Formulation, Characterization, and Evaluation of Eudragit-Coated Saxagliptin Nanoparticles Using 3 Factorial Design Modules
Abstract
:1. Introduction
2. Results and Discussion
2.1. Drug Solubility Studies
2.2. Determination of Particle Size, Zeta Potential and Polydispersity Index
2.3. Determination of DL and EE
2.4. In Vitro Diffusion Study
2.5. Experimental Design
Response 1: Particle Size
2.6. Particle Size ANOVA for 2FI Model
Response 2: Entrapment Efficiency
2.7. EE ANOVA for 2FI Model
2.8. Desirability
2.9. FTIR Analysis
2.10. DSC Analysis
2.11. Scanning Electron Microscopy (SEM)
2.12. In Vivo Studies
2.13. Stability Studies
3. Materials and Methods
3.1. Materials
3.2. Solubility Studies
3.3. Experimental Design and Statistical Analysis
3.4. Preparation of Saxagliptin Solid Lipid Nanoparticles (SLNs)
3.5. Determination of Particle Size, Polydispersity Index (PDI) and Zeta Potential
3.6. Scanning Electron Microscopy (SEM)
3.7. Determination of Drug Entrapment Efficiency (EE) and Drug Loading (DL)
3.8. In Vitro Diffusion Study
3.9. Fourier-Transform Infrared Spectroscopy (FTIR)
3.10. Differential Scanning Calorimetry (DSC)
3.11. In Vivo Studies
3.12. Stability Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chandira, R.M. Formulation and evaluation of saxagliptin immediate release and metformin hydrochloride sustained release tablet. Int. J. Med. Sci. 2013, 1, 36–52. [Google Scholar]
- Sepeheri, Z.; Kiani, Z.; Afshari, M.; Koham, F.; Dalvand, A.; Ghavami, S. Inflammasome and type 2 diabetes: An updated systemic review. Immunol. Lett. 2017, 192, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.S.; Shah, K.U.; Khan, T.M.; Rehman, A.U.; Rashid, H.U.; Mahmood, S.; Khan, S.; Farrukh, M.J. Evaluation of current trends and recent development in insulin therapy for management of diabetes mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S833–S839. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, R. Vegetarian Diets in the Prevention and Management of Diabetes and Its Complications. Diabetes Spectr. 2017, 30, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Sena, C.M.; Bento, C.F.; Pereira, P.; Seiça, R. Diabetes mellitus: New challenges and innovative therapies. EPMA J. 2010, 1, 138–163. [Google Scholar] [CrossRef] [Green Version]
- Abdelsaid, M.; Williams, R.; Hardigan, T.; Ergul, A. Linagliptin attenuates diabetes-induced cerebral pathological neovascularization in a blood glucose-independent manner: Potential role of ET-1. Life Sci. 2016, 159, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Neumiller, J.J.; Setter, S.M. Review of Linagliptin for the Treatment of Type 2 Diabetes Mellitus. Clin. Ther. 2012, 34, 993–1005. [Google Scholar] [CrossRef]
- Devarajan, P.V.; Sonavane, G.S. Preparation and In Vitro/In Vivo Evaluation of Gliclazide Loaded Eudragit Nanoparticles as a Sustained Release Carriers. Drug Dev. Ind. Pharm. 2007, 33, 101–111. [Google Scholar] [CrossRef]
- Nimbalkar, U.A.; Dhoka, M.V.; Sonawane, P.A. Formulation and optimization of cefpodoxime proxetil loaded solid lipid nanoparticles by box-behnken design. Int. J. Res. Ayurveda Pharm. 2011, 2, 1779–1785. [Google Scholar]
- Rohit, B.; Pal, K.I. A method to prepare solid lipid nanoparticles with improved entrapment efficiency of hydrophilic drugs. Curr. Nanosci. 2013, 9, 211–220. [Google Scholar] [CrossRef]
- Wan, F.; You, J.; Sun, Y.; Zhang, X.-G.; Cui, F.-D.; Du, Y.-Z.; Yuan, H.; Hu, F.-Q. Studies on PEG-modified SLNs loading vinorelbine bitartrate (I): Preparation and evaluation in vitro. Int. J. Pharm. 2008, 359, 104–110. [Google Scholar] [CrossRef]
- Schernthaner, G.; Durán-Garcia, S.; Hanefeld, M.; Langslet, G.; Niskanen, L.; Östgren, C.J.; Malvolti, E.; Hardy, E. Efficacy and tolerability of saxagliptin compared with glimepiride in elderly patients with type 2 diabetes: A randomized, controlled study (GENERATION). Diabetes Obes. Metab. 2015, 17, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.E.; Krum, H. Heart failure in diabetes: Effects of anti-hyperglycaemic drug therapy. Lancet 2015, 385, 2107–2117. [Google Scholar] [CrossRef]
- Dave, D.J. Saxagliptin: A dipeptidyl peptidase-4 inhibitor in the treatment of type 2 diabetes mellitus. J. Pharmacol. Pharmacother. 2011, 2, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Merey, H.A.; Ramadan, N.K.; Diab, S.S.; Moustafa, A.A. Chromatographic methods for the simultaneous determination of binary mixture of Saxagliptin HCl and Metformin HCl. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 311–317. [Google Scholar] [CrossRef]
- Grover, M.; Utreja, P. Recent advances in drug delivery systems for anti-diabetic drugs: A review. Curr. Drug Deliv. 2014, 11, 444–457. [Google Scholar] [CrossRef]
- Müller, R.H.; Mäder, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery—A Review of the State of the Art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Ebrahimi, H.A.; Javadzadeh, Y.; Hamidi, M.; Jalali, M.B. Repaglinide-loaded solid lipid nanoparticles: Effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. DARU J. Pharm. Sci. 2015, 23, 46. [Google Scholar] [CrossRef]
- Rasul, A.; Maheen, S.; Khan, H.U.; Rasool, M.; Shah, S.; Abbas, G.; Afzal, K.; Tariq, F.; Shahzadi, I.; Bin Asad, M.H.H. Formulation, Optimization, In Vitro and In Vivo Evaluation of Saxagliptin-Loaded Lipospheres for an Improved Pharmacokinetic Behavior. BioMed Res. Int. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Patil, N.D.; Gondkar, S.; Saudagar, R. Formulation and Evaluation of Mucoadhesive Buccal Patch of Saxagliptin Hydrochloride. Res. J. Pharm. Dos. Forms Technol. 2016, 8, 237. [Google Scholar] [CrossRef]
- Shinde, C.G.; Pramod Kumar, T.M.; Venkatesh, M.P.; Rajesh, K.S.; Srivastava, A.; Osmani, R.A.M.; Sonawane, Y.H. Intra-articular delivery of a methotrexate loaded nanostructured lipid carrier based smart gel for effective treatment of rheumatic diseases. RSC Adv. 2016, 6, 12913–12924. [Google Scholar] [CrossRef]
- Bibi, M.; Din, F.U.; Anwar, Y.; Alkenani, N.A.; Zari, A.T.; Mukhtiar, M.; Abu Zeid, I.M.; Althubaiti, E.H.; Nazish, H.; Zeb, A.; et al. Cilostazol-loaded solid lipid nanoparticles: Bioavailability and safety evaluation in an animal model. J. Drug Deliv. Sci. Technol. 2022, 74, 103581. [Google Scholar] [CrossRef]
- Begum, M.Y.; Osmani, R.A.M.; Alqahtani, A.; Ghazwani, M.; Hani, U.; Ather, H.; Atiya, A.; Rahamathulla, M.; Siddiqua, A. Development of stealth liposomal formulation of celecoxib: In vitro and in vivo evaluation. PLoS ONE. 2022, 17, e0264518. [Google Scholar] [CrossRef]
- Madkhali, O.A. Perspectives and Prospective on Solid Lipid Nanoparticles as Drug Delivery Systems. Molecules 2022, 27, 1543. [Google Scholar] [CrossRef]
- Pignatello, R.; Amico, D.; Chiechio, S.; Spadaro, C.; Puglisi, G.; Giunchedi, P. Preparation and Analgesic Activity of Eudragit RS100 Microparticles Containing Diflunisal. Drug Deliv. 2001, 8, 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawar, P.; Sharma, P.; Chawla, A.; Mehta, R. Formulation and in vitro evaluation of Eudragit S-100 coated naproxen matrix tablets for colon-targeted drug delivery system. J. Adv. Pharm. Technol. Res. 2013, 4, 31–41. [Google Scholar] [CrossRef]
- Osmani, R.A.M.; Kulkarni, P.K.; Shanmuganathan, S.; Hani, U.; Srivastava, A.; Prerana, M.; Shinde, C.G.; Bhosale, R.R. A 32 full factorial design for development and characterization of a nanosponge-based intravaginal in situ gelling system for vulvovaginal candidiasis. RSC Adv. 2016, 6, 18737–18750. [Google Scholar] [CrossRef]
- Osmani, R.A.M.; Aloorkar, N.H.; Ingale, D.J.; Kulkarni, P.K.; Hani, U.; Bhosale, R.R.; Dev, D.J. Microsponges based novel drug delivery system for augmented arthritis therapy. Saudi Pharm. J. 2015, 23, 562–572. [Google Scholar] [CrossRef] [Green Version]
- Shinde, B.S.; Kalshetti, M.S.; Kokane, A.P. UV-Spectrophotometric method development and validation for estimation of saxagliptin in api and pharmaceutical dosage form. Int. J. Curr. Pharm. Res. 2020, 12, 63–66. [Google Scholar] [CrossRef]
- Shah, H.A.; Patel, R.P. Statistical modeling of zaltoprofen loaded biopolymeric nanoparticles: Characterization and anti-inflammatory activity of nanoparticles loaded gel. Int. J. Pharm. Investig. 2015, 5, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Hosny, K.M. Alendronate Sodium as Enteric Coated Solid Lipid Nanoparticles; Preparation, Optimization, and In Vivo Evaluation to Enhance Its Oral Bioavailability. PLoS ONE 2016, 11, e0154926. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, W.; Xu, L.; Gao, Y.; Wang, X.; Zhu, D.; Chen, Z.; Zhang, X.; Chen, H.; Mei, L. A pH-sensitive methenamine mandelate-loaded nanoparticle induces DNA damage and apoptosis of cancer cells. Acta Biomater. 2017, 62, 246–256. [Google Scholar] [CrossRef]
- Khaira, R.; Sharma, J.; Saini, V. Development and Characterization of Nanoparticles for the Delivery of Gemcitabine Hydrochloride. Sci. World J. 2014, 2014, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Zinjad, S.S.; Patel, S.G.; Gaikwad, D.D.; Jadhav, S.L. Analytical method development of saxagliptin HCl by RP-HPLC. J. Drug Deliv. Ther. 2019, 4, 274–278. [Google Scholar]
- Rakesh, K.S.; Navneet, S.; Sudha, R.; Kumar, H.G.S. Solid lipid nanoparticles as a carrier of metformin for transdermal delivery. Int. J. Drug Deliv. 2013, 5, 137–145. [Google Scholar]
- Rajput, A.; Osmani, R.A.M.; Khire, A.; Jaiswal, S.; Banerjee, R. Levonorgestrel Microneedle Array Patch for Sustained Release Contraception: Formulation, Optimization and In Vivo Characterization. Molecules 2022, 27, 2349. [Google Scholar] [CrossRef]
- Salem, H.; Badr, K. Quantification of saxagliptin hydrochloride in human plasma and dosage forms by HPLC-MS/MS method and its application to a bioequivalence study. Clin. Pharmacol. Biopharm. 2021, 10, 1–6. [Google Scholar]
- Amaran, G. Bio Analytical Method Development and Validation of Saxagliptin in Human Plasma by RP-HPLC Method. Doctoral Dissertation, KMCH College of Pharmacy, Coimbatore, India, 2014; pp. 1–209. [Google Scholar]
- Homayouni, A.; Sadeghi, F.; Nokhodchi, A.; Varshosaz, J.; Garekani, H.A. Preparation and characterization of celecoxib solid dispersions; comparison of poloxamer-188 and PVP-K30 as carriers. Iran J. Basic Med. Sci. 2014, 17, 322–331. [Google Scholar] [CrossRef]
- Osmani, R.A.M.; Aloorkar, N.H.; Thaware, B.U.; Kulkarni, P.K.; Moin, A.; Hani, U.; Srivastava, A.; Bhosale, R.R. Microsponge based drug delivery system for augmented gastroparesis therapy: Formulation development and evaluation. Asian J. Pharm. Sci. 2015, 10, 442–451. [Google Scholar] [CrossRef]
- Bajaj, S.; Singla, D.; Sakhuja, N. Stability testing of pharmaceutical products. J. Appl. Pharm. Sci. 2012, 2, 129–138. [Google Scholar]
Run | Independent Factors | Responses | ||||
---|---|---|---|---|---|---|
A1 * (%) | A2 * (mg) | A3 * (mg) | A4 * (rpm) | R1 * (nm) | R2 * (%) | |
1. | 10 | 40 | 3 | 4000 | 305 | 56.29 |
2. | 15 | 20 | 2 | 3000 | 369 | 59.12 |
3. | 10 | 60 | 2 | 4000 | 293 | 55.64 |
4. | 5 | 60 | 2 | 4000 | 227 | 51.81 |
5. | 15 | 60 | 2 | 5000 | 401 | 62.86 |
6. | 10 | 60 | 2 | 3000 | 274 | 55.3 |
7. | 10 | 20 | 1 | 3000 | 243 | 53.19 |
8. | 5 | 40 | 2 | 5000 | 240 | 52.89 |
9. | 10 | 60 | 3 | 3000 | 221 | 51.42 |
10. | 10 | 60 | 1 | 5000 | 212 | 50.23 |
11. | 5 | 40 | 1 | 4000 | 224 | 51.56 |
12. | 5 | 40 | 2 | 3000 | 220 | 50.99 |
13. | 15 | 60 | 3 | 4000 | 399 | 62.08 |
14. | 5 | 60 | 1 | 3000 | 265 | 54.39 |
15. | 15 | 40 | 1 | 3000 | 409 | 65.18 |
16. | 15 | 60 | 2 | 3000 | 408 | 64.93 |
17. | 15 | 40 | 1 | 5000 | 392 | 61.29 |
18. | 10 | 20 | 2 | 4000 | 248 | 53.26 |
19. | 5 | 20 | 3 | 3000 | 208 | 49.96 |
20. | 10 | 20 | 3 | 5000 | 270 | 55.02 |
21. | 5 | 60 | 1 | 5000 | 239 | 52.16 |
22. | 5 | 60 | 3 | 4000 | 245 | 53.26 |
23. | 15 | 60 | 1 | 3000 | 403 | 63.99 |
24. | 15 | 40 | 2 | 4000 | 385 | 60.21 |
25. | 10 | 40 | 1 | 4000 | 356 | 57.85 |
26. | 5 | 40 | 3 | 5000 | 323 | 56.76 |
27. | 10 | 40 | 2 | 5000 | 240 | 52.65 |
28. | 5 | 20 | 2 | 5000 | 215 | 50.59 |
29. | 15 | 20 | 1 | 5000 | 359 | 58.01 |
30. | 5 | 20 | 1 | 4000 | 261 | 54.19 |
31. | 10 | 40 | 1 | 3000 | 278 | 55.49 |
32. | 10 | 60 | 1 | 4000 | 243 | 53.15 |
33. | 15 | 20 | 3 | 4000 | 346 | 57.05 |
34. | 15 | 60 | 1 | 4000 | 442 | 69.21 |
35. | 15 | 60 | 3 | 5000 | 413 | 67.08 |
36. | 15 | 40 | 3 | 3000 | 396 | 61.32 |
37. | 15 | 20 | 1 | 4000 | 382 | 60.15 |
38. | 5 | 20 | 1 | 3000 | 254 | 53.87 |
39. | 10 | 40 | 3 | 4000 | 305 | 56.29 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Remark |
---|---|---|---|---|---|---|
Model | 164.06 | 32 | 5.13 | 5.62 | 0.0311 | Significant |
A-A1 | 129.80 | 2 | 64.90 | 71.09 | 0.0002 | |
B-A2 | 4.07 | 2 | 2.04 | 2.23 | 0.2031 | |
C-A3 | 1.50 | 2 | 0.7501 | 0.8217 | 0.4914 | |
D-A4 | 0.7704 | 2 | 0.3852 | 0.4219 | 0.6771 | |
AB | 2.79 | 4 | 0.6987 | 0.7654 | 0.5906 | |
AC | 0.6087 | 4 | 0.1522 | 0.1667 | 0.9464 | |
AD | 3.49 | 4 | 0.8717 | 0.9548 | 0.5040 | |
BC | 2.49 | 4 | 0.6235 | 0.6830 | 0.6333 | |
BD | 0.2405 | 4 | 0.0601 | 0.0659 | 0.9896 | |
CD | 4.86 | 4 | 1.22 | 1.33 | 0.3735 | |
Residual | 4.56 | 5 | 0.9129 | |||
Cor Total | 168.60 | 37 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Remark |
---|---|---|---|---|---|---|
Model | 936.55 | 32 | 29.27 | 5.68 | 0.0304 | Significant |
A-A1 | 677.36 | 2 | 338.68 | 65.73 | 0.0003 | |
B-A2 | 49.76 | 2 | 24.88 | 4.83 | 0.0680 | |
C-A3 | 12.52 | 2 | 6.26 | 1.21 | 0.3716 | |
D-A4 | 2.14 | 2 | 1.07 | 0.2074 | 0.8193 | |
AB | 38.48 | 4 | 9.62 | 1.87 | 0.2543 | |
AC | 11.71 | 4 | 2.93 | 0.5684 | 0.6980 | |
AD | 11.23 | 4 | 2.81 | 0.5447 | 0.7120 | |
BC | 3.94 | 4 | 0.9851 | 0.1912 | 0.9330 | |
BD | 2.53 | 4 | 0.6328 | 0.1228 | 0.9681 | |
CD | 53.89 | 4 | 13.47 | 2.62 | 0.1601 | |
Residual | 25.76 | 5 | 5.15 | |||
Cor Total | 962.32 | 37 |
Product | Cmax (mcg/mL) * | Tmax (h) * | Kel (h−1) * | (AUC)0t (ng/mL × h) * |
---|---|---|---|---|
Pure drug | 4.7 ± 0.16 | 2 | 0.061 | 78 ± 5.45 |
Optimized SLN’s formulation | 5.1 ± 0.22 | 3 | 0.036 | 112 ± 3.98 |
Storage Condition | Sampling Interval | Physical Appearance | Drug Content (%) |
---|---|---|---|
25 ± 2 °C/60 ± 5% RH | 0 | No change | 100 |
1 | No change | 99.54 ± 0.58 | |
3 | No change | 98.85 ± 0.98 | |
6 | No change | 97.12 ± 0.45 | |
30 ± 2 °C/65 ± 5% RH | 0 | No change | 100 |
1 | No change | 99.28 ± 0.85 | |
3 | No change | 98.71 ± 0.68 | |
6 | No change | 97.25 ± 0.94 | |
40 ± 2 °C/75 ± 5% RH | 0 | No change | 100 |
1 | No change | 99.06 ± 0.39 | |
3 | No change | 98.29 ± 0.23 | |
6 | No change | 97.01 ± 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhamhoom, Y.; Ravi, G.; Osmani, R.A.M.; Hani, U.; Prakash, G.M. Formulation, Characterization, and Evaluation of Eudragit-Coated Saxagliptin Nanoparticles Using 3 Factorial Design Modules. Molecules 2022, 27, 7510. https://doi.org/10.3390/molecules27217510
Alhamhoom Y, Ravi G, Osmani RAM, Hani U, Prakash GM. Formulation, Characterization, and Evaluation of Eudragit-Coated Saxagliptin Nanoparticles Using 3 Factorial Design Modules. Molecules. 2022; 27(21):7510. https://doi.org/10.3390/molecules27217510
Chicago/Turabian StyleAlhamhoom, Yahya, Gundawar Ravi, Riyaz Ali M. Osmani, Umme Hani, and Gowrav M. Prakash. 2022. "Formulation, Characterization, and Evaluation of Eudragit-Coated Saxagliptin Nanoparticles Using 3 Factorial Design Modules" Molecules 27, no. 21: 7510. https://doi.org/10.3390/molecules27217510
APA StyleAlhamhoom, Y., Ravi, G., Osmani, R. A. M., Hani, U., & Prakash, G. M. (2022). Formulation, Characterization, and Evaluation of Eudragit-Coated Saxagliptin Nanoparticles Using 3 Factorial Design Modules. Molecules, 27(21), 7510. https://doi.org/10.3390/molecules27217510