A Modified Vancomycin Molecule Confers Potent Inhibitory Efficacy against Resistant Bacteria Mediated by Metallo-β-Lactamases
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guan, D.; Chen, F.; Qiu, Y.; Jiang, B.; Gong, L.; Lan, L.; Huang, W. Sulfonium, an underestimated moiety for structural modification, alters antibacterial profile of vancomycin against multidrug-resistant bacteria. Angew. Chem. 2019, 131, 6750–6754. [Google Scholar] [CrossRef]
- Brogan, D.M.; Mossialos, E. A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility. Glob. Health 2016, 12, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaskovich, M.A.T.; Hansford, K.A.; Butler, M.S.; Jia, Z.G.; Mark, A.E.; Cooper, M.A. New developments in glycopeptide antibiotics. ACS Infect. Dis. 2018, 4, 715–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonoplis, A.; Zang, X.; Wegner, T.; Wender, P.A.; Cegelski, L. Vancomycin-Arginine Conjugate Inhibits Growth of Carbapenem-Resistant E. coli and Targets Cell-Wall Synthesis. ACS Chem. Biol. 2019, 14, 2065–2070. [Google Scholar] [CrossRef]
- King, D.T.; Strynadka, N.C. Targeting metallo-β-lactamase enzymes in antibiotic resistance. Future Med. Chem. 2013, 5, 1243–1263. [Google Scholar] [CrossRef]
- Bahr, G.; González, L.J.; Vila, A.J. Metallo-β-lactamases in the age of multidrug resistance: From structure and mechanism to evolution, dissemination, and inhibitor design. Chem. Rev. 2021, 121, 7957–8094. [Google Scholar] [CrossRef]
- Kahne, D.; Leimkuhler, C.; Lu, W.; Walsh, C. Glycopeptide and Lipoglycopeptide Antibiotics. Chem. Rev. 2005, 105, 425–448. [Google Scholar] [CrossRef]
- Hubbard, B.K.; Walsh, C.T. Vancomycin Assembly: Nature’s Way. Angew. Chem. Int. Ed. 2003, 42, 730–765. [Google Scholar] [CrossRef]
- Walsh, C.T.; Fisher, S.L.; Park, I.S.; Prahalad, M.; Wu, Z. Bacterial resistance to vancomycin: Five genes and one missing hydrogen bond tell the story. Cell Chem. Biol. 1996, 3, 21–28. [Google Scholar] [CrossRef]
- Pootoolal, J.; Neu, J.; Wright, G.D. Glycopeptide antibiotic resistance. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 381–408. [Google Scholar] [CrossRef]
- Mccomas, C.C.; Crowley, B.M.; Boger, D.L. Partitioning the Loss in Vancomycin Binding Affinity for d-Ala-d-Lac into Lost H-Bond and Repulsive Lone Pair Contributions. J. Am. Chem. Soc. 2003, 125, 9314–9315. [Google Scholar] [CrossRef]
- Yarlagadda, V.; Sarkar, P.; Samaddar, S.; Haldar, J. A Vancomycin Derivative with a Pyrophosphate-Binding Group: A Strategy to Combat Vancomycin-Resistant Bacteria. Angew. Chem. Int. Ed. 2016, 55, 7836–7840. [Google Scholar] [CrossRef]
- Li, L.; Xu, B. Multivalent vancomycins and related antibiotics against infectious diseases. Curr. Pharm. Des. 2005, 11, 3111–3124. [Google Scholar] [CrossRef]
- Fan, C.; Moews, P.C.; Walsh, C.T.; Knox, J.R. Vancomycin resistance: Structure of D-alanine:D-alanine ligase at 2.3 A resolution. Science 1994, 266, 439–443. [Google Scholar] [CrossRef]
- Taubes, G. The bacteria fight back. Science 2008, 321, 356–361. [Google Scholar] [CrossRef]
- Butler, M.S.; Hansford, K.A.; Blaskovich, M.A.T.; Halai, R.; Cooper, M.A. Glycopeptide antibiotics: Back to the future. J. Antibiot. 2014, 67, 631–644. [Google Scholar] [CrossRef] [Green Version]
- Yarlagadda, V.; Konai, M.M.; Manjunath, G.B.; Ghosh, C.; Haldar, J. Tackling vancomycin-resistant bacteria with ‘lipophilic–vancomycin–carbohydrate conjugates’. J. Antibiot. 2014, 68, 302–312. [Google Scholar] [CrossRef] [Green Version]
- Mu, Y.Q.; Nodwell, M.; Pace, J.L.; Shaw, J.P.; Judice, J.K. Vancomycin disulfide derivatives as antibacterial agents. Cheminform 2004, 14, 735–738. [Google Scholar]
- Okano, A.; Isley, N.A.; Boger, D.L. Peripheral modifications of [Ψ[CH2NH]Tpg4]vancomycin with added synergistic mechanisms of action provide durable and potent antibiotics. Proc. Natl. Acad. Sci. USA 2017, 114, E5052–E5061. [Google Scholar] [CrossRef] [Green Version]
- Okano, A.; Nakayama, A.; Schammel, A.W.; Boger, D.L. Total synthesis of [Ψ[C(=NH)NH]Tpg4]vancomycin and its (4-chlorobiphenyl)methyl derivative: Impact of peripheral modifications on vancomycin analogues redesigned for dual D-Ala-D-Ala and D-Ala-D-Lac binding. J. Am. Chem. Soc. 2014, 136, 13522–13525. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Yang, K.W. Porphyrin-vancomycin: A highly promising conjugate for the identification and photodynamic inactivation of antibiotic resistant Gram-positive pathogens. Dyes and Pigments 2015, 120, 228–238. [Google Scholar] [CrossRef]
- Yarlagadda, V.; Akkapeddi, P.; Manjunath, G.B.; Haldar, J. Membrane Active Vancomycin Analogues: A Strategy to Combat Bacterial Resistance. J. Med. Chem. 2014, 57, 4558–4568. [Google Scholar] [CrossRef] [PubMed]
- Blaskovich, M.A.T.; Hansford, K.A.; Gong, Y.; Butler, M.S.; Muldoon, C.; Huang, J.X.; Ramu, S.; Silva, A.B.; Cheng, M.; Kavanagh, A.M.; et al. Protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria. Nat. Commun. 2018, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.D.G.; Snyder, N.J.; Zweifel, M.J.; Staszak, M.A.; Wilkie, S.C.; Nicas, T.I.; Mullen, D.L.; Butler, T.F.; Roderguez, M.J.; Huff, B.E.; et al. Reductive Alkylation of Glycopeptide Antibiotics: Synthesis and Antibacterial Activity. J. Antibiot. 1996, 49, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Yarlagadda, V.; Sarkar, P.; Samaddar, S.; Manjunath, G.B.; Mitra, S.D.; Paramanandham, K.; Shome, B.R.; Haldar, J. Vancomycin Analogue Restores Meropenem Activity against NDM-1 Gram-negative Pathogens. ACS Infect. Dis. 2018, 4, 1093–1101. [Google Scholar] [CrossRef]
- Yang, S.K.; Kang, J.S.; Oelschlaeger, P.; Yang, K.W. Azolylthioacetamide: A Highly Promising Scaffold for the Development of Metallo-β-lactamase Inhibitors. ACS Med. Chem. Lett. 2015, 6, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Zhang, Y.L.; Kang, J.S.; Oelschlaeger, P.; Xiao, L.; Nie, S.S.; Yang, K.W. Triazolylthioacetamide: A Valid Scaffold for the Development of New Delhi Metallo-β-Lactmase-1 (NDM-1) Inhibitors. ACS Med. Chem. Lett. 2016, 7, 413–417. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; CLSI standard M07; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2018. [Google Scholar]
Strains | Vancomycin (μg/mL) | Vb (μg/mL) |
---|---|---|
S. aureus(ATCC29213) | 4 | 4 |
MRSA(ATCC43300) | 4 | 8 |
VRE | 512 | 512 |
K. pneumoniae | >512 | >512 |
EC08 | 512 | >512 |
EC10 | 512 | >512 |
E. coli (producing ImiS) | 512 | >512 |
E. coli (producing CcrA) | 512 | >512 |
S. aureus (ATCC29213) | ||||
Control a | +1 b | +2 b | +4 b | |
Cefazolin | 0.25 | 0.25 | 0.125 | 0.0156 |
Meropenem | 0.03125 | 0.03125 | 0.0156 | 0.00048 |
Penicillin G | 0.5 | 0.3125 | 0.156 | 0.0039 |
MRSA (ATCC43300) | ||||
Control a | +1 b | +2 b | +4 b | |
Cefazolin | 4 | 4 | 0.5 | 0.03125 |
Meropenem | 0.5 | 0.5 | 0.25 | 0.0039 |
Penicillin G | 8 | 8 | 4 | 0.0625 |
VRE | ||||
Control a | +4 b | +8 b | +16 b | |
Cefazolin | 2 | 0.5 | 0.125 | 0.0156 |
Meropenem | 1 | 0.25 | 0.0625 | 0.0156 |
Penicillin G | 32 | 16 | 2 | 1 |
K. pneumoniae | ||||
Control a | +8 b | +16 b | +32 b | |
Cefazolin | 1250 | 625 | 156 | 78 |
Meropenem | 0.125 | 0.0625 | 0.03125 | 0.0078 |
Penicillin G | 1250 | 312.5 | 156 | 39 |
EC08 (Producing NDMs) | ||||
Control a | +8 b | +16 b | +32 b | |
Cefazolin | 5000 | 5000 | 5000 | 2500 |
Meropenem | 128 | 64 | 32 | 32 |
Penicillin G | >20,000 | >20,000 | >20,000 | 20,000 |
EC10 (producing NDMs) | ||||
Control a | +8 b | +16 b | +32 b | |
Cefazolin | 2500 | 2500 | 2500 | 1250 |
Meropenem | 64 | 64 | 32 | 16 |
Penicillin G | 10,000 | 10,000 | 10,000 | 5000 |
E. coli (producing ImiS) | ||||
Control a | +8 b | +16 b | +32 b | |
Meropenem | 64 | 32 | 16 | 8 |
E. coli (producing CcrA) | ||||
Control a | +8 b | +16 b | +32 b | |
Cefazolin | 32 | 32 | 32 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, L.; Liu, Y.; Jiang, Y.; Kong, L.-Y.; Xiao, J.; Wang, Y.-X.; Shi, Y.; Zhang, Y.-L.; Yang, K.-W. A Modified Vancomycin Molecule Confers Potent Inhibitory Efficacy against Resistant Bacteria Mediated by Metallo-β-Lactamases. Molecules 2022, 27, 7685. https://doi.org/10.3390/molecules27227685
Zhai L, Liu Y, Jiang Y, Kong L-Y, Xiao J, Wang Y-X, Shi Y, Zhang Y-L, Yang K-W. A Modified Vancomycin Molecule Confers Potent Inhibitory Efficacy against Resistant Bacteria Mediated by Metallo-β-Lactamases. Molecules. 2022; 27(22):7685. https://doi.org/10.3390/molecules27227685
Chicago/Turabian StyleZhai, Le, Ya Liu, Yue Jiang, Ling-Yan Kong, Jian Xiao, Yi-Xue Wang, Yang Shi, Yi-Lin Zhang, and Ke-Wu Yang. 2022. "A Modified Vancomycin Molecule Confers Potent Inhibitory Efficacy against Resistant Bacteria Mediated by Metallo-β-Lactamases" Molecules 27, no. 22: 7685. https://doi.org/10.3390/molecules27227685
APA StyleZhai, L., Liu, Y., Jiang, Y., Kong, L. -Y., Xiao, J., Wang, Y. -X., Shi, Y., Zhang, Y. -L., & Yang, K. -W. (2022). A Modified Vancomycin Molecule Confers Potent Inhibitory Efficacy against Resistant Bacteria Mediated by Metallo-β-Lactamases. Molecules, 27(22), 7685. https://doi.org/10.3390/molecules27227685