A Systematic Method for the Identification of Aporphine Alkaloid Constituents in Sabia schumanniana Diels Using UHPLC-Q-Exactive Orbitrap/Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Establishment of the Analytical Method
2.2. Identifification and Analysis of Aporphine Alkaloids in SSD
2.2.1. Fragmentation Pattern for Quaternary Aporphine Alkaloids
2.2.2. Fragmentation Pattern of Tertiary Aporphine Alkaloid
2.2.3. Fragmentation Pattern of Secondary Aporphine Substituted
2.3. Pharmacological Activity of Aporphine Alkaloids in SSD
3. Material and Methods
3.1. Chemicals and Materials
3.2. Standard and Solution Preparation
3.3. Instruments and UHPLC-MS Conditions
3.4. Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chen, Q.Y.; Sun, Q.W.; Zhang, Y.P.; Xu, W.F.; Huang, Y.; Chen, C.L. The Research Progress on Genus Sabia. J. Guizhou Univ. Tradit. Chin. Med. 2022, 44, 71–80. [Google Scholar] [CrossRef]
- Wuhan Institute of Botany; Chinese Academy of Sciences. Flora of Hubei 2; Hubei People’ Press: Wuhan, China, 1979; Volume 480. [Google Scholar]
- Liu, X.; Sun, Y.; Dou, L.M.; Wu, Y.N.; Tan, Y.F.; Dong, L.; Zhang, X.B. Research Progress in Anti-diabetic Activities of Apophine Alkaloids. Pharm. Sci. 2017, 41, 704–709. [Google Scholar] [CrossRef]
- Liang, G.Y.; Zhou, Y.; Cao, P.X.; Xu, B.X. Studies on chemical constituents of Sabia schumanniana. Chin. Pharm. J. 2005, 40, 900. [Google Scholar] [CrossRef]
- Qing, Z.X.; Huang, J.L.; Yang, X.Y.; Liu, J.H.; Cao, H.L.; Xiang, F.; Cheng, P.; Zeng, J.G. Anticancer and Reversing Multidrug Resistance Activities of Natural Isoquinoline Alkaloids and their Structure-activity Relationship. Curr. Med. Chem. 2018, 25, 5088–5114. [Google Scholar] [CrossRef]
- Wei, C.Y.; Wang, S.W.; Ye, J.W.; Hwang, T.L.; Cheng, M.J.; Sung, P.J.; Chang, T.H.; Chen, J.J. New Anti-Inflammatory Aporphine and Lignan Derivatives from the Root Wood of Hernandia nymphaeifolia. Molecules 2018, 23, 2286. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.Z.; Zhao, Y.M. Progress in Biologlcal Activities of Aporphinoid Alkaloids. Nat. Prod. Res. Dev. 2006, 18, 316–324. [Google Scholar] [CrossRef]
- Chandradevan, M.; Simoh, S.; Mediani, A.; Ismail, N.H.; Ismail, I.S.; Abas, F. UHPLC-ESI-Orbitrap-MS Analysis of Biologically Active Extracts from Gynura procumbens (Lour.) Merr. and Cleome gynandra L. Leaves. Evid. Based Complement. Altern. Med. 2020, 2020, 3238561. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, J.; Zheng, B.; Guan, Y.; Wang, L.; Chen, L.; Cai, W. Rapid characterization of chlorogenic acids in Duhaldea nervosa based on ultra-high-performance liquid chromatography-linear trap quadropole-Orbitrap-mass spectrometry and mass spectral trees similarity filter technique. J. Sep. Sci. 2018, 41, 1764–1774. [Google Scholar] [CrossRef]
- Ye, X.; Wang, Y.; Zhao, J.; Wang, M.; Avula, B.; Peng, Q.; Ouyang, H.; Lingyun, Z.; Zhang, J.; Khan, I.A. Identification and Characterization of Key Chemical Constituents in Processed Gastrodia elata Using UHPLC-MS/MS and Chemometric Methods. J. Anal. Methods Chem. 2019, 2019, 4396201. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Liu, H.; Liu, Y.; Liu, J.; Zhao, X.; Yin, Y. Development and Evaluation of a Parallel Reaction Monitoring Strategy for Large-Scale Targeted Metabolomics Quantification. Anal. Chem. 2016, 88, 4478–4486. [Google Scholar] [CrossRef]
- Xiang, L.; Wei, J.; Tian, X.Y.; Wang, B.; Chan, W.; Li, S.; Tang, Z.; Zhang, H.; Cheang, W.S.; Zhao, Q.; et al. Comprehensive Analysis of Acylcarnitine Species in db/db Mouse Using a Novel Method of High-Resolution Parallel Reaction Monitoring Reveals Widespread Metabolic Dysfunction Induced by Diabetes. Anal. Chem. 2017, 89, 10368–10375. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Li, K.L.; Xiong, P.; Gong, K.Y.; Zhu, L.; Yang, J.B.; Wu, W.H. A systematic strategy for rapid identification of chlorogenic acids derivatives in Duhaldea nervosa using UHPLC-Q-Exactive Orbitrap mass spectrometry. Arab. J. Chem. 2020, 13, 3751–3761. [Google Scholar] [CrossRef]
- Stévigny, C.; Jiwan, J.L.; Rozenberg, R.; de Hoffmann, E.; Quetin-Leclercq, J. Key fragmentation patterns of aporphine alkaloids by electrospray ionization with multistage mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Staack, R.F.; Fritschi, G.; Maurer, H.H. Studies on the metabolism and toxicological detection of the new designer drug N-benzylpiperazine in urine using gas chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 773, 35–46. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Y.; Li, Z.; Hu, P.; Chen, M.; Sun, Z.; Lin, Y.; Pan, G.; Huang, C. Systematic and comprehensive strategy for metabolite profiling in bioanalysis using software-assisted HPLC-Q-TOF: Magnoflorine as an example. Anal. Bioanal. Chem. 2016, 408, 2239–2254. [Google Scholar] [CrossRef]
- Cornélio, M.L.; Barbosa-Filho, J.M.; Côrtes, S.F.; Thomas, G. Tracheal relaxant activity of cissaglaberrimine and trilobinine, two aporphinic alkaloids from Cissampelos glaberrima. Planta Med. 1999, 65, 462–464. [Google Scholar] [CrossRef]
- Li, M.; Zhang, F.X.; Wei, Z.C.; Li, Z.T.; Zhang, G.X.; Li, H.J. Systematically characterization of in vivo substances of Ziziphi Spinosae Semen in rats by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis. J. Pharm. Biomed. Anal. 2021, 193, 113756. [Google Scholar] [CrossRef]
- Xue, B.; Zhao, Y.; Miao, Q.; Miao, P.; Yang, X.; Sun, G.; Su, J.; Ye, J.; Wei, B.; Zhang, Y.; et al. In vitro and in vivo identification of metabolites of magnoflorine by LC LTQ-Orbitrap MS and its potential pharmacokinetic interaction in Coptidis Rhizoma decoction in rat. Biomed. Chromatogr. 2015, 29, 1235–1248. [Google Scholar] [CrossRef]
- Bhatt, V.; Kumari, S.; Upadhyay, P.; Agrawal, P.; Anmol; Sahal, D.; Sharma, U. Chemical profiling and quantification of potential active constituents responsible for the antiplasmodial activity of Cissampelos pareira. J. Ethnopharmacol. 2020, 262, 113185. [Google Scholar] [CrossRef]
- Yan, R.; Wang, W.; Guo, J.; Liu, H.; Zhang, J.; Yang, B. Studies on the alkaloids of the bark of Magnolia officinalis: Isolation and on-line analysis by HPLC-ESI-MS(n). Molecules 2013, 18, 7739–7750. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Zhang, X.; Xu, H.; Liu, C. Chemical fingerprint analysis of Phellodendri Amurensis Cortex by ultra performance LC/Q-TOF-MS methods combined with chemometrics. J. Sep. Sci. 2010, 33, 3347–3353. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, Y.; He, J.; Kang, Y.; Wang, Y.; Yang, P.; Guo, J.; Huang, J. Structural Characterisation of Alkaloids in Leaves and Roots of Stephania kwangsiensis by LC-QTOF-MS. Phytochem. Anal. 2018, 29, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Thuy, T.; Van Sung, T.; Franke, K.; Wessjohann, L. Aporphine and proaporphine alkaloids from Stephania rotunda. TAP CHI HOA HOC 2005, 43, 0378–2336. [Google Scholar]
- Zhang, S.; Zhang, Q.; Guo, Q.; Zhao, Y.; Gao, X.; Chai, X.; Tu, P. Characterization and simultaneous quantification of biological aporphine alkaloids in Litsea cubeba by HPLC with hybrid ion trap time-of-flight mass spectrometry and HPLC with diode array detection. J. Sep. Sci. 2015, 38, 2614–2624. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, Y.; Jiang, L.; Li, C.; Sun, Z.; Zhang, Y.; Lin, T.; Jiang, Y.; Liu, B. A triple combination strategy of UHPLC-MS(n), hypolipidemic activity and transcriptome sequencing to unveil the hypolipidemic mechanism of Nelumbo nucifera alkaloids. J. Ethnopharmacol. 2022, 282, 114608. [Google Scholar] [CrossRef]
- Wu, X.L.; Wu, M.J.; Chen, X.Z.; Zhang, H.M.; Ding, L.Q.; Tian, F.Y.; Fu, X.M.; Qiu, F.; Zhang, D.Q. Rapid characterization of the absorbed chemical constituents of Tangzhiqing formula following oral administration using UHPLC-Q-TOF-MS. J. Sep. Sci. 2018, 41, 1025–1038. [Google Scholar] [CrossRef]
- Conceição, R.S.; Reis, I.M.A.; Cerqueira, A.P.M.; Perez, C.J.; Junior, M.; Branco, A.; Ifa, D.R.; Botura, M.B. Rapid structural characterisation of benzylisoquinoline and aporphine alkaloids from Ocotea spixiana acaricide extract by HPTLC-DESI-MS(n). Phytochem. Anal. 2020, 31, 711–721. [Google Scholar] [CrossRef]
- Lockwood, G.B. Orientalidine and isothebaine from cell cultures of Papaver bracteatum. Phytochemistry 1981, 20, 1463–1464. [Google Scholar] [CrossRef]
- Lima, B.R.D.; Silva, F.; Soares, E.R.; Almeida, R.A.D.; Silva-Filho, F.A.D.; Barison, A.; Costa, E.V.; Koolen, H.H.; de Souza, A.D.; Pinheiro, M.L.B. Integrative approach based on leaf spray mass spectrometry, HPLC-DAD-MS/MS, and NMR for comprehensive characterization of isoquinoline-derived alkaloids in leaves of Onychopetalum amazonicum RE Fr. J. Braz. Chem. Soc. 2020, 31, 79–89. [Google Scholar] [CrossRef]
- Le, P.M.; Srivastava, V.; Nguyen, T.T.; Pradines, B.; Madamet, M.; Mosnier, J.; Trinh, T.T.; Lee, H. Stephanine from Stephania venosa (Blume) Spreng Showed Effective Antiplasmodial and Anticancer Activities, the Latter by Inducing Apoptosis through the Reverse of Mitotic Exit. Phytother. Res. 2017, 31, 1357–1368. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.; Yuan, C.M.; Gu, Y.; Hao, X.J.; Huang, L.J.; Mu, S.Z.; Zhang, J.X. Chemical constituents of Sabia parviflora. Chin. Tradit. Herb. Drugs 2015, 46, 0253–2670. [Google Scholar]
- Guo, K.; Tong, C.; Fu, Q.; Xu, J.; Shi, S.; Xiao, Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLCDADQTOF-MS/MS. J. Pharm. Biomed. Anal. 2019, 170, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Castro-Saavedra, S.; Fuentes-Barros, G.; Tirapegui, C.; Acevedo-Fuentes, W.; Cassels, B.K.; Barriga, A.; Vilches-Herrera, M. Phytochemical analysis of alkaloids from the chilean endemic tree Cryptocarya alba. J. Chil. Chem. Soc. 2016, 61, 3076–3080. [Google Scholar] [CrossRef] [Green Version]
- Ng, K.M.; Liang, Z.; Lu, W.; Tang, H.W.; Zhao, Z.; Che, C.M.; Cheng, Y.C. In vivo analysis and spatial profiling of phytochemicals in herbal tissue by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2007, 79, 2745–2755. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, Y.; Branfman, A.R.; Baldessarini, R.J.; Neumeyer, J.L. Advances in development of dopaminergic aporphinoids. J. Med. Chem. 2007, 50, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Kuang, T.; Du, H.; Li, Q.; Feng, T.; Zhang, Y.; Fan, G. Magnoflorine: A review of its pharmacology, pharmacokinetics and toxicity. Pharmacol. Res. 2020, 152, 104632. [Google Scholar] [CrossRef]
- Chang, F.R.; Wei, J.L.; Teng, C.M.; Wu, Y.C. Two new 7-dehydroaporphine alkaloids and antiplatelet action aporphines from the leaves of Annona purpurea. Phytochemistry 1998, 49, 2015–2018. [Google Scholar] [CrossRef]
- Lin, C.J.; Chen, C.H.; Liu, F.W.; Kang, J.J.; Chen, C.K.; Lee, S.L.; Lee, S.S. Inhibition of intestinal glucose uptake by aporphines and secoaporphines. Life Sci. 2006, 79, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, G.; Zhang, Y.; Yang, M.; Chen, J.; Guo, M. Potential hypoglycemic, hypolipidemic, and anti-inflammatory bioactive components in Nelumbo nucifera leaves explored by bioaffinity ultrafiltration with multiple targets. Food Chem. 2022, 375, 131856. [Google Scholar] [CrossRef]
Peak | tR(min) | Theoretical Mass m/z | Experimental Mass m/z | Error (ppm) | Formula (M+H)+ or (M)+ | Identification |
---|---|---|---|---|---|---|
1 | 3.32 | 358.1649 | 358.1652 | 0.81 | [C20H24NO5]+ | C6a-hydroxylation of magnoflorine |
2 | 4.02 | 490.2072 | 490.2079 | 1.43 | [C25H31NO9+H]+ | 11-glc-norisocorydine isomer |
3 | 4.05 | 312.1594 | 312.1600 | 1.86 | [C19H22NO3]+ | C2-O-demethylation of magnoflorine isomer |
4 | 4.28 | 358.1649 | 358.1656 | 1.84 | [C20H24NO5]+ | trilobinine isomer |
5 | 5.33 | 278.1175 | 278.1178 | 1.20 | [C18H15NO2+H]+ | dehydroroemerine |
6 | 5.40 | 328.1543 | 328.1546 | 0.81 | [C19H22NO4+H]+ | bolidine isomer |
7 | 5.71 | 340.1543 | 340.1552 | 2.66 | [C20H22NO4]+ | N-methylbulbocapnine isomer |
8 | 5.72 | 358.1649 | 358.1651 | 0.56 | [C20H24NO5]+ | trilobinine isomer |
9 | 5.77 | 314.1386 | 314.1389 | 0.75 | [C18H19NO4+H]+ | laurolitsine |
10 | 5.81 | 298.1437 | 298.1440 | 0.70 | [C18H19NO3+H]+ | apoglaziovine |
11 | 5.83 | 312.1594 | 312.1595 | 0.51 | [C19H22NO3]+ | C2-O-demethylation of magnoflorine isomer |
12 | 5.88 | 328.1543 | 328.1545 | 0.35 | [C19H22NO4+H]+ | bolidine isomer |
13 | 5.99 | 490.2072 | 490.2076 | 0.98 | [C25H31NO9+H]+ | 11-glc-norisocorydine isomer |
14 | 6.04 | 340.1543 | 340.1545 | 0.52 | [C20H22NO4]+ | N-methylbulbocapnine isomer |
15 | 6.05 | 358.1649 | 358.1651 | 0.48 | [C20H24NO5]+ | trilobinine isomer |
16 | 6.22 | 344.1856 | 344.1857 | 0.10 | [C20H26NO4]+ | zizyphusine+2H |
17 | 6.30 | 328.1907 | 328.1908 | 0.15 | [C20H26NO3]+ | N-ring opening-C1-dehydroxylation of magnoflorine isomer |
18 | 6.40 | 328.1543 | 328.1544 | 0.26 | [C19H22NO4+H]+ | bolidine isomer |
19 | 6.70 | 342.1700 | 342.1702 | 0.54 | [C20H24NO4]+ | magnoflorine isomer |
20 | 6.79 | 374.1598 | 374.1596 | 0.47 | [C20H24NO6]+ | di-hydroxylation of magnoflorine |
21 | 7.04 | 312.1594 | 312.1597 | 1.09 | [C19H22NO3]+ | C2-O-demethylation of magnoflorine isomer |
22 | 7.31 | 358.2013 | 358.2012 | −0.32 | [C21H28NO4]+ | pareirarinea isomer |
23 | 7.38 | 282.1489 | 282.1490 | 0.58 | [C18H19NO2+H]+ | lirinidine isomer |
24 | 7.44 | 340.1543 | 340.1546 | 0.78 | [C20H22NO4]+ | N-methylbulbocapnine isomer |
25 | 7.53 | 328.1543 | 328.1545 | 0.35 | [C19H22NO4+H]+ | bolidine isomer |
26 | 7.58 | 358.2013 | 358.2008 | 1.41 | [C21H28NO4]+ | pareirarinea isomer |
27 * | 7.58 | 342.1700 | 342.1703 | 0.89 | [C20H24NO4]+ | magnoflorine |
28 | 7.67 | 294.1488 | 294.1491 | 0.76 | [C19H19NO2+H]+ | dehydronuciferine isomer |
29 | 7.68 | 312.1594 | 312.1597 | 0.90 | [C19H22NO3]+ | C2-O-demethylation of magnoflorine isomer |
30 | 7.69 | 354.1700 | 354.1704 | 1.12 | [C21H24NO4+H]+ | N-methyl nantenine |
31 | 7.72 | 282.1489 | 282.1491 | 0.80 | [C18H19NO2+H]+ | lirinidine isomer |
32 | 7.87 | 312.1594 | 312.1597 | 0.90 | [C19H21NO3+H]+ | isothebaine isomer |
33 | 8.04 | 344.1492 | 344.1495 | 0.85 | [C19H22NO5]+ | N-CH 3 -hydroxylation of C2-O-demethylation of magnoflorine |
34 | 8.04 | 374.1598 | 374.1603 | 1.49 | [C20H24NO6]+ | Di-hydroxylation of magnoflorine |
35 | 8.10 | 358.1649 | 358.1653 | 1.23 | [C20H24NO5]+ | trilobinine isomer |
36 | 8.35 | 356.1856 | 356.1858 | 0.52 | [C21H26NO4]+ | menisperine isomer |
37 | 8.42 | 312.1594 | 312.1594 | 0.19 | [C19H21NO3+H]+ | isothebaine isomer |
38 | 8.66 | 340.1543 | 340.1548 | 0.87 | [C20H21NO4+H]+ | crebanine |
39 | 8.70 | 340.1543 | 340.1546 | 0.69 | [C20H22NO4]+ | N-methylbulbocapnine isomer |
40 | 8.72 | 328.1907 | 328.1906 | −0.24 | [C21H28NO4]+ | N-ring opening-C1-dehydroxylation of magnoflorine isomer |
41 | 8.83 | 400.1755 | 400.1757 | 0.64 | [C22H26NO6]+ | C10-OCH3-hydroxylation and C11-O-acetylation of magnoflorine |
42 | 8.97 | 342.1700 | 342.1702 | 0.63 | [C20H24NO4]+ | magnoflorine isomer |
43 | 9.18 | 356.1856 | 356.1857 | 0.27 | [C21H26NO4]+ | menisperine isomer |
44 | 9.71 | 296.1645 | 296.1646 | 0.45 | [C19H22NO2]+ | C1-demethoxy -C2-dehydrox of magnoflorine isomer |
45 * | 10.29 | 282.1489 | 282.1495 | 0.43 | [C18H19NO2+H]+ | lirinidine |
46 | 10.32 | 374.1598 | 374.1599 | 0.34 | [C20H24NO6]+ | di-hydroxylation of magnoflorine |
47 | 11.27 | 294.1488 | 294.1491 | 1.07 | [C19H19NO2+H]+ | dehydronuciferine isomer |
48 | 11.76 | 384.1805 | 384.1812 | 1.64 | [C22H26NO5]+ | C1-O-acetylation of magnoflorine |
49 | 12.82 | 356.1856 | 356.1861 | 1.39 | [C21H26NO4]+ | menisperine isomer |
50 * | 12.86 | 282.1489 | 282.1493 | 1.54 | [C18H19NO2+H]+ | N-nornuciferine |
51 | 12.94 | 266.1176 | 266.1178 | 1.15 | [C17H15NO2+H]+ | anonaine |
52 | 13.07 | 294.1489 | 294.1491 | 0.23 | [C19H20NO2]+ | roemrefidine |
53 * | 13.10 | 280.1332 | 280.1336 | 1.45 | [C18H18NO2+H]+ | roemerine |
54 | 13.34 | 292.0968 | 292.0972 | 1.40 | [C18H13NO3+H]+ | lysicamine isomers |
55 | 13.50 | 324.1230 | 324.1235 | 1.56 | [C19H17NO4+H]+ | neolitsine isomer |
56 | 13.53 | 356.1492 | 356.1496 | 0.99 | [C20H22NO5]+ | C5-methylene to ketone of magnoflorine |
57 | 13.83 | 312.1230 | 312.1231 | 0.33 | [C18H17NO4+H]+ | nandigerine |
58 | 13.94 | 312.1594 | 312.1598 | 1.28 | [C19H21NO3+H]+ | isothebaine isomer |
59 | 14.11 | 310.1438 | 310.1441 | 0.97 | [C19H20NO3]+ | C1-demethoxy -C2-dehydrox-C10,C11-Ethyl epoxide of magnoflorine isomer |
60 | 14.22 | 310.1437 | 310.1440 | 0.87 | [C19H19NO3+H]+ | stephanine |
61 | 14.26 | 296.1645 | 296.1649 | 1.20 | [C19H22NO2]+ | C1-demethoxy -C2-dehydrox of magnoflorine isomer |
62 | 14.61 | 294.1488 | 294.1493 | 1.38 | [C19H19NO2+H]+ | dehydronuciferine isomer |
63 | 15.99 | 294.1124 | 294.1125 | 0.07 | [C18H15NO3+H]+ | N-formyl-annonain |
64 | 17.08 | 310.1438 | 310.1441 | 0.97 | [C19H20NO3]+ | C1-demethoxy -C2-dehydrox-C10,C11-Ethyl epoxide of magnoflorine isomer |
65 | 17.39 | 324.1230 | 324.1231 | 0.33 | [C19H17NO4+H]+ | neolitsine isomer |
67 | 18.18 | 324.1230 | 324.1234 | 1.16 | [C19H17NO4+H]+ | neolitsine isomer |
68 | 18.53 | 292.0968 | 292.0972 | 1.12 | [C18H13NO3 +H]+ | lysicamine isomer |
69 | 18.81 | 292.0968 | 292.0971 | 0.89 | [C18H13NO3+H]+ | lysicamine isomer |
70 | 19.08 | 338.1386 | 338.1387 | 0.13 | [C20H19NO4+H]+ | sinomendine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
E, S.; Shang, Z.-C.; Qin, S.-h.; Li, K.-l.; Liu, Y.-n.; Wu, J.-L.; Yan, F.; Cai, W. A Systematic Method for the Identification of Aporphine Alkaloid Constituents in Sabia schumanniana Diels Using UHPLC-Q-Exactive Orbitrap/Mass Spectrometry. Molecules 2022, 27, 7643. https://doi.org/10.3390/molecules27217643
E S, Shang Z-C, Qin S-h, Li K-l, Liu Y-n, Wu J-L, Yan F, Cai W. A Systematic Method for the Identification of Aporphine Alkaloid Constituents in Sabia schumanniana Diels Using UHPLC-Q-Exactive Orbitrap/Mass Spectrometry. Molecules. 2022; 27(21):7643. https://doi.org/10.3390/molecules27217643
Chicago/Turabian StyleE, Shuai, Zi-Chao Shang, Shi-han Qin, Kai-lin Li, Yan-nan Liu, Ji-Li Wu, Fang Yan, and Wei Cai. 2022. "A Systematic Method for the Identification of Aporphine Alkaloid Constituents in Sabia schumanniana Diels Using UHPLC-Q-Exactive Orbitrap/Mass Spectrometry" Molecules 27, no. 21: 7643. https://doi.org/10.3390/molecules27217643
APA StyleE, S., Shang, Z. -C., Qin, S. -h., Li, K. -l., Liu, Y. -n., Wu, J. -L., Yan, F., & Cai, W. (2022). A Systematic Method for the Identification of Aporphine Alkaloid Constituents in Sabia schumanniana Diels Using UHPLC-Q-Exactive Orbitrap/Mass Spectrometry. Molecules, 27(21), 7643. https://doi.org/10.3390/molecules27217643