Insights into the Inhibitory Mechanism of Viniferifuran on Xanthine Oxidase by Multiple Spectroscopic Techniques and Molecular Docking
Abstract
:1. Introduction
2. Results and Discussion
2.1. XO Inhibitory Activity of Viniferifuran
2.2. Inhibition Mechanism of Viniferifuran on XO
2.3. Inhibition Mode of Viniferifuran on XO
2.4. Secondary Structure Analysis by FT-IR
2.5. Secondary Structure Content Analysis by CD
2.6. Binding Mode Analysis by Molecular Docking
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. XO Activity Assay
3.3. Measurement of Inhibition Mechanism and Inhibition Mode
3.4. FT-IR Experiments
3.5. Circular Dichroism Analysis
3.6. Molecular Docking Studies
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kuwabara, M. Hyperuricemia, cardiovascular disease, and hypertension. Pulse 2016, 3, 242–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, J.F.; Schumacher, H.R. Update on gout and hyperuricemia. Int. J. Clin. Pract. 2010, 64, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Li, M.G.; Yu, Y.Y.; Liu, J.; Chen, Z.L.; Cao, S.W. Investigation of the interaction between benzaldehyde thiosemicarbazone compounds and xanthine oxidase. J. Mol. Struct. 2018, 1159, 23–32. [Google Scholar] [CrossRef]
- Ou, R.; Lin, L.; Zhao, M.; Xie, Z. Action mechanisms and interaction of two key xanthine oxidase inhibitors in galangal: Combination of in vitro and in silico molecular docking studies. Int. J. Biol. Macromol. 2020, 162, 1526–1535. [Google Scholar] [CrossRef] [PubMed]
- Boban, M.; Kocic, G.; Radenkovic, S.; Pavlovic, R.; Cvetkovic, T.; Deljanin-Ilic, M.; Ilic, S.; Bobana, M.D.; Djindjic, B.; Stojanovic, D.; et al. Circulating purine compounds, uric acid, and xanthine oxidase/dehydrogenase relationship in essential hypertension and end stage renal disease. Ren. Fail. 2014, 36, 613–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Joshi, G.; Kler, H.; Kalra, S.; Kaur, M.; Arya, R. Toward an understanding of structural insights of xanthine and aldehyde oxidases: An overview of their inhibitors and role in various diseases. Med. Res. Rev. 2018, 38, 1073–1125. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, S.W.; Zhao, K.; Shi, H.L.; Fan, J.H.; Wang, W.; Liu, Y.; Liu, X.H.; Wang, W. Insights into the inhibitory mechanism of purpurogallin on xanthine oxidase by multiple spectroscopic techniques and molecular docking. J. Mol. Struct. 2020, 12, 129776–129803. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, L.; Sun, C.; Zhao, D.; Tang, H. Studies on the structure-activity relationship and interaction mechanism of flavonoids and xanthine oxidase through enzyme kinetics, spectroscopy methods and molecular simulations. Food Chem. 2020, 323, 126807. [Google Scholar] [CrossRef]
- Thu, H.N.; Van, P.N.; Viet, H.L.; Minh, K.N.; Thi, T.L. Prediction of the xanthine oxidase inhibitory activity of celery seed extract from ultraviolet–visible spectrum using machine learning algorithms. SN Appl. Sci. 2020, 2, 1746. [Google Scholar]
- Lin, S.; Zhang, G.; Liao, Y.; Pan, J. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism. Int. J. Biol. Macromol. 2015, 81, 274–282. [Google Scholar] [CrossRef]
- Okamoto, K.; Eger, B.T.; Nishino, T.; Kondo, S.; Pai, E.F.; Nishino, T. An extremely potent inhibitor of xanthine oxidoreductase, crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J. Biol. Chem. 2003, 278, 1848–1855. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; Zhang, L.; Ren, L.C.; Xie, Y.X. Advances in structures required of polyphenols for xanthine oxidase inhibition. Food Front. 2020, 1, 152–167. [Google Scholar] [CrossRef]
- Maiti, T.K.; Ghosh, K.S.; Dasgupta, S. Interaction of (-)-epigallocatechin-3-gallate with human serum albumin: Fluorescence, fourier transform infrared, circular dichroism, and docking studies. Proteins 2006, 64, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Wang, D. A Study on the Xanthine Oxidase Inhibitors from the Roots of Caragana sinica. Master’s Thesis, Guizhou Medical University, Guiyang, China, 2020. [Google Scholar]
- Liao, S.G.; Xu, G.B.; He, X.; Zhu, Q.F.; Liao, X.J.; Guan, H.Y.; Dong, L.; Dong, Y.X.; Zhou, M.; Luo, X.R.; et al. Application of Viniferifuran in the Preparation of Xanthine Oxidase Inhibitory Drugs. CN 113304139 A, 27 August 2021. [Google Scholar]
- Yin, S.J.; Si, Y.X.; Chen, Y.F.; Qian, G.Y.; Lü, Z.R.; Oh, S.; Lee, J.; Lee, S.; Yang, J.M.; Lee, D.Y.; et al. Mixed-type inhibition of tyrosinase from agaricus bisporus by terephthalic acid: Computational simulations and kinetics. Protein J. 2011, 30, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.M.; Chen, C.S.; Chen, C.T.; Liang, Y.C.; Lin, J.K. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem. Biophys. Res. Commun. 2002, 294, 167–172. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, C.C.; Zhao, J.; Shi, X.M.; Sun, M.L.; Liu, J.; Fu, Y.H.; Jin, W.G.; Zhu, B. Separation and characterization of antioxidative and angiotensin converting enzyme inhibitory peptide from jellyfish gonad hydrolysate. Molecules 2018, 23, 94. [Google Scholar] [CrossRef] [Green Version]
- Elkins, K.M. Rapid presumptive “fingerprinting” of body fluids and materials by ATR FT-IR spectroscopy. J. Forensic Sci. 2011, 56, 1580–1587. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, G.; Pan, J.; Gong, D. Deciphering the inhibitory mechanism of genistein on xanthine oxidase in vitro. J. Photochem. Photobiol. B 2015, 153, 463–472. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, L.; Pan, J. Probing the binding of the flavonoid diosmetin to human serum albumin by multispectroscopic techniques. J. Agric. Food Chem. 2012, 60, 2721–2729. [Google Scholar] [CrossRef]
- Hadizadeh, M.; Keyhani, E.; Keyhani, J.; Khodadadi, C. Functional and structural alterations induced by copper in xanthine oxidase. Acta. Biochim. Biophys. Sin. 2009, 41, 603–617. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Ma, L.H.; Wang, D.; Zhang, C.L.; Zhou, M.; Liao, S.G. Study on in vitro inhibitory activity of the extracts from 9 kinds of TCM for dredging collaterals and dispelling wind on xanthine oxidase. Chin. Pharm. 2020, 31, 677–681. [Google Scholar]
- Vo, D.D.; Elofsson, M. Total synthesis of viniferifuran, resveratrol-piceatannol hybrid, anigopreissin A and analogues—Investigation of demethylation strategies. Adv. Synth. Catal. 2016, 358, 4085–4092. [Google Scholar] [CrossRef] [PubMed]
- Ghallab, D.S.; Shawky, E.; Metwally, A.M.; Celik, I.; Ibrahim, R.S.; Mohyeldin, M.M. Integrated in silico—In vitro strategy for the discovery of potential xanthine oxidase inhibitors from Egyptian propolis and their synergistic effect with allopurinol and febuxostat. RSC Adv. 2022, 12, 2843–2872. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, H.; Capretto, D.A.; Han, Q.; Hu, R.; Yang, S. Tf2O-catalyzed Friedel–Crafts alkylation to synthesize dibenzo[a,d]cycloheptene cores and application in the total synthesis of Diptoindonesin D, Pauciflorial F, and (±)-Ampelopsin B. Tetrahedron 2012, 68, 5216–5222. [Google Scholar] [CrossRef]
- Ito, J.K.; Takaya, Y.K.; Oshima, Y.; Niwa, M. New oligostilbenes having a benzofuran from vitis vinifera ‘Kyohou’. Tetrahedron 1999, 55, 2529–2544. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, G.; Pan, J.; Gong, D. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase. J. Agric. Food Chem. 2015, 63, 526–534. [Google Scholar] [CrossRef]
- Liu, Y.; Han, C.; Lu, T.; Liu, Y.; Chen, H.; Yang, C.; Tu, Y.; Li, Y. Investigation of the interaction between chrysoeriol and xanthine oxidase using computational and in vitro approaches. Int. J. Biol. Macromol. 2021, 190, 463–473. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, G.; Yan, J.; Gong, D. Inhibitory effect of morin on tyrosinase: Insights from spectroscopic and molecular docking studies. Food Chem. 2014, 163, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Liu, W.; Zhou, L.; Zou, L.; Chen, J. Mushroom (Agaricus bisporus) polyphenoloxidase inhibited by apigenin: Multi-spectroscopic analyses and computational docking simulation. Food Chem. 2016, 203, 430–439. [Google Scholar] [CrossRef]
- Xie, J.; Dong, H.; Yu, Y.; Cao, S. Inhibitory effect of synthetic aromatic heterocycle thiosemicarbazone derivatives on mushroom tyrosinase: Insights from fluorescence, 1H-NMR titration and molecular docking studies. Food Chem. 2016, 190, 709–716. [Google Scholar] [CrossRef]
- Perez-Iratxeta, C.; Andrade-Navarro, M.A. K2D2: Estimation of protein secondary structure from circular dichroism spectra. BMC Struct. Biol. 2008, 8, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Bi, H.N.; Zuo, H.J.; Jia, J.J.; Tang, L. Interaction of residue tetracycline hydrochloride in milk with β-galactosidase protein by multi-spectrum methods and molecular docking. J. Mol. Struct. 2017, 1141, 382–389. [Google Scholar] [CrossRef]
- Shen, Q.; Shao, J.; Peng, Q.; Zhang, W.; Ma, L.; Chan, A.S.; Gu, L. Hydroxycoumarin derivatives: Novel and potent α-glucosidase inhibitors. J. Med. Chem. 2010, 53, 8252–8259. [Google Scholar] [CrossRef] [PubMed]
Viniferifuran (μM) | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) | β-Antiparallel (%) |
---|---|---|---|---|---|
0 | 19.31 | 38.73 | 18.06 | 15.43 | 1.60 |
10 | 6.59 | 41.08 | 27.71 | 15.72 | 3.18 |
Molar Ratios of Viniferifuran:XO | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) |
---|---|---|---|---|
0:1 | 16.50 | 40.52 | 12.90 | 18.10 |
1:1 | 12.83 | 41.44 | 17.73 | 18.36 |
5:1 | 8.37 | 42.67 | 23.26 | 18.52 |
10:1 | 5.25 | 44.08 | 29.63 | 18.75 |
Ligands | Binding Energy | Hydrophobic Interaction | Hydrogen Bonds |
---|---|---|---|
Viniferifuran | −11.06 kcal mol−1 | Ser1214 (3.7 Å), Val1011 (4.9 Å), Phe914 (4.7 Å), Phe1009 (5.1 Å), Leu1014 (5.3 Å), and Phe649 (5.3 Å) | Asn768 (2.7 Å), Ser876 (3.4 Å), and Tyr735 (5.5 Å) |
Febuxostat | −10.18 kcal mol−1 | Leu873 (5.1 Å) and Leu648 (4.8 Å) | Glu802 (5.1 Å), Thr1010 (3.1 Å), Arg880 (2.8 Å), and Asn768 (3.3 Å) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chen, Q.; Ruan, S.; Ao, J.; Liao, S.-G. Insights into the Inhibitory Mechanism of Viniferifuran on Xanthine Oxidase by Multiple Spectroscopic Techniques and Molecular Docking. Molecules 2022, 27, 7730. https://doi.org/10.3390/molecules27227730
Yang Y, Chen Q, Ruan S, Ao J, Liao S-G. Insights into the Inhibitory Mechanism of Viniferifuran on Xanthine Oxidase by Multiple Spectroscopic Techniques and Molecular Docking. Molecules. 2022; 27(22):7730. https://doi.org/10.3390/molecules27227730
Chicago/Turabian StyleYang, Yaxin, Qian Chen, Shiyang Ruan, Junli Ao, and Shang-Gao Liao. 2022. "Insights into the Inhibitory Mechanism of Viniferifuran on Xanthine Oxidase by Multiple Spectroscopic Techniques and Molecular Docking" Molecules 27, no. 22: 7730. https://doi.org/10.3390/molecules27227730
APA StyleYang, Y., Chen, Q., Ruan, S., Ao, J., & Liao, S. -G. (2022). Insights into the Inhibitory Mechanism of Viniferifuran on Xanthine Oxidase by Multiple Spectroscopic Techniques and Molecular Docking. Molecules, 27(22), 7730. https://doi.org/10.3390/molecules27227730