Applications of Nanomaterials in Microbial Fuel Cells: A Review
Abstract
:1. Introduction
2. The Anode
2.1. Properties of Anode Materials
2.1.1. Electrical Conductivity
2.1.2. Surface Area
2.1.3. Biocompatibility
2.1.4. Stability and Durability
2.1.5. Ease of Access to Materials and Cost
2.2. Materials Used in Anodes
2.2.1. Carbon Materials
2.2.2. Graphite–Graphene Materials
2.2.3. Metal/Metal Oxides Materials
Molybdenum
Titanium
Stainless Steel
2.2.4. Natural Waste Materials
2.3. Nanomaterials as Anode in MFCs
2.3.1. Carbon Nanomaterials
Carbon Nanotubes (CNTs)
Carbon Nanofibers (NFs) and Nanospheres (CNs)
Graphene Nanomaterials
GAC Nanomaterials
Carbon Nanofibers (CNF)
2.3.2. Metal Nanomaterials
Manganese Dioxide (MnO2) and Iron Oxide Based Nanomaterials
Titanium Oxide (TiO2) and Tin Oxide (SnO2) Nanomaterials
Gold Nanoparticles (Au NPs)
2.4. Polymer (Polyaniline-Pyrrole) Nanomaterials
3. The Cathode
3.1. Materials Used in Cathodes
3.1.1. Carbon Materials
3.1.2. Graphite–Graphene Materials
3.1.3. Metal-Metal Oxides Materials
3.2. Nanomaterials as Cathode in MFC
4. The Membrane
4.1. Nanomaterials as Membrane in MFC
4.1.1. Poly Ether Sulfone (PES)/Fe3O4 as Nano-Membrane
4.1.2. Sulfonated Poly Ether Ketone (SPEK) as Nano-Membrane
4.1.3. Polyvinylidene Fluoride (PVDF) as Nano-Membrane
4.1.4. Sulfonated Polystyrene-Ethylene-Butylene-Polystyrene (SPEBP) as Nano-Membranes
4.1.5. CNF/Nafion and Activated Carbon Nanofiber (ACNF)/Nafion as Nano-Membranes
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
ACNF | Activated carbon nano-fiber |
Ag NPs | Silver nanoparticles |
Au NPs | Gold nanoparticles |
CB | Carbon black |
CNF | Carbon nano-fibers |
CNTs | Carbon nanotubes |
Co | Cobalt |
COD | Chemical oxygen demand |
CoO2 | Cobalt oxide |
CoTMPP | Cobalt tetra-methyl phenyl porphyrin |
EIS | Electrochemical impedance spectroscopy |
ETR | Electron transfer rate |
Fe Pc | Iron phthalo cyanine |
GAC | Granular activated carbon |
GO | Graphene oxide |
MFCs | Microbial fuel cells |
MnO2 | Manganese dioxide |
MnO2NPs | Manganese oxide nanoparticles |
MNPs | Montmorillonite nanoparticles |
MWCNTs | Multi-walled carbon nanotubes |
ORR | Oxygen reduction reaction |
PEM | Proton exchange membrane |
PES | Poly Ether Sulfone |
Pt | Platinum |
Pt NPs | Platinum nanoparticles |
PVA | Polyvinyl alcohol |
PVDF | Polyvinylidene fluoride |
RGO | Reduced graphene oxide |
SnO2 | Tin oxide |
SPEBP | Sulfone polystyrene-ethylene-butylene-polystyrene |
SPEEK | Sulfonated Poly Ether ketone |
SS | Sulfone styrene |
TOC | Total organic carbon |
V2O5 | Vanadium pentoxide |
References
- Yaqoob, A.A.; Mohamad Ibrahim, M.N.; Rafatullah, M.; Chua, Y.S.; Ahmad, A.; Umar, K. Recent advances in anodes for microbial fuel cells: An overview. Materials 2020, 13, 2078. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, L.; Zularisam, A.W.; Hai, F.I. Microbial fuel cell is emerging as a versatile technology: A review on its possible applications, challenges and strategies to improve the performances. Int. J. Energy Res. 2018, 42, 369–394. [Google Scholar] [CrossRef] [Green Version]
- Asim, A.Y.; Mohamad, N.; Khalid, U.; Tabassum, P.; Akil, A.; Lokhat, D.; Hamidah, S.; Setaparc, M. A glimpse into the microbial fuel cells for wastewater treatment with energy generation. Desalination Water Treat. 2021, 214, 379–389. [Google Scholar] [CrossRef]
- Rambabu, G.; Sasikala, S.; Bhat, S.D. Nanocomposite membranes of sulfonated poly(phthalalizinone ether ketone)–sulfonated graphite nanofibers as electrolytes for direct methanol fuel cells. RSC Adv. 2016, 6, 107507–107518. [Google Scholar] [CrossRef]
- Rambabu, G.; Turtayeva, Z.; Xu, F.; Maranzana, G.; Emo, M.; Hupont, S.; Mamlouk, M.; Desforges, A.; Vigolo, B. Insights into the electrocatalytic behavior of nitrogen and sulfur co-doped carbon nanotubes toward oxygen reduction reaction in alkaline media. J. Mater. Sci. 2022, 57, 16739–16754. [Google Scholar] [CrossRef]
- Salar-García, M.J.; Ortiz-Martínez, V.M. Nanotechnology for Wastewater Treatment and Bioenergy Generation in Microbial Fuel Cells. In Advanced Research in Nanosciences for Water Technology; Springer: Cham, Switzerland, 2019; Volume 15, pp. 341–362. [Google Scholar]
- Qiu, S.; Guo, Z.; Naz, F.; Yang, Z.; Yu, C. An overview in the development of cathode materials for the improvement in power generation of microbial fuel cells. Bioelectrochemistry 2021, 141, 107834. [Google Scholar] [CrossRef]
- Bakonyi, P.; Koók, L.; Kumar, G.; Tóth, G.; Rózsenberszki, T.; Nguyen, D.D.; Chang, S.W.; Zhen, G.; Belafi-Bako, K.; Nemestóthy, N. Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: A comprehensive update on recent progress and future prospects. J. Membr. Sci. 2018, 564, 508–522. [Google Scholar] [CrossRef] [Green Version]
- Koók, L.; Desmond-Le Quéméner, E.; Bakonyi, P.; Zitka, J.; Trably, E.; Tóth, G.; Pavlovec, L.; Pientka, Z.; Bernet, N.; Belafi-Bako, K.; et al. Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators. Bioresour. Technol. 2019, 278, 279–286. [Google Scholar] [CrossRef]
- Kamali, M.; Aminabhavi, T.M.; Abbassi, R.; Dewil, R.; Appels, L. Engineered nanomaterials in microbial fuel cells–recent developments, sustainability aspects, and future outlook. Fuel 2022, 310, 122347. [Google Scholar] [CrossRef]
- Salva, N.; Anand, R.; Pandit, S.; Prasad, R. Utilization of Nanomaterials as Anode Modifiers for Improving Microbial Fuel Cells Performance. J. Renew. Mater. 2020, 8, 1581–1605. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Rodríguez-Couto, S. Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview. Biochem. Eng. J. 2020, 164, 107779. [Google Scholar] [CrossRef]
- Li, S.; Cheng, C.; Thomas, A. Carbon-based microbial-fuel-cell electrodes: From conductive supports to active catalysts. Adv. Mater. 2017, 29, 1602547. [Google Scholar] [CrossRef] [PubMed]
- Din, M.I.; Iqbal, M.; Hussain, Z.; Khalid, R. Bioelectricity generation from waste potatoes using single chambered microbial fuel cell. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–11. [Google Scholar] [CrossRef]
- Rambabu, G.; Bhat, S.D.; Figueiredo, F.M.L. Carbon Nanocomposite Membrane Electrolytes for Direct Methanol Fuel Cells—A Concise Review. Nanomaterials 2019, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Niu, T.; Huang, W.; Zhang, C.; Zeng, T.; Chen, J.; Li, Y.; Liu, Y. Study of degradation of fuel cell stack based on the collected high-dimensional data and clustering algorithms calculations. Energy AI 2022, 10, 100184. [Google Scholar] [CrossRef]
- Zengm, T.; Zhang, C.; Zhou, A.; Wu, Q.; Deng, C.; Chan, S.H.; Chen, J.; Foley, A.M. Enhancing reactant mass transfer inside fuel cells to improve dynamic performance via intelligent hydrogen pressure control. Energy 2021, 230, 120620. [Google Scholar] [CrossRef]
- Yalikun, N.; Xu, L.; Yang, X.Q.; Wang, Q. Highly Sensitive Electrochemical Sensor for the Detection of Hydroquinone and Catechol Based on Biomass Derived Activated Carbon. Sci. Adv. Mater. 2021, 13, 2178–2184. [Google Scholar] [CrossRef]
- Kim, G.Y.; Im, G.B.; Choe, H.S.; Park, J.M.; Kim, J.H.; Bhang, S.H. Fabrication of Photothermal Film for Deicing Process Based on Gold Nano-Aggregate Encapsulated Yolk-Shell Structure. Sci. Adv. Mater. 2021, 13, 1424–1429. [Google Scholar] [CrossRef]
- Kang, Y.L.; Pichiah, S.; Ibrahim, S. Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensified electricity generation. Int. J. Hydrog. Energy 2017, 42, 1661–1671. [Google Scholar] [CrossRef]
- Logan, B.E.; Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337, 686–690. [Google Scholar] [CrossRef]
- Wei, J.; Liang, P.; Huang, X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102, 9335–9344. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhu, J.; Baumann, D.; Peng, L.; Xu, Y.; Shakir, I.; Huang, Y.; Duan, X. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 2019, 4, 45–60. [Google Scholar] [CrossRef]
- Palanisamy, G.; Jung, H.Y.; Sadhasivam, T.; Kurkuri, M.D.; Kim, S.C.; Roh, S.H. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes. J. Clean. Prod. 2019, 221, 598–621. [Google Scholar] [CrossRef]
- He, Y.; Liu, Z.; Xing, X.H.; Li, B.; Zhang, Y.; Shen, R.; Zhu, Z.; Duan, N. Carbon nanotubes simultaneously as the anode and microbial carrier for up-flow fixed-bed microbial fuel cell. Biochem. Eng. J. 2015, 94, 39–44. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Meng, L.; Chen, G.; Xi, Y.; Jiang, N.; Song, J.; Zhen, S.; Liu, G.Y.; Zhen, G.; Huang, M. Application of advanced anodes in microbial fuel cells for power generation: A review. Chemosphere 2020, 248, 125985. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Chen, S. Improved microbial electrocatalysis with neutral red immobilized electrode. J. Power Sources 2011, 196, 164–168. [Google Scholar] [CrossRef]
- Artyushkova, K.; Roizman, D.; Santoro, C.; Doyle, L.E.; Fatima Mohidin, A.; Atanassov, P.; Marsili, E. Anodic biofilms as the interphase for electroactive bacterial growth on carbon veil. Biointerphases 2016, 11, 031013. [Google Scholar] [CrossRef] [Green Version]
- Le, T.X.H.; Bechelany, M.; Cretin, M. Carbon felt based-electrodes for energy and environmental applications: A review. Carbon 2017, 122, 564–591. [Google Scholar] [CrossRef]
- Caizán-Juanarena, L.; Servin-Balderas, I.; Chen, X.; Buisman, C.J.; ter Heijne, A. Electrochemical and microbiological characterization of single carbon granules in a multi-anode microbial fuel cell. J. Power Sources 2019, 435, 126514. [Google Scholar] [CrossRef]
- Borsje, C.; Liu, D.; Sleutels, T.H.; Buisman, C.J.; ter Heijne, A. Performance of single carbon granules as perspective for larger scale capacitive bioanodes. J. Power Sources 2016, 325, 690–696. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Sharma, Y.; Lei, Y.; Li, B.; Zhou, Q. Microbial fuel cells: The effects of configurations, electrolyte solutions, and electrode materials on power generation. Appl. Biochem. Biotechnol. 2010, 160, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zeng, Y.; Zhao, Y.; Yu, M.; Cheng, F.; Lu, X.; Tong, Y. Monolithic three-dimensional graphene frameworks derived from inexpensive graphite paper as advanced anodes for microbial fuel cells. J. Mater. Chem. A 2016, 4, 6342–6349. [Google Scholar] [CrossRef]
- Haseen, U.; Umar, K.; Ahmad, H.; Parveen, T.; Mohamad Ibrahim, M.N. Graphene and Its Composites: Applications in Environmental Remediation. In Modern Age Waste Water Problems; Springer: Cham, Switzerland, 2020; pp. 85–91. [Google Scholar]
- Ter Heijne, A.; Hamelers, H.V.; Saakes, M.; Buisman, C.J. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim. Acta 2008, 53, 5697–5703. [Google Scholar] [CrossRef]
- Vijay, A.; Khandelwal, A.; Chhabra, M.; Vincent, T. Microbial fuel cell for simultaneous removal of uranium (VI) and nitrate. Chem. Eng. J. 2020, 388, 124157. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, Y.; Guo, C.X.; Lim, S.; Song, H.; Li, C.M. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresour. Technol. 2012, 114, 275–280. [Google Scholar] [CrossRef]
- He, Z.; Liu, J.; Qiao, Y.; Li, C.M.; Tan, T.T.Y. Architecture Engineering of Hierarchically Porous Chitosan/Vacuum-Stripped Graphene Scaffold as Bioanode for High Performance Microbial Fuel Cell. Nano Lett. 2012, 12, 4738–4741. [Google Scholar] [CrossRef]
- Chen, W.; Huang, Y.X.; Li, D.B.; Yu, H.Q.; Yan, L. Preparation of a macroporous flexible three dimensional graphene sponge using an ice-template as the anode material for microbial fuel cells. RSC Adv. 2014, 4, 21619–21624. [Google Scholar] [CrossRef]
- Rahimnejad, M.; Adhami, A.; Darvari, S.; Zirepour, A.; Oh, S.E. Microbial fuel cell as new technology for bioelectricity generation: A review. Alex. Eng. J. 2015, 54, 745–756. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, T.; Yokoyama, H. Molybdenum anode: A novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes. Biotechnol. Biofuels 2018, 11, 39. [Google Scholar] [CrossRef]
- Yin, T.; Lin, Z.; Su, L.; Yuan, C.; Fu, D. Preparation of vertically oriented TiO2 nanosheets modified carbon paper electrode and its enhancement to the performance of MFCs. ACS Appl. Mater. Interfaces 2015, 7, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Firdous, S.; Jin, W.; Shahid, N.; Bhatti, Z.A.; Iqbal, A.; Abbasi, U.; Mahmood, Q.; Ali, A. The performance of microbial fuel cells treating vegetable oil industrial wastewater. Environ. Technol. Innov. 2018, 10, 143–151. [Google Scholar] [CrossRef]
- Della Pina, C.; Falletta, E.; Rossi, M. Conductive materials by metal catalyzed polymerization. Catal. Today 2011, 160, 11–27. [Google Scholar] [CrossRef]
- Nitisoravut, R.; Thanh, C.N.; Regmi, R. Microbial fuel cells: Advances in electrode modifications for improvement of system performance. Int. J. Green Energy 2017, 14, 712–723. [Google Scholar] [CrossRef]
- You, S.J.; Wang, X.H.; Zhang, J.N.; Wang, J.Y.; Ren, N.Q.; Gong, X.B. Fabrication of stainless steel mesh gas diffusion electrode for power generation in microbial fuel cell. Biosens. Bioelectron. 2011, 26, 2142–2146. [Google Scholar] [CrossRef]
- Füeg, M.; Borjas, Z.; Estevez-Canales, M.; Esteve-Núñez, A.; Pobelov, I.V.; Broekmann, P.; Kuzume, A. Interfacial electron transfer between Geobacter sulfurreducens and gold electrodes via carboxylate-alkanethiol linkers: Effects of the linker length. Bioelectrochemistry 2019, 126, 130–136. [Google Scholar] [CrossRef]
- Khudzari, J.M.; Gariépy, Y.; Kurian, J.; Tartakovsky, B.; Raghavan, G.V. Effects of biochar anodes in rice plant microbial fuel cells on the production of bioelectricity, biomass, and methane. Biochem. Eng. J. 2019, 141, 190–199. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Wang, B.; Xuan, J.; Wong, J.W.; Lee, P.K.; Leung, M.K. Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell. Electrochim. Acta 2015, 157, 314–323. [Google Scholar] [CrossRef]
- Chen, S.; He, G.; Hu, X.; Xie, M.; Wang, S.; Zeng, D.; Hou, H.; Schröder, U. A three-dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems. ChemSusChem 2012, 5, 1059–1063. [Google Scholar] [CrossRef]
- Ng, W.P.Q.; Lam, H.L.; Ng, F.Y.; Kamal, M.; Lim, J.H.E. Waste-to-wealth: Green potential from palm biomass in Malaysia. J. Clean. Prod. 2012, 34, 57–65. [Google Scholar] [CrossRef]
- Hindatu, Y.; Annuar, M.S.M.; Gumel, A.M. Mini-review: Anode modification for improved performance of microbial fuel cell. Renew. Sustain. Energy Rev. 2017, 73, 236–248. [Google Scholar] [CrossRef]
- Mohideen, M.M.; Liu, Y.; Ramakrishna, S. Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation. Appl. Energy 2020, 257, 114027. [Google Scholar] [CrossRef]
- Roh, S.H. Layer-by-layer self-assembled carbon nanotube electrode for microbial fuel cells application. J. Nanosci. Nanotechnol. 2013, 13, 4158–4161. [Google Scholar] [CrossRef]
- Cai, T.; Huang, M.; Huang, Y.; Zheng, W. Enhanced performance of microbial fuel cells by electrospinning carbon nanofibers hybrid carbon nanotubes composite anode. Int. J. Hydrog. Energy 2019, 44, 3088–3098. [Google Scholar] [CrossRef]
- Alouane, M.H.H.; Ahmed, F.; Semary NAHEl Aldayel, M.F.; Alhaweti, F.H.; Nasr, O. Application of Optimised Nanocarbon Materials and Biofertilisers as a Potent Superfertiliser: Towards Sustainable Agriculture Production. Sci. Adv. Mater. 2021, 13, 812–819. [Google Scholar] [CrossRef]
- Fang, F.; Zhang, C.; Hu, L. Application of Carbon Nanoparticles in Tracing Sentinel Lymph Node in Endometrial Cancer. Sci. Adv. Mater. 2021, 13, 1858–1864. [Google Scholar] [CrossRef]
- Won, S.; Kim, J.S. Spinach Extract Derived Carbon Dots Decorated on ZnO Nanorods for Photocatalytic Dye Degradation. Sci. Adv. Mater. 2021, 13, 922–926. [Google Scholar] [CrossRef]
- Zhang, Y.; Mo, G.; Li, X.; Zhang, W.; Zhang, J.; Ye, J.; Yu, C. A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources 2011, 196, 5402–5407. [Google Scholar] [CrossRef]
- Figueiredo, J.L.; Pereira, M.F.R.; Freitas, M.M.A.; Orfao, J.J.M. Modification of the surface chemistry of activated carbons. Carbon 1999, 37, 1379–1389. [Google Scholar] [CrossRef]
- Chen, Q.; Pu, W.; Hou, H.; Hu, J.; Liu, B.; Li, J.; Cheng, K.; Huang, L.; Yuan, X.; Yang, H.; et al. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells. Bioresour. Technol. 2018, 249, 567–573. [Google Scholar] [CrossRef]
- Zou, L.; Qiao, Y.; Wu, Z.Y.; Wu, X.S.; Xie, J.L.; Yu, S.H.; Guo, J.; Li, C.M. Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells. Adv. Energy Mater. 2016, 6, 1501535. [Google Scholar] [CrossRef]
- Gajda, I.; Greenman, J.; Ieropoulos, I. Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Appl. Energy 2020, 262, 114475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fan, W.; Li, H.; Zhao, S.; Wang, J.; Wang, B.; Li, C. Extending cycling life of lithium–oxygen batteries based on novel catalytic nanofiber membrane and controllable screen-printed method. J. Mater. Chem. A 2018, 6, 21458–21467. [Google Scholar] [CrossRef]
- Sinha-Ray, S.; Yarin, A.L.; Pourdeyhimi, B. The production of 100/400 nm inner/outer diameter carbon tubes by solution blowing and carbonization of core–shell nanofibers. Carbon 2010, 48, 3575–3578. [Google Scholar] [CrossRef]
- Xu, H.; Quan, X.; Chen, L. A novel combination of bioelectrochemical system with peroxymonosulfate oxidation for enhanced azo dye degradation and MnFe2O4 catalyst regeneration. Chemosphere 2019, 217, 800–807. [Google Scholar] [CrossRef]
- Li, X.F.; Diao, G.Q.; Xie, F.; Liao, W.H.; Agostini, L.; Xiao, D.S.; Liu, G.C.; Wu, W.; Zhan, H.; Huang, S.-W. Influence on Electrochemical Properties of Different Types of Manganese Oxides. Sci. Adv. Mater. 2021, 13, 569–573. [Google Scholar] [CrossRef]
- Nakamura, R.; Kai, F.; Okamoto, A.; Newton, G.J.; Hashimoto, K. Self-constructed electrically conductive bacterial networks. Angew. Chem. 2009, 121, 516–519. [Google Scholar] [CrossRef]
- Sekar, A.D.; Jayabalan, T.; Muthukumar, H.; Chandrasekaran, N.I.; Mohamed, S.N.; Matheswaran, M. Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode. Energy 2019, 172, 173–180. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, W.; Xia, P.; Tu, W.; Ye, C.; He, M. Porous Ni0.1Mn0.9O1.45 microellipsoids as high-performance anode electrocatalyst for microbial fuel cells. Biosens. Bioelectron. 2018, 102, 351–356. [Google Scholar] [CrossRef]
- Peng, X.; Yu, H.; Ai, L.; Li, N.; Wang, X. Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresour. Technol. 2013, 144, 689–692. [Google Scholar] [CrossRef]
- Tang, J.; Yuan, Y.; Liu, T.; Zhou, S. High-capacity carbon-coated titanium dioxide core–shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells. J. Power Sources 2015, 274, 170–176. [Google Scholar] [CrossRef]
- Qiao, Y.; Bao, S.J.; Li, C.M.; Cui, X.Q.; Lu, Z.S.; Guo, J. Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2008, 2, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Liang, Y.; Guo, K.; Chen, W.; Shen, D.; Huang, L.; Zhou, Y.; Wang, M.; Long, Y. TiO2 nanotube arrays modified titanium: A stable, scalable, and cost-effective bioanode for microbial fuel cells. Environ. Sci. Technol. Lett. 2016, 3, 420–424. [Google Scholar] [CrossRef]
- Li, H.; Chang, J.; Liu, P.; Fu, L.; Ding, D.; Lu, Y. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environ. Microbiol. 2015, 17, 1533–1547. [Google Scholar] [CrossRef] [PubMed]
- Mehdinia, A.; Ziaei, E.; Jabbari, A. Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation. Int. J. Hydrog. Energy 2014, 39, 10724–10730. [Google Scholar] [CrossRef]
- Wu, X.; Xiong, X.; Owens, G.; Brunetti, G.; Zhou, J.; Yong, X.; Xie, X.; Zhang, L.; Wei, P.; Jia, H. Anode modification by biogenic gold nanoparticles for the improved performance of microbial fuel cells and microbial community shift. Bioresour. Technol. 2018, 270, 11–19. [Google Scholar] [CrossRef]
- Szöllősi, A.; Hoschke, Á.; Rezessy-Szabó, J.M.; Bujna, E.; Kun, S.; Nguyen, Q.D. Formation of novel hydrogel bio-anode by immobilization of biocatalyst in alginate/polyaniline/titanium-dioxide/graphite composites and its electrical performance. Chemosphere 2017, 174, 58–65. [Google Scholar] [CrossRef]
- Cui, H.F.; Du, L.; Guo, P.B.; Zhu, B.; Luong, J.H. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J. Power Sources 2015, 283, 46–53. [Google Scholar] [CrossRef]
- Xu, H.; Wang, L.; Wen, Q.; Chen, Y.; Qi, L.; Huang, J.; Tang, Z. A 3D porous NCNT sponge anode modified with chitosan and Polyaniline for high-performance microbial fuel cell. Bioelectrochemistry 2019, 129, 144–153. [Google Scholar] [CrossRef]
- Liu, X.; Wu, W.; Gu, Z. Poly (3, 4-ethylenedioxythiophene) promotes direct electron transfer at the interface between Shewanella loihica and the anode in a microbial fuel cell. J. Power Sources 2015, 277, 110–115. [Google Scholar] [CrossRef]
- Chandrasekhar, K.; Prasun, K. Chapter 3.5- Effective and nonprecious cathode catalysts for oxygen reduction reaction in microbial fuel cells. In Microbial Electrochemical Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 485–501. [Google Scholar] [CrossRef]
- Yuan, H.; Hou, Y.; Abu-Reesh, I.M.; Chen, J.; He, Z. Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: A review. Mater. Horiz. 2016, 3, 382–401. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zhou, S.; Zhuang, L. Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells. J. Power Sources 2010, 195, 3490–3493. [Google Scholar] [CrossRef]
- Mshoperi, E.; Fogel, R.; Limson, J. Application of carbon black and iron phthalocyanine composites in bioelectricity production at a brewery wastewater fed microbial fuel cell. Electrochim. Acta 2014, 128, 311–317. [Google Scholar] [CrossRef]
- Zhang, S.; Su, W.; Li, K.; Liu, D.; Wang, J.; Tian, P. Metal organic framework-derived Co3O4/NiCo2O4 double-shelled nanocage modified activated carbon air-cathode for improving power generation in microbial fuel cell. J. Power Sources 2018, 396, 355–362. [Google Scholar] [CrossRef]
- Song, X.; Jiang, Q.; Liu, J.; Shao, Y.; Feng, Y. Enhanced electricity generation and water pressure tolerance using carbon black-based sintered filtration air-cathodes in microbial fuel cells. Chem. Eng. J. 2019, 369, 652–659. [Google Scholar] [CrossRef]
- Koo, B.; Lee, S.M.; Oh, S.E.; Kim, E.J.; Hwang, Y.; Seo, D.; Kim, J.Y.; Kahng, Y.H.; Lee, Y.W.; Chung, S.-Y.; et al. Addition of reduced graphene oxide to an activated-carbon cathode increases electrical power generation of a microbial fuel cell by enhancing cathodic performance. Electrochim. Acta 2019, 297, 613–622. [Google Scholar] [CrossRef]
- Chen, S.; Patil, S.A.; Schröder, U. A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells. Appl. Energy 2018, 211, 1089–1094. [Google Scholar] [CrossRef]
- Freguia, S.; Rabaey, K.; Yuan, Z.; Keller, J. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim. Acta 2007, 53, 598–603. [Google Scholar] [CrossRef]
- ElMekawy, A.; Hegab, H.M.; Losic, D.; Saint, C.P.; Pant, D. Applications of graphene in microbial fuel cells: The gap between promise and reality. Renew. Sustain. Energy Rev. 2017, 72, 1389–1403. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Z.; Sun, P.; Wang, L.; Niu, X.; Wang, S. α-MnO2 nanorods supported on three dimensional graphene as high activity and durability cathode electrocatalysts for magnesium-air fuel cells. Catal. Today 2020, 355, 304–310. [Google Scholar] [CrossRef]
- Dessie, Y.; Tadesse, S.; Eswaramoorthy, R. Review on manganese oxide based biocatalyst in microbial fuel cell: Nanocomposite approach. Mater. Sci. Energy Technol. 2020, 3, 136–149. [Google Scholar] [CrossRef]
- Majidi, M.R.; Farahani, F.S.; Hosseini, M.; Ahadzadeh, I. Low-cost nanowired α-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell. Bioelectrochemistry 2019, 125, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Karthick, S.; Haribabu, K. Bioelectricity generation in a microbial fuel cell using polypyrrole-molybdenum oxide composite as an effective cathode catalyst. Fuel 2020, 275, 117994. [Google Scholar] [CrossRef]
- Tao, J.; Liao, J.; Zou, Z.; Liao, G.; Li, C.; Liu, S. Polypyrrole-Coated Manganese Dioxide Nanowires and Multi-Walled Carbon Nanotubes as High-Performance Electrodes for Zinc-Ion Batteries. J. Nanoelectron. Optoelectron. 2021, 16, 522–527. [Google Scholar] [CrossRef]
- Ghasemi, M.; Ismail, M.; Kamarudin, S.K.; Saeedfar, K.; Daud, W.R.W.; Hassan, S.H.; Heng, L.Y.; Alam, J.; Oh, S.E. Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells. Appl. Energy 2013, 102, 1050–1056. [Google Scholar] [CrossRef]
- Yang, G.; Chen, D.; Lv, P.; Kong, X.; Sun, Y.; Wang, Z.; Yuan, Z.; Liu, H.; Yang, J. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications. Sci. Rep. 2016, 6, 35252. [Google Scholar] [CrossRef] [Green Version]
- Bullock, R.M. Reaction: Earth-abundant metal catalysts for energy conversions. Chem 2017, 2, 444–446. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, J.; Yuan, Y.; Zhou, L.; Kim, S. Carbon supported cobalt oxide nanoparticles–iron phthalocyanine as alternative cathode catalyst for oxygen reduction in microbial fuel cells. J. Power Sources 2012, 208, 170–175. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, B.; Jeon, Y.; Zhong, S.; Zhou, S.; Kim, S. Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Bioresour. Technol. 2011, 102, 5849–5854. [Google Scholar] [CrossRef]
- Haoran, Y.; Lifang, D.; Tao, L.; Yong, C. Hydrothermal synthesis of nanostructured manganese oxide as cathodic catalyst in a microbial fuel cell fed with leachate. Sci. World J. 2014, 2014, 791672. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.; Wang, H.; Wang, J.; Zhong, Q. Carbon-Supported Cu-Doped Mn–Co Spinel-Type Oxides Used as Cathodic Catalysts for the Oxygen Reduction Reaction in Dual-Chambered Microbial Fuel Cells. Energy Technol. 2015, 3, 48–54. [Google Scholar] [CrossRef]
- Ortiz-Martínez, V.M.; Salar-García, M.J.; Touati, K.; Hernández-Fernández, F.J.; De los Ríos, A.P.; Belhoucine, F.; Berrabbah, A.A. Assessment of spinel-type mixed valence Cu/Co and Ni/Co-based oxides for power production in single-chamber microbial fuel cells. Energy 2016, 113, 1241–1249. [Google Scholar] [CrossRef]
- Yang, W.; Peng, Y.; Zhang, Y.; Lu, J.E.; Li, J.; Chen, S. Air cathode catalysts of microbial fuel cell by nitrogen-doped carbon aerogels. ACS Sustain. Chem. Eng. 2018, 7, 3917–3924. [Google Scholar] [CrossRef]
- Pan, F.; Cheng, Q.; Jia, H.; Jiang, Z. Facile approach to polymer–inorganic nanocomposite membrane through a biomineralization-inspired process. J. Membr. Sci. 2010, 357, 171–177. [Google Scholar] [CrossRef]
- Rahimnejad, M.; Ghasemi, M.; Najafpour, G.D.; Ismail, M.; Mohammad, A.W.; Ghoreyshi, A.A.; Hassan, S.H. Synthesis, characterization and application studies of self-made Fe3O4/PES nanocomposite membranes in microbial fuel cell. Electrochim. Acta 2012, 85, 700–706. [Google Scholar] [CrossRef]
- Di Palma, L.; Bavasso, I.; Sarasini, F.; Tirillò, J.; Puglia, D.; Dominici, F.; Torre, L. Synthesis, characterization and performance evaluation of Fe3O4/PES nano composite membranes for microbial fuel cell. Eur. Polym. J. 2018, 99, 222–229. [Google Scholar] [CrossRef]
- Prabhu, N.V.; Sangeetha, D. Characterization and performance study of sulfonated poly ether ether ketone/Fe3O4 nano composite membrane as electrolyte for microbial fuel cell. Chem. Eng. J. 2014, 243, 564–571. [Google Scholar] [CrossRef]
- Hasani-Sadrabadi, M.M.; Dashtimoghadam, E.; Eslami, S.N.S.; Bahlakeh, G.; Shokrgozar, M.A.; Jacob, K.I. Air-breathing microbial fuel cell with enhanced performance using nanocomposite proton exchange membranes. Polymer 2014, 55, 6102–6109. [Google Scholar] [CrossRef]
- Sivasankaran, A.; Sangeetha, D. Influence of sulfonated SiO2 in sulfonated polyether ether ketone nanocomposite membrane in microbial fuel cell. Fuel 2015, 159, 689–696. [Google Scholar] [CrossRef]
- Shahgaldi, S.; Ghasemi, M.; Daud, W.R.W.; Yaakob, Z.; Sedighi, M.; Alam, J.; Ismail, A.F. Performance enhancement of microbial fuel cell by PVDF/Nafion nanofibre composite proton exchange membrane. Fuel Processing Technol. 2014, 124, 290–295. [Google Scholar] [CrossRef]
- Rudra, R.; Kumar, V.; Pramanik, N.; Kundu, P.P. Graphite oxide incorporated crosslinked polyvinyl alcohol and sulfonated styrene nanocomposite membrane as separating barrier in single chambered microbial fuel cell. J. Power Sources 2017, 341, 285–293. [Google Scholar] [CrossRef]
- Ghasemi, M.; Shahgaldi, S.; Ismail, M.; Yaakob, Z.; Daud, W.R.W. New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems. Chem. Eng. J. 2012, 184, 82–89. [Google Scholar] [CrossRef]
Nanomaterials | Based Materials | Results | Ref. |
---|---|---|---|
CNTs + carbon paper | Carbon nanomaterials | Power output: 290 m W/m2 | [55] |
Graphene nanomaterials | Graphene nanomaterials | Power output: 2668 m W/m2 | [60] |
Activated microporous-mesoporous carbon | Carbon nanomaterials | Power output: 23.6 m W/m2 | [62] |
GAC nanomaterials | Graphene nanomaterials | Power output: 21.1 m W/m2 | [64] |
Carbon nanofibers (CNF) | Carbon nanomaterials | Power output: 36,220 m W/m2 | [56] |
Fe3O4 nanoparticles | Metal nanomaterials | Power output: 728 m W/m2 | [73] |
TiO2 nanoparticles | Metal nanomaterials | Power output: 2.59 m W/m2 | [72] |
Au NPs/MWCNT | Metal nanomaterials + Carbon nanomaterials | Power output: 178.34 m W/m2 | [78] |
Polyaniline and CNTs | Carbon nanomaterials | Power output: 42 m W/m2 | [81]. |
Modified carbon cloth with 3,4-ethylenedioxythiophene | Carbon nanomaterials | Power output: 140 m W/m2 | [82] |
Nanomaterials | Based materials | Results | Ref. |
---|---|---|---|
Pt/CNTs | Metal/Carbon nanomaterials | Power output up to 32% compared to using Pt alone | [98] |
Ag NPs | Metal nanomaterials | Electric current: 0.12 mA | [99] |
Pt NPs | Metal nanomaterials | Electric current: 0.04 mA. | [99] |
CoO2 | Metal oxide | Power output: 654.32 mW/m2 | [101] |
Platinum nanotubes | Metal | Power output: 601 m W/m2 | [102] |
MnxCul-xCo2O4 | Spinel oxides (Nano-oxides) | Power output: 570 m W/m2 COD removal: 56% | [104,105] |
Membrane | Nanomaterials | Results | Ref. |
---|---|---|---|
Poly Ether Sulfone (PES)/Fe3O4 as nanomembrane | Fe3O4 nanoparticles (15%) | Power output: 15.4 m W/m2 Remove a total organic carbon (TOC): 75% Columbic efficiency: 11.36% | [108] |
Fe3O4 nanoparticles (20%) | Power output: 9.59 mW/m2 | [108] | |
Sulfonated Poly Ether ketone (SPEK) as Nano-membrane | Fe2O4 nanoparticles (10%) | Power output: 104 mW/m2 | [110] |
Fe2O4 nanoparticles (7.5%) | Columbic efficiency: 87% | [110] | |
SiO2-SO3H (7.5%) | Power output: 1008 mW/m2 Columbic efficiency: 90% | [112] | |
Polyvinylidene fluoride (PVDF) as Nano-membrane | Nano-fiber/Nafion 10 wt%/0.2 g | COD removal of more than 70% | [113] |
Nano-fiber/Nafion 18 wt%/0.4 g | Columbic efficiency: 12.1% | [113] | |
Sulfonated styrene (SS) 0.4 wt/Graphite oxide (GO) 0.2% | Power output: 194 mW/m2 COD removal: 70% | [114] | |
Sulfonated Polystyrene -Ethylene-Butylene-Polystyrene (SPEBP) as Nano-membranes | TiO2 nanoparticles (7.5%) | Power output: 1345 mW/m2 Columbic efficiency: 87% | [112] |
CNF/Nafion and activated carbon Nano-fiber (ACNF)/Nafion as Nano-membranes | Activated carbon Nano-fiber (ACNF)/Nafion | Power output: 57.64 mW/m2 COD removal: 70% | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elrahman, N.K.; Al-Harbi, N.; Basfer, N.M.; Al-Hadeethi, Y.; Umar, A.; Akbar, S. Applications of Nanomaterials in Microbial Fuel Cells: A Review. Molecules 2022, 27, 7483. https://doi.org/10.3390/molecules27217483
Abd-Elrahman NK, Al-Harbi N, Basfer NM, Al-Hadeethi Y, Umar A, Akbar S. Applications of Nanomaterials in Microbial Fuel Cells: A Review. Molecules. 2022; 27(21):7483. https://doi.org/10.3390/molecules27217483
Chicago/Turabian StyleAbd-Elrahman, Nabil. K., Nuha Al-Harbi, Noor M. Basfer, Yas Al-Hadeethi, Ahmad Umar, and Sheikh Akbar. 2022. "Applications of Nanomaterials in Microbial Fuel Cells: A Review" Molecules 27, no. 21: 7483. https://doi.org/10.3390/molecules27217483
APA StyleAbd-Elrahman, N. K., Al-Harbi, N., Basfer, N. M., Al-Hadeethi, Y., Umar, A., & Akbar, S. (2022). Applications of Nanomaterials in Microbial Fuel Cells: A Review. Molecules, 27(21), 7483. https://doi.org/10.3390/molecules27217483