Organocatalytic Enantioselective Michael Reaction of Aminomaleimides with Nitroolefins Catalyzed by Takemoto’s Catalyst
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Chemistry
3.2. General Procedure for the Enantioselective Michael Reaction of α-Aminomaleimides and β-Nitrostyrenes
3.2.1. (S)-1-Isobutyl-3-(2-nitro-1-phenylethyl)-4-(phenylamino)-1H-pyrrole-2,5-dione (4a)
3.2.2. (S)-3-(1-(2-Fluorophenyl)-2-nitroethyl)-1-isobutyl-4-(phenylamino)-1H-pyrrole-2,5- dione (4b)
3.2.3. (S)-3-(1-(2-Chlorophenyl)-2-nitroethyl)-1-isobutyl-4-(phenylamino)-1H-pyrrole-2,5- dione (4c)
3.2.4. (S)-3-(1-(2-Bromophenyl)-2-nitroethyl)-1-isobutyl-4-(phenylamino)-1H-pyrrole-2,5-dione(4d)
3.2.5. (S)-3-(1-(3-Bromophenyl)-2-nitroethyl)-1-isobutyl-4-(phenylamino)-1H-pyrrole-2,5- dione (4e)
3.2.6. (S)-3-(1-(3-Fluorophenyl)-2-nitroethyl)-1-isobutyl-4-(phenylamino)-1H-pyrrole-2,5- dione (4f)
3.2.7. (S)-3-(1-(4-Fluorophenyl)-2-nitroethyl)-1-isobutyl-4-(phenylamino)-1H-pyrrole-2,5- dione (4g)
3.2.8. (S)-3-(1-(4-Chlorophenyl)-2-nitroethyl)-1-isobutyl-4-(phenylamino)-1H-pyrrole-2,5- dione (4h)
3.2.9. (S)-3-(1-(4-Bromophenyl)-2-nitroethyl)-1-isobutyl-4-(phenylamino)-1H-pyrrole-2,5- dione (4i)
3.2.10. (S)-1-Isobutyl-3-(2-nitro-1-(p-tolyl)ethyl)-4-(phenylamino)-1H-pyrrole-2,5-dione (4j)
3.2.11. (S)-1-Isobutyl-3-(1-(4-methoxyphenyl)-2-nitroethyl)-4-(phenylamino)-1H-pyrrole-2,5-dione (4k)
3.2.12. (S)-1-Isobutyl-3-(1-(naphthalen-2-yl)-2-nitroethyl)-4-(phenylamino)-1H-pyrrole- 2,5-dione (4l)
3.2.13. (S)-1-Isobutyl-3-(2-nitro-1-(thiophen-2-yl)ethyl)-4-(phenylamino)-1H-pyrrole-2,5- dione (4m)
3.2.14. (S)-3-((4-Chlorophenyl)amino)-1-isobutyl-4-(2-nitro-1-phenylethyl)-1H-pyrrole- 2,5-dione (4n)
3.2.15. (S)-3-((4-Chlorophenyl)amino)-1-isobutyl-4-(1-(2-chlorophenyl)-2-nitroethyl)-1H- pyrrole-2,5-dione (4o)
3.2.16. (S)-3-((3-Chlorophenyl)amino)-1-isobutyl-4-(2-nitro-1-phenylethyl)-1H-pyrrole- 2,5-dione (4p)
3.2.17. (S)-1-Benzyl-3-(2-nitro-1-phenylethyl)-4-(phenylamino)-1H-pyrrole-2,5-dione (4q)
3.2.18. (S)-1-Benzyl-3-(1-(2-bromophenyl)-2-nitroethyl)-4-(phenylamino)-1H-pyrrole-2,5- dione (4r)
3.2.19. (S)-1-Benzyl-3-(1-(3-bromophenyl)-2-nitroethyl)-4-(phenylamino)-1H-pyrrole-2,5- dione (4s)
3.2.20. (S)-1-Benzyl-3-(1-(4-bromophenyl)-2-nitroethyl)-4-(phenylamino)-1H-pyrrole-2,5- dione (4t)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, K.J.; Choi, M.J.; Shin, J.-S.; Kim, M.J.; Choi, H.-E.; Kang, S.M.; Jin, J.H.; Lee, K.-T.; Lee, J.Y. Synthesis, biological evaluation, and docking analysis of a novel family of 1-methyl-1H-pyrrole-2,5-diones as highly potent and selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 1958–1962. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, L.; Wang, S.; Li, Y.; Zhang, F.; Song, B.; Zhao, W. Syntheses of new chlorin derivatives containing maleimide functional group and their photodynamic activity evaluation. Bioorg. Med. Chem. Lett. 2015, 25, 4078–4081. [Google Scholar] [CrossRef]
- Eloh, K.; Demurtas, M.; Mura, M.G.; Deplano, A.; Onnis, V.; Sasanelli, N.; Maxia, A.; Caboni, P. Potent Nematicidal Activity of Maleimide Derivatives on Meloidogyne incognita. J. Agric. Food Chem. 2016, 64, 4876–4881. [Google Scholar] [CrossRef]
- Eis, M.J.; Evenou, J.P.; Schuler, W.; Zenke, G.; Vangrevelinghe, E.; Wagner, J.; Matt, P. Indolyl-naphthyl-maleimides as potent and selective inhibitors of protein kinase C-α/β. Bioorg. Med. Chem. Lett. 2017, 27, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-Y.; Alam, J.; Jeyaraj, D.-A.; Wang, W.; Lin, G.-R.; Ang, S.-H.; Tan, E.-S.-W.; Lee, M.-A.; Ke, Z.; Madan, B.; et al. Scaffold Hopping and Optimization of Maleimide Based Porcupine Inhibitors. J. Med. Chem. 2017, 60, 6678–6692. [Google Scholar] [CrossRef]
- Serafim, R.A.M.; Sorrell, F.J.; Berger, B.-T.; Collins, R.J.; Vasconcelos, S.N.S.; Massirer, K.B.; Knapp, S.; Bennett, J.; Fedorov, O.; Patel, H.; et al. Discovery of a Potent Dual SLK/STK10 Inhibitor Based on a Maleimide Scaffold. J. Med. Chem. 2021, 64, 13259–13278. [Google Scholar] [CrossRef] [PubMed]
- Kjærsgaard, N.L.; Hansen, R.A.; Gothelf, K.V. Preparation of Maleimide-Modified Oligonucleotides from the Corresponding Amines Using N-Methoxycarbonyl maleimide. Bioconjug. Chem. 2022, 33, 1254–1260. [Google Scholar] [CrossRef] [PubMed]
- Giglio, J.; Fernandez, S.; Martinez, A.; Zeni, M.; Reyes, L.; Rey, A.; Cerecetto, H. Glycogen Synthase Kinase-3 Maleimide Inhibitors As Potential PET-Tracers for Imaging Alzheimer’s Disease: 11C-Synthesis and In Vivo Proof of Concept. J. Med. Chem. 2022, 65, 1342–1351. [Google Scholar] [CrossRef]
- Mandal, R.; Emayavaramban, B.; Sundararaju, B. Cp*Co(III)-Catalyzed C–H Alkylation with Maleimides Using Weakly Coordinating Carbonyl Directing Groups. Org. Lett. 2018, 20, 2835–2838. [Google Scholar] [CrossRef]
- Li, F.; Zhou, Y.; Yang, H.; Liu, D.; Sun, B.; Zhang, F.-L. Assembly of Diverse Spirocyclic Pyrrolidines via Transient Directing Group Enabled Ortho-C(sp2)–H Alkylation of Benzaldehydes. Org. Lett. 2018, 1, 146–149. [Google Scholar] [CrossRef]
- Yu, J.T.; Chen, R.; Jia, H.; Pan, C. Rhodium-Catalyzed Site-Selective ortho-C–H Activation: Enone Carbonyl Directed Hydroarylation of Maleimides. J. Org. Chem. 2018, 83, 12086–12093. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Wang, Y.; Wu, C.; Yu, J.-T. Rhodium-catalyzed C7-alkylation of indolines with maleimides. Org. Biomol. Chem. 2018, 16, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Uno, B.-E.; Dicken, R.-D.; Redfern, L.-R.; Stern, C.-M.; Krzywicki, G.-G.; Scheidt, K.-A. Calcium(II)—Catalyzed enantioselective conjugate additions of amines. Chem. Sci. 2018, 9, 1634–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafarpour, F.; Shamsianpour, M.; Issazadeh, S.; Dorrani, M.; Hazrati, H. Palladium-catalyzed direct arylation of maleimides: A simple route to bisaryl-substituted maleimides. Tetrahedron 2017, 73, 1668–1672. [Google Scholar] [CrossRef]
- Jafarpour, F.; Shamsianpour, M. Palladium-catalyzed cross-dehydrogenative coupling of maleimides with simple arenes: A fast track to highly substituted maleimides. RSC Adv. 2016, 6, 103567–103570. [Google Scholar] [CrossRef]
- Yang, Z.-H.; An, Y.-L.; Chen, Y.; Shao, Z.-Y.; Zhao, S.-Y. Copper(I) Iodide-Catalyzed Sulfenylation of Maleimides and Related 3-Indolylmaleimides with Thiols. Adv. Synth. Catal. 2016, 358, 3869–3875. [Google Scholar] [CrossRef]
- Dana, S.; Mandal, A.; Sahoo, H.; Baidya, M. Ru(II)-Catalyzed C–H Functionalization on Maleimides with Electrophiles: A Demonstration of Umpolung Strategy. Org. Lett. 2017, 19, 1902–1905. [Google Scholar] [CrossRef]
- An, Y.-L.; Zhang, H.-H.; Yang, Z.-H.; Lin, L.; Zhao, S.-Y. Cu/Ag-Cocatalyzed Aerobic Oxidative Amination and CuCl2-Mediated Aerobic Oxidative Chloroamination of Maleimides. Eur. J. Org. Chem. 2016, 2016, 5405–5414. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tan, H.-R.; An, Y.-L.; Zhao, Y.-W.; Lin, H.-P.; Zhao, S.-Y. Three-Component Coupling Reactions of Maleimides, Thiols, and Amines: One-Step Construction of 3,4-Heteroatom-functionalized Maleimides by Copper-Catalyzed C(sp2)–H Thioamination. Adv. Synth. Catal. 2018, 360, 173–179. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tan, H.-R.; Zhu, J.-N.; Zheng, J.; Zhao, S.-Y. Regioselective Silver-Catalyzed Carbon-Phosphorus Difunctionalization of Maleimides: One-Step Construction of Phosphonylated Indolylmaleimides and Pyrrolylmaleimides. Adv. Synth. Catal. 2018, 360, 1523–1529. [Google Scholar] [CrossRef]
- Baker, J.-R.; Tedaldi, L.-M.; Aliev, A.-E. [2 + 2] Photocycloadditions of thiomaleimides. Chem. Commun. 2012, 48, 4725–4727. [Google Scholar] [CrossRef]
- Lin, C.; Zhen, L.; Cheng, Y.; Du, H.-J.; Zhao, H.; Wen, X.; Kong, L.-Y.; Xu, Q.-L.; Sun, H. Visible-Light Induced Isoindoles Formation To Trigger Intermolecular Diels–Alder Reactions in the Presence of Air. Org. Lett. 2015, 17, 2684–2687. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Wu, X.; Jiang, L.; Zhang, Z.; Xie, X. Reduction of Benzolactams to Isoindoles via an Alkoxide-Catalyzed Hydrosilylation. Org. Lett. 2017, 19, 6048–6051. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Lee, R.; Zhu, B.; Coote, M.-L.; Zhao, X.; Jiang, Z. Highly Enantio- and Diastereoselective [4 + 2] Cycloaddition of 5H-oxazol-4-ones with N-Maleimides. J. Org. Chem. 2016, 81, 8061–8069. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Kaur, J.; Chimni, S.S. Asymmetric Organocatalytic Addition Reactions of Maleimides: A Promising Approach Towards the Synthesis of Chiral Succinimide Derivatives. Chem. Asian J. 2013, 8, 328–346. [Google Scholar] [CrossRef] [PubMed]
- Ravasco, J.M.J.M.; Faustino, H.; Trindade, A.; Gois, P.M.P. Bioconjugation with Maleimides: A Useful Tool for Chemical Biology. Chem. Eur. J. 2019, 25, 43–59. [Google Scholar] [CrossRef]
- Gómez-Torres, E.; Alonso, D.A.; Gómez-Bengoa, E.; Nájera, C. Enantioselective synthesis of succinimides by Michael addition of 1,3-dicarbonyl compounds to maleimides catalyzed by a chiral bis(2-aminobenzimidazole) organocatalyst. Eur. J. Org. Chem. 2013, 2013, 1434–1440. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Duan, W.; Li, Z.; Luo, X.; Zhang, M.; Deng, H.; Song, L. One-Pot Synthesis of Trifluoromethylated Pyrazol-4-YlPyrrole-2,5-Dione Derivatives. Synthesis 2019, 51, 3345–3355. [Google Scholar] [CrossRef]
- Khan, M.M.; Shareef, S.; Khan, S.; Saigal; Sahoo, S.C. Organocatalyzed Highly Efficient Synthesis of Densely Functionalized Pyrrole-Fused 1,4-Dihydropyridine Derivatives. Synth. Commun. 2019, 49, 2884–2894. [Google Scholar] [CrossRef]
- Xie, D.-H.; Niu, C.; Du, D.-M. Enantioselective Michael/ Hemiketalization Cascade Reactions between Hydroxymaleimides and 2-Hydroxynitrostyrenes for the Construction of Chiral ChromanFused Pyrrolidinediones. Molecules 2022, 27, 5081. [Google Scholar] [CrossRef]
- Sakai, N.; Kawashima, K.; Kajitani, M.; Mori, S.; Oriyama, T. Combined Computational and Experimental Studies on the Asymmetric Michael Addition of α-Aminomaleimides to β-Nitrostyrenes Using an Organocatalyst Derived from Cinchona Alkaloid. Org. Lett. 2021, 23, 5714–5718. [Google Scholar] [CrossRef]
- Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. J. Am. Chem. Soc. 2003, 125, 12672–12673. [Google Scholar] [CrossRef]
- Hoashi, Y.; Okino, T.; Takemoto, Y. Enantioselective Michael Addition to α, β-unsaturated Imides Catalyzed by a Bifunctional Organocatalyst. Angew. Chem. Int. Ed. Engl. 2005, 44, 4032–4035. [Google Scholar] [CrossRef] [PubMed]
- Zea, A.; Valero, G.; Alba, A.R.; Moyano, A.; Rios, R. Development of Diphenylamine-linked Bis(imidazoline) Ligands and Their Application in Asymmetric Friedel-Crafts Alkylation of Indole Derivatives with Nitroalkenes. Adv. Synth. Catal. 2010, 352, 1102–1106. [Google Scholar] [CrossRef]
- Raimondi, W.; Baslé, O.; Constantieux, T.; Bonne, D.; Rodriguez, J. Activation of 1, 2-Ketoesters with Takemoto’s Catalyst toward Michael Addition to Nitroalkenes. Adv. Synth. Catal. 2012, 354, 563–568. [Google Scholar] [CrossRef]
- Ansari, S.; Raabe, G.; Enders, D. Asymmetric Michael Addition of 1, 3-Bis(phenylthio)propan-2-one to Nitroalkenes Employing Takemoto’s Thiourea Catalyst. Monatsh. Chem. 2013, 144, 641–646. [Google Scholar] [CrossRef]
- Wang, Y.; Mo, M.; Zhu, K.; Zheng, C.; Zhang, H.; Wang, W.; Shao, Z. Asymmetric Synthesis of Syn-propargylamines and Unsaturated β-amino Acids under Brønsted Base Catalysis. Nat. Commun. 2015, 6, 8544–8582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Li, H.-F.; Zhao, J.-Z.; Du, Z.-H.; Da, C.-S. Organocatalytic Enantioselective Cross-aldol Reaction of o-Hydroxyarylketones and Trifluoromethyl Ketones. Org. Lett. 2017, 19, 2634–2637. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.-M.; Zhang, J.-W.; Jin, Y. Urea Derivative Catalyzed Enantioselective Hydroxyalkylation of Hydroxyindoles with Isatins. Molecules 2019, 24, 3944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zhang, T.-Y.; Sun, Y.-H.; Wang, L.-M.; Jin, Y. Organocatalytic enantioselective aza-Friedel–Crafts alkylation of β-naphthols and isatin-derived ketimines via a Takemoto-type catalyst. New J. Chem. 2021, 45, 10481–10487. [Google Scholar] [CrossRef]
Entry | Catalyst | Yield (%) b | %ee c | Configuration d ([α]D25) e |
---|---|---|---|---|
1 | 1a | 78 | 90 | R |
2 | 1b | 76 | 89 | R |
3 | 1c | 80 | 91 | S (−6.70) |
4 | 1d | 73 | 90 | S |
5 | 1e | 74 | 87 | S |
6 | 1f | 69 | 76 | S |
7 | 1g | 72 | 82 | S |
8 | 1h | 70 | 74 | S |
9 | qunine | 80 | 53 | S (−3.82) |
Entry | Solvent | Temperature | Catalyst Amount (% mmol) | Yield (%) b | %ee c |
---|---|---|---|---|---|
1 | CH2Cl2 | rt | 10 | 82 | 90 |
2 | CHCl3 | rt | 10 | 80 | 91 |
3 | THF | rt | 10 | 76 | 88 |
4 | Et2O | rt | 10 | 78 | 91 |
5 | MTBE | rt | 10 | 80 | 90 |
6 | 1,4-dioxane | rt | 10 | 82 | 85 |
7 | PhMe | rt | 10 | 84 | 92 |
8 | xylene | rt | 10 | 76 | 91 |
9 | MeOH | rt | 10 | 70 | 23 |
10 | PhMe | 0 | 10 | 83 | 93 |
11 | PhMe | −10 | 10 | 68 | 94 |
12 | PhMe | −20 | 10 | 55 | 94 |
13 | PhMe | 0 | 5 | 74 | 93 |
14 | PhMe | 0 | 20 | 86 | 93 |
15 d | PhMe | 0 | 10 | 56 | 91 |
16 e | PhMe | 0 | 10 | 85 | 94 |
Entry | R 1, R 2, R 3 | Product | Yield (%) b | %ee c |
---|---|---|---|---|
1 | iBu, H, H | 4a | 85 | 94 (90) d |
2 | iBu, H, 2-F | 4b | 83 | 92 |
3 | iBu, H, 2-Cl | 4c | 86 | 88 |
4 | iBu, H, 2-Br | 4d | 86 | 86 (88) d |
5 | iBu, H, 3-Br | 4e | 81 | 92 (92) d |
6 | iBu, H, 3-F | 4f | 82 | 93 |
7 | iBu, H, 4-F | 4g | 85 | 93 |
8 | iBu, H, 4-Cl | 4h | 84 | 93 |
9 | iBu, H, 4-Br | 4i | 86 | 90 (90) d |
10 | iBu, H, 4-Me | 4j | 78 | 93 (90) d |
11 | iBu, H, 4-OMe | 4k | 76 | 93 (90) d |
12 | iBu, H, 1-Nap | 4l | 78 | 81 (91) d |
13 | iBu, H, 2-thienyl | 4m | 83 | 92 (89) d |
14 | iBu, 4-Cl, H | 4n | 81 | 92 (92) d |
15 | iBu, 4-Cl, 2-Cl | 4o | 80 | 89 |
16 | iBu, 3-Cl, H | 4p | 85 | 93 |
17 | Bn, H, H | 4q | 83 | 90 (80) d |
18 | Bn, H, 2-Br | 4r | 80 | 84 |
19 | Bn, H, 3-Br | 4s | 82 | 90 |
20 | Bn, H, 4-Br | 4t | 84 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, H.; Jin, Y.; Zhao, R.; Wang, L.; Jin, Y. Organocatalytic Enantioselective Michael Reaction of Aminomaleimides with Nitroolefins Catalyzed by Takemoto’s Catalyst. Molecules 2022, 27, 7787. https://doi.org/10.3390/molecules27227787
Mu H, Jin Y, Zhao R, Wang L, Jin Y. Organocatalytic Enantioselective Michael Reaction of Aminomaleimides with Nitroolefins Catalyzed by Takemoto’s Catalyst. Molecules. 2022; 27(22):7787. https://doi.org/10.3390/molecules27227787
Chicago/Turabian StyleMu, Hongwen, Yan Jin, Rongrong Zhao, Liming Wang, and Ying Jin. 2022. "Organocatalytic Enantioselective Michael Reaction of Aminomaleimides with Nitroolefins Catalyzed by Takemoto’s Catalyst" Molecules 27, no. 22: 7787. https://doi.org/10.3390/molecules27227787
APA StyleMu, H., Jin, Y., Zhao, R., Wang, L., & Jin, Y. (2022). Organocatalytic Enantioselective Michael Reaction of Aminomaleimides with Nitroolefins Catalyzed by Takemoto’s Catalyst. Molecules, 27(22), 7787. https://doi.org/10.3390/molecules27227787