- Maltby, K.A.; Hutchby, M.; Plucinski, P.; Davidson, M.G.; Hintermair, U. Selective Catalytic Synthesis of 1,2- and 8,9-Cyclic Limonene Carbonates as Versatile Building Blocks for Novel Hydroxyurethanes. Chem.-A Eur. J. 2020, 26, 7405–7415. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, Y.; Liu, H.; He, D. Transformation of CO2 and glycerol to glycerol carbonate over CeO2–ZrO2 solid solution—Effect of Zr doping. Biomass Bioenergy 2018, 118, 74–83. [Google Scholar] [CrossRef]
- Razali, N.; McGregor, J. Improving product yield in the direct carboxylation of glycerol with CO2 through the tailored selection of dehydrating agents. Catalysts. 2021, 11, 138. [Google Scholar] [CrossRef]
- Rozulan, N.; Halim, S.A.; Razali, N.; Lam, S.S. A review on direct carboxylation of glycerol waste to glycerol carbonate and its applications. Biomass Convers. Biorefinery 2022, 12, 4665–4682. [Google Scholar] [CrossRef]
- Duan, C.; Yu, Y.; Hu, H. Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy Environ. 2022, 7, 3–15. [Google Scholar] [CrossRef]
- Xiang, W.; Sun, Z.; Wu, Y.; He, L.; Liu, C. Enhanced cycloaddition of CO2 to epichlorohydrin over zeolitic imidazolate frameworks with mixed linkers under solventless and co-catalyst-free condition. Catal. Today 2020, 339, 337–343. [Google Scholar] [CrossRef]
- Zhou, K.; Mousavi, B.; Luo, Z.; Phatanasri, S.; Chaemchuen, S.; Verpoort, F. Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. A. 2017, 5, 952–957. [Google Scholar] [CrossRef]
- Kuruppathparambil, R.R.; Jose, T.; Babu, R.; Hwang, G.Y.; Kathalikkattil, A.C.; Kim, D.W.; Park, D.W. A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates. Appl. Catal. B Environ. 2016, 182, 562–569. [Google Scholar] [CrossRef]
- Caló, V.; Nacci, A.; Monopoli, A.; Fanizzi, A. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Org. Lett. 2002, 4, 2561–2563. [Google Scholar] [CrossRef]
- Mazo, P.; Rios, L. Carbonation of epoxidized soybean oil improved by the addition of water. J. Am. Oil Chem. Soc. 2013, 90, 725–730. [Google Scholar] [CrossRef]
- Anderson, C.E.; Vagin, S.I.; Xia, W.; Jin, H.; Rieger, B. Cobaltoporphyrin-catalyzed CO2/epoxide copolymerization: Selectivity control by molecular design. Macromolecules 2012, 45, 6840–6849. [Google Scholar] [CrossRef]
- Sugimoto, H.; Kuroda, K. The cobalt porphyrin–Lewis base system: A highly selective catalyst for alternating copolymerization of CO2 and epoxide under mild conditions. Macromolecules 2008, 41, 312–317. [Google Scholar] [CrossRef]
- Udayakumar, S.; Lee, M.K.; Shim, H.L.; Park, S.W.; Park, D.W. Imidazolium derivatives functionalized MCM-41 for catalytic conversion of carbon dioxide to cyclic carbonate. Catal. Commun. 2009, 10, 659–664. [Google Scholar] [CrossRef]
- Barbarini, A.; Maggi, R.; Mazzacani, A.; Mori, G.; Sartori, G.; Sartorio, R. Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron Lett. 2003, 44, 2931–2934. [Google Scholar] [CrossRef]
- Aprile, C.; Giacalone, F.; Agrigento, P.; Liotta, L.F.; Martens, J.A.; Pescarmona, P.P.; Gruttadauria, M. Multilayered supported ionic liquids as catalysts for chemical fixation of carbon dioxide: A high-throughput study in supercritical conditions. ChemSusChe 2011, 4, 1830–1837. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Chen, X.; Sun, J.; Wang, J.; Zhang, S. SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides. Catal. Today 2013, 200, 117–124. [Google Scholar] [CrossRef]
- Taherimehr, M.; Van de Voorde, B.; Wee, L.H.; Martens, J.A.; De Vos, D.E.; Pescarmona, P.P. Strategies for Enhancing the Catalytic Performance of Metal–Organic Frameworks in the Fixation of CO2 into Cyclic Carbonates. ChemSusChem 2017, 10, 1283–1291. [Google Scholar] [CrossRef]
- Zalomaeva, O.V.; Maksimchuk, N.V.; Chibiryaev, A.M.; Kovalenko, K.A.; Fedin, V.P.; Balzhinimaev, B.S. Synthesis of cyclic carbonates from epoxides or olefins and CO2 catalyzed by metal-organic frameworks and quaternary ammonium salts. J. Energy Chem. 2013, 22, 130–135. [Google Scholar] [CrossRef]
- Ramos-Fernández, E.V.; Serrano-Ruiz, J.C.; Sepúlveda-Escribano, A.; Narciso, J.; Ferrando-Soria, J.; Pardo, E. CHAPTER 9 Metal Organic Frameworks: From Material Chemistry to Catalytic Applications. In Heterogeneous Catalysis for Energy Applications; Reina, T.R., Odriozola, J.A., Eds.; The Royal Society of Chemistry: London, UK, 2020; pp. 235–303. ISBN 978-1-78801-718-3. [Google Scholar]
- Delgado-Marín, J.J.; Izan, D.P.; Molina-Sabio, M.; Ramos-Fernandez, E.V.; Narciso, J. New Generation of MOF-Monoliths Based on Metal Foams. Molecules 2022, 27, 1968. [Google Scholar] [CrossRef] [PubMed]
- Ronda-Lloret, M.; Pellicer-Carreño, I.; Grau-Atienza, A.; Boada, R.; Diaz-Moreno, S.; Narciso-Romero, J.; Serrano-Ruiz, J.C.; Sepúlveda-Escribano, A.; Ramos-Fernandez, E.V. Mixed-Valence Ce/Zr Metal-Organic Frameworks: Controlling the Oxidation State of Cerium in One-Pot Synthesis Approach. Adv. Funct. Mater. 2021, 31, 2102582. [Google Scholar] [CrossRef]
- Ramos-Fernandez, E.V.; Redondo-Murcia, A.; Grau-Atienza, A.; Sepúlveda-Escribano, A.; Narciso, J. Clean production of Zeolitic Imidazolate Framework 8 using Zamak residues as metal precursor and substrate. J. Clean. Prod. 2020, 260, 121081. [Google Scholar] [CrossRef]
- Beyzavi, M.H.; Stephenson, C.J.; Liu, Y.; Karagiaridi, O.; Hupp, J.T.; Farha, O.K. Metal-organic framework-based catalysts: Chemical fixation of CO2 with epoxides leading to cyclic organic carbonates. Front. Energy Res. 2015, 2, 63. [Google Scholar] [CrossRef]
- Ouellette, W.; Hudson, B.S.; Zubieta, J. Hydrothermal and Structural Chemistry of the Zinc(II)- and Cadmium(II)-1,2,4-Triazolate Systems. Inorg. Chem. 2007, 46, 4887–4904. [Google Scholar] [CrossRef] [PubMed]
- Oullette, W.; Prosvirin, A.V.; Valeich, J.; Dunbar, K.R.; Zubieta, J. Hydrothermal Synthesis, Structural Chemistry, and Magnetic Properties of Materials of the MII/Triazolate/Anion Family, Where MII = Mn, Fe, and Ni. Inorg. Chem. 2007, 46, 9067–9082. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, G.N.; Dvurechenskaya, E.G.; Ganina, O.G.; Alonso, F.; Beletskaya, I.P. Solvent-free Synthesis of Cyclic Carbonates from CO2 and Epoxides Catalyzed by Reusable Alumina-supported Zinc Dichloride. Appl. Catal. B: Environ. 2019, 254, 380–390. [Google Scholar] [CrossRef]
- Kuruppathparambil, R.R.; Babu, R.; Jeong, H.M.; Hwang, G.Y.; Jeong, G.S.; Kim, M.I.; Kim, D.W.; Park, D.W. A Solid SolutionZeolitic Imidazolate Framework as a Room Temperature Efficient Catalyst for the Chemical Fixation of CO2. Green Chem. 2016, 18, 6349–6356. [Google Scholar] [CrossRef]
- Mousavi, B.; Chaemchuen, S.; Moosavi, B.; Luo, Z.; Gholampour, N.; Verpoort, F. Zeolitic Imidazole Framework-67 as an Efficient Heterogeneous Catalyst for the Conversion of CO2 to Cyclic Carbonates. New J. Chem. 2016, 40, 5170–5176. [Google Scholar] [CrossRef]
- Chizallet, C.; Lazare, S.; Bazer-Bachi, D.; Bonnier, F.; Lecocq, V.; Soyer, E.; Quoineaud, A.A.; Bats, N. Catalysis of Transesterification by a Nonfunctionalized Metal−Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR and ab Initio Calculations. J. Am. Chem. Soc. 2010, 132, 12365–12377. [Google Scholar] [CrossRef]
- Blackman, A. Reactions of Coordinated ligands. Adv. Heterocycl. Chem. 1993, 58, 123–170. [Google Scholar]
- Cox, J.R.; Woodcock, S.; Hillier, I.H.; Vincent, M.A. Tautomerism of 1,2,3- and 1,2,4-Triazole in the Gas Phase and In Aqueous Solution: A Combined ab Initio Quantum Mechanics and Free Energy Perturbation Study. J. Phys. Chem. 1990, 94, 5499–5501. [Google Scholar] [CrossRef]
- Lunazi, L.; Parisi, F.; Macciantelli, D. Conformational studies by dynamic nuclear magnetic resonance spectroscopy. Part 27. Kinetics and mechanism of annular tautomerism in isomeric triazoles. J. Chem. Soc. Perkin Trans. 2 1984, 6, 1025–1028. [Google Scholar] [CrossRef]
- Garrat, P.J. Comprehensive Heterocyclic Chemistry II; Katrizky, A.R., Rees, C.W., Scriven, E.F.V., Storr, R.C., Eds.; Pergamon: Exeter, UK, 1996; Volume 4, p. 135. [Google Scholar]
- Narciso, J.; Ramos-Fernandez, E.V.; Delgado-Marín, J.J.; Affolter, C.W.; Olsbye, U.; Redekop, E.A. New route for the synthesis of Co-MOF from metal substrates. Microporous Mesoporous Mater. 2021, 324, 111310. [Google Scholar] [CrossRef]
- Villalgordo-Hernández, D.; Grau-Atienza, A.; García-Marín, A.A.; Ramos-Fernández, E.V.; Narciso, J. Manufacture of Carbon Materials with High Nitrogen Content. Materials 2022, 15, 2415. [Google Scholar] [CrossRef]
Sample | BET (m2/g) | Micropore Volume (cm3/g) | Pore Volume (cm3/g) |
---|---|---|---|
ZIF-8 | 1551 | 0.55 | 0.58 |
ZIF-8-m | 942 | 0.35 | 0.37 |
ZIF-67 | 1833 | 0.70 | 0.72 |
ZIF-67-m | 914 | 0.36 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Marín, J.J.; Martín-García, I.; Villalgordo-Hernández, D.; Alonso, F.; Ramos-Fernández, E.V.; Narciso, J. Valorization of CO2 through the Synthesis of Cyclic Carbonates Catalyzed by ZIFs. Molecules 2022, 27, 7791. https://doi.org/10.3390/molecules27227791
Delgado-Marín JJ, Martín-García I, Villalgordo-Hernández D, Alonso F, Ramos-Fernández EV, Narciso J. Valorization of CO2 through the Synthesis of Cyclic Carbonates Catalyzed by ZIFs. Molecules. 2022; 27(22):7791. https://doi.org/10.3390/molecules27227791
Chicago/Turabian StyleDelgado-Marín, José J., Iris Martín-García, David Villalgordo-Hernández, Francisco Alonso, Enrique V. Ramos-Fernández, and Javier Narciso. 2022. "Valorization of CO2 through the Synthesis of Cyclic Carbonates Catalyzed by ZIFs" Molecules 27, no. 22: 7791. https://doi.org/10.3390/molecules27227791
APA StyleDelgado-Marín, J. J., Martín-García, I., Villalgordo-Hernández, D., Alonso, F., Ramos-Fernández, E. V., & Narciso, J. (2022). Valorization of CO2 through the Synthesis of Cyclic Carbonates Catalyzed by ZIFs. Molecules, 27(22), 7791. https://doi.org/10.3390/molecules27227791