Establishment and Application of a Predictive Growth Kinetic Model of Salmonella with the Appearance of Two Other Dominant Background Bacteria in Fresh Pork
Abstract
:1. Introduction
2. Results
2.1. Optimal Primary Growth Kinetic Model of Salmonella and Two Background Bacteria in Fresh Pork
2.2. Secondary Growth Model of S. Derby, P. aeruginosa, and E. coli in Fresh Pork
2.3. Validation of the Bacterial Growth Models
2.4. Pork Safety Prediction by Applying the Constructed Growth Models
3. Discussion
4. Materials and Methods
4.1. Bacterial Cultures and Inoculum Preparation
4.2. Preparation of Pork Sample and Inoculation
4.3. Growth Study and Bacterial Counting
4.4. Sensory Evaluation of Pork Freshness
4.5. Establishment of the Primary Bacterial Growth Model
4.6. Establishment of the Secondary Bacterial Growth Model
4.7. Validation of the Bacterial Growth Model
4.8. Shelf-Life Prediction of Fresh Pork
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Koutsoumanis, K.; Taoukis, P.S. Meat Safety, Refrigerated Storage and Transport: Modeling and Management. In Improving the Safety of Fresh Meat; Woodhead Publishing: Sawston, UK, 2015; pp. 505–561. [Google Scholar]
- Liu, J.; Bai, L.; Li, W.; Han, H.; Fu, P.; Ma, X.; Bi, Z.; Yang, X.; Zhang, X.; Zhen, S.; et al. Trends of foodborne diseases in China: Lessons from laboratory-based surveillance since 2011. Front. Med. 2018, 12, 48–57. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Burden of Foodborne Diseases is Substantial. 2015. Available online: https://apps.who.int/iris/bitstream/handle/10665/327488/WHO-FOS-FZD-15.3-eng.pdf?sequence=1 (accessed on 30 July 2022).
- Mcmeekin, T.; Bowman, J.; Mcquestin, O.; Mellefont, L.; Ross, T.; Tamplin, M. The future of predictive microbiology: Strategic research, innovative applications and great expectations. Int. J. Food Microbiol. 2008, 128, 2–9. [Google Scholar] [CrossRef]
- McMeekin, T.A.; Ross, T. Predictive microbiology: Providing a knowledge-based framework for change management. Int. J. Food Microbiol. 2002, 78, 133–153. [Google Scholar] [CrossRef]
- Poschet, F.; Vereecken, K.M.; Geeraerd, A.H.; Nicolai, B.M.; Impe, J.F.V. Analysis of a novel class of predictive microbial growth models and application to coculture growth. Int. J. Food Microbiol. 2005, 100, 107–124. [Google Scholar] [CrossRef]
- Verheyen, D.; Baka, M.; Akkermans, S.; Skra, T.; Impe, J. Effect of microstructure and initial cell conditions on thermal inactivation kinetics and sublethal injury of Listeria monocytogenes in fish-based food model systems. Food Microbiol. 2019, 84, 103267. [Google Scholar] [CrossRef] [PubMed]
- Zhen, J.; Peng, Y.; Yan, X.; Zhang, Z.; Fang, T.; Li, C. One-step kinetic analysis of competitive growth of Salmonella spp. and background flora in ground chicken. Food Control 2020, 117, 107103. [Google Scholar]
- Mcmeekin, T.A.; Olley, J.; Ratkowsky, D.A.; Ross, T. Predictive microbiology: Towards the interface and beyond. Int. J. Food Microbiol. 2002, 73, 395–407. [Google Scholar] [CrossRef]
- McDonald, K.; Sun, D.-W. Predictive food microbiology for the meat industry: A review. Int. J. Food Microbiol. 1999, 52, 1–27. [Google Scholar] [CrossRef]
- Juneja, V.K.; Osoria, M.; Purohit, A.S.; Golden, C.E.; Mishra, A.; Taneja, N.K.; Salazar, J.K.; Thippareddi, H.; Kumar, G.D. Predictive model for growth of Clostridium perfringens during cooling of cooked pork supplemented with sodium chloride and sodium pyrophosphate. Meat Sci. 2021, 180, 108557. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jung, B.S.; Yoon, H.J.; Kim, K.-T.; Paik, H.-D.; Lee, J.-Y. Predictive model for the growth kinetics of Listeria monocytogenes in raw pork meat as a function of temperature. Food Control 2014, 44, 16–21. [Google Scholar] [CrossRef]
- Mansur, A.R.; Park, J.H.; Oh, D.H. Predictive Model for Growth of Staphylococcus aureus on Raw Pork, Ham, and Sausage. J. Food Prot. 2016, 79, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Borch, E.; Kantmuermans, M.L.; Blixt, Y. Bacterial spoilage of meat and cured meat products. Int. J. Food Microbiol. 1996, 33, 103–120. [Google Scholar] [CrossRef]
- Dainty, R.H.; Mackey, B.M. The relationship between the phenotypic properties of bacteria from chill-stored meat and spoilage processes. J. Appl. Microbiol. 2010, 73, 103–114. [Google Scholar] [CrossRef]
- Lebert, I.; Robles-Olvera, V.; Lebert, A. Application of polynomial models to predict growth of mixed cultures of Pseudomonas spp. and Listeria in meat. Int. J. Food Microbiol. 2000, 61, 27–39. [Google Scholar] [CrossRef]
- Koseki, S.; Takizawa, Y.; Miya, S.; Takahashi, H.; Kimura, B. Modeling and predicting the simultaneous growth of Listeria monocytogenes and natural flora in minced tuna. J. Food Prot. 2012, 74, 176–187. [Google Scholar] [CrossRef]
- te Giffel, M.C.; Zwietering, M.H. Validation of predictive models describing the growth of Listeria monocytogenes. Int. J. Food Microbiol. 1999, 46, 135–149. [Google Scholar] [CrossRef]
- Ross, T. Indices for performance evaluation of predictive models in food microbiology. J. Bacteriol. 1996, 81, 501–508. [Google Scholar] [CrossRef]
- Huang, L. Thermal resistance of Listeria monocytogenes and background microbiota in unsalted and 10% salted liquid egg yolk. J. Food Saf. 2019, 39, e12665. [Google Scholar] [CrossRef]
- Huang, L. Dynamic analysis of growth of Salmonella spp. in raw ground beef—Estimation of kinetic parameters, sensitivity analysis, and Markov Chain Monte Carlo simulation. Food Control 2020, 108, 106845. [Google Scholar]
- Hwang, C.-A.; Huang, L. Dynamic analysis of competitive growth of Escherichia coli O157:H7 in raw ground beef. Food Control 2018, 93, 251–259. [Google Scholar] [CrossRef]
- Vereecken, K.M.; Dens, E.J.; Impe, J. Predictive Modeling of Mixed Microbial Populations in Food Products: Evaluation of Two-species Models. J. Theor. Biol. 2000, 205, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Huang, L. Dynamic kinetic analysis of growth of Listeria monocytogenes in a simulated comminuted, non-cured cooked pork product. Food Control 2017, 71, 160–167. [Google Scholar] [CrossRef]
- Zhou, B.; Fan, X.; Song, J.; Wu, J.; Pan, L.; Tu, K.; Peng, J.; Dong, Q.; Xu, J.; Wu, J. Growth simulation of Pseudomonas fluorescens in pork using hyperspectral imaging. Meat Sci. 2022, 188, 108767. [Google Scholar] [CrossRef] [PubMed]
- López, S.; Prieto, M.; Dijkstra, J.; Dhanoa, M.S.; France, J. Statistical evaluation of mathematical models for microbial growth. Int. J. Food Microbiol. 2004, 96, 289–300. [Google Scholar] [CrossRef]
- Li, M.; Niu, H.; Zhao, G.; Tian, L.; Huang, X.; Zhang, J.; Wei, T.; Zhang, Q. Analysis of mathematical models of Pseudomonas spp. growth in pallet-package pork stored at different temperatures. Meat Sci. 2013, 93, 855–864. [Google Scholar]
- Huang, L.; Tu, S.I.; Phillips, J.; Fratamico, P. Mathematical Modeling of Growth of Non-O157 Shiga Toxin-Producing Escherichia coli in Raw Ground Beef. J. Food Sci. 2012, 77, 217–225. [Google Scholar] [CrossRef]
- Sommers, C.; Huang, C.-Y.; Sheen, L.-Y.; Sheen, S.; Huang, L. Growth modeling of Uropathogenic Escherichia coli in ground chicken meat. Food Control 2017, 86, 397–402. [Google Scholar] [CrossRef]
- Jiang, Y.; Zou, X.; Peng, Z. Construction of Growth Prediction Model of Escherichia coli in Longissimus Dorsi Muscle. Food Sci. 2008, 29, 115–119. [Google Scholar]
- Zhang, L.; Yin, D.; Zhang, D.; Luo, L. Predictive Models for Salmonella in Fresh Pork at Household Temperatures. Food Ind. 2017, 38, 201–205. [Google Scholar]
- Gram, L.; Christensen, A.B.; Ravn, L.; Molin, S.; Givskov, M. Production of Acylated Homoserine Lactones by Psychrotrophic Members of the Enterobacteriaceae Isolated from Foods. Appl. Environ. Microbiol. 1999, 65, 3458–3463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravn, L.; Christensen, A.B.; Molin, S.; Givskov, M.; Gram, L. Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J. Microbiol. Methods 2001, 44, 239–251. [Google Scholar] [CrossRef]
- Schirmer, B.C.; Heir, E.; Langsrud, S. Characterization of the bacterial spoilage flora in marinated pork products. J. Appl. Microbiol. 2010, 106, 2106–2116. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Fan, Z.F.; Dong, P.; Di, Y.; Li, J.; Gao, Y.; Song, Z.; Wu, Z. Influence of Microbial Contamination on Quality of Chilled Pork during Storage. China Anim. Health Insp. 2018, 35, 29–32. [Google Scholar]
- Zwietering, M.H. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Huang, L. Optimization of a new mathematical model for bacterial growth. Food Control 2013, 32, 283–288. [Google Scholar] [CrossRef]
- Davey, K.R. Applicability of the Davey (linear Arrhenius) predictive model to the lag phase of microbial growth. J. Appl. Microbiol. 1991, 70, 253–257. [Google Scholar] [CrossRef]
- Ratkowsky, D.A.; Olley, J.; McMeekin, T.A.; Ball, A. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 1982, 149, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Park, H.S.; Sung, B.Y.; Ryu, K. Predictive Model for Growth of Staphylococcus aureus in Blanched Spinach with Seasoning. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 529–533. [Google Scholar] [CrossRef]
- Gao, L.; Weng, S.; Liu, Q.; Zhang, J.; Chen, E.; Bai, Y.; Han, B. Predictive Models for Salmonella Growth in Fresh Pork. Food Res. Dev. 2011, 32, 143–146. [Google Scholar]
Bacteria | Model | R2 | ||||
---|---|---|---|---|---|---|
37 °C | 30 °C | 22 °C | 16 °C | 10 °C | ||
S. Derby | Gompertz | 0.9871 | 0.9930 | 0.9922 | 0.9924 | 0.9903 |
Baranyi | 0.9993 | 0.9982 | 0.9990 | 1.0000 | 0.9969 | |
Huang | 0.9985 | 0.9976 | 0.9974 | 0.9989 | 0.9950 | |
P. aeruginosa | Gompertz | 0.9891 | 0.9845 | 0.9852 | 0.9921 | 0.9915 |
Baranyi | 0.9988 | 0.9973 | 0.9990 | 0.9989 | 0.9992 | |
Huang | 0.9946 | 0.9910 | 0.9983 | 0.9971 | 0.9962 | |
E. coli | Gompertz | 0.9830 | 0.9823 | 0.9872 | 0.996 | 0.9900 |
Baranyi | 0.9980 | 0.9973 | 0.9987 | 0.9976 | 0.9970 | |
Huang | 0.9983 | 0.9986 | 0.9991 | 0.9989 | 0.9972 |
Bacteria | Temperature (°C) | Growth Kinetic Parameters | |||
---|---|---|---|---|---|
N0 (logCFU/g) | Lag (h) | μmax (h−1) | Nmax (logCFU/g) | ||
S. Derby | 37 | 1.8641 | 0.7844 | 1.3325 | 9.0103 |
30 | 1.6846 | 1.1565 | 0.7157 | 9.5800 | |
22 | 1.3657 | 2.9393 | 0.3000 | 9.0076 | |
16 | 1.6099 | 5.5342 | 0.2127 | 9.0649 | |
10 | 1.7850 | 34.8147 | 0.0387 | 9.4430 | |
P. aeruginosa | 37 | 1.3220 | 0.8450 | 1.3627 | 9.1980 |
30 | 1.3412 | 1.6851 | 0.7738 | 9.5601 | |
22 | 1.6104 | 3.4016 | 0.3660 | 9.2053 | |
16 | 1.3383 | 5.1190 | 0.2483 | 9.1722 | |
10 | 1.3311 | 25.3870 | 0.0467 | 9.2507 | |
E. coli | 37 | 1.5676 | 1.0880 | 1.6853 | 9.1748 |
30 | 1.8894 | 1.8135 | 0.7450 | 9.3809 | |
22 | 1.7443 | 3.8602 | 0.3725 | 9.1267 | |
16 | 1.6820 | 6.5438 | 0.1774 | 9.2960 | |
10 | 1.6392 | 33.6302 | 0.0372 | 9.5750 |
Parameter | Bacteria | Bf | Af | MSE |
---|---|---|---|---|
μmax | S. Derby | 0.9981 | 1.0670 | 0.0019 |
P. aeruginosa | 1.0056 | 1.0675 | 0.0013 | |
E. coli | 0.9812 | 1.0783 | 0.0029 | |
Lag | S. Derby | 1.0080 | 1.0503 | 0.0014 |
P. aeruginosa | 0.9993 | 1.0675 | 0.0018 | |
E. coli | 1.0054 | 1.0465 | 0.0013 |
Sensory Quality | Grade | Store Time (h) | ||||
---|---|---|---|---|---|---|
37 °C | 30 °C | 22 °C | 16 °C | 10 °C | ||
Fresh | 5 | 0 | 0 | 0 | 0 | 0 |
Sub-fresh | 4 | 4 | 7 | 14 | 23 | 93 |
Nearly fresh | 3 | 8 | 12 | 27 | 44 | 192 |
Not fresh | 2 | 11 | 15 | 31 | 60 | 264 |
Spoilage | 1 | 17 | 24 | 44 | 65 | 288 |
S. Derby (105 CFU/g) | - | 3.18 | 5.85 | 15.17 | 21.67 | 119.16 |
Grade | Sensory Traits | Quality |
---|---|---|
5 | Bright red, milky-white fat, shiny, quick recovery from acupressure, slightly dry appearance, non-sticky, normal odor | Fresh |
4 | Bright red, slightly darkened fat, slightly reduced luster, recovered after acupressure, slightly wet, slightly sticky, normal odor | Sub-fresh |
3 | Color appears slightly darker, decreased luster, recovery of acupressure becomes slow, slightly wet, slightly sticky, no clear odor change | Nearly fresh |
2 | Dark red, slightly greenish fat, very slow recovery of acupressure, moist, sticky, with a peculiar smell | Not fresh |
1 | Dark red, green surface, no recovery of acupressure, a large amount of mucus, very sticky, with a pungent smell | Spoilage |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Yang, T.; Cheng, H.; Wang, L.; Liu, Y.; Gao, Y.; Zhao, J.; Liu, N.; Huang, X.; Liu, J.; et al. Establishment and Application of a Predictive Growth Kinetic Model of Salmonella with the Appearance of Two Other Dominant Background Bacteria in Fresh Pork. Molecules 2022, 27, 7673. https://doi.org/10.3390/molecules27227673
Zhao G, Yang T, Cheng H, Wang L, Liu Y, Gao Y, Zhao J, Liu N, Huang X, Liu J, et al. Establishment and Application of a Predictive Growth Kinetic Model of Salmonella with the Appearance of Two Other Dominant Background Bacteria in Fresh Pork. Molecules. 2022; 27(22):7673. https://doi.org/10.3390/molecules27227673
Chicago/Turabian StyleZhao, Ge, Tengteng Yang, Huimin Cheng, Lin Wang, Yunzhe Liu, Yubin Gao, Jianmei Zhao, Na Liu, Xiumei Huang, Junhui Liu, and et al. 2022. "Establishment and Application of a Predictive Growth Kinetic Model of Salmonella with the Appearance of Two Other Dominant Background Bacteria in Fresh Pork" Molecules 27, no. 22: 7673. https://doi.org/10.3390/molecules27227673
APA StyleZhao, G., Yang, T., Cheng, H., Wang, L., Liu, Y., Gao, Y., Zhao, J., Liu, N., Huang, X., Liu, J., Zhang, X., Xu, Y., Wang, J., & Wang, J. (2022). Establishment and Application of a Predictive Growth Kinetic Model of Salmonella with the Appearance of Two Other Dominant Background Bacteria in Fresh Pork. Molecules, 27(22), 7673. https://doi.org/10.3390/molecules27227673