Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology
Abstract
:1. Introduction
2. FDA-Approved Anticancer Natural Products
3. Anticancer Mechanisms of Natural Products
3.1. Plant-Derived Drugs
3.2. Microorganism-Derived Drugs
3.3. Natural Product-Based ADCs
3.4. Marine Natural Products
3.5. Hormones and Other Natural Products
4. Synthetic Biology Strategies and Tools for Discovering Natural Products
4.1. Bioinformatics Analysis
4.2. Pathway Reconstruction or Engineering
4.3. Cell Factory
4.4. Artificial Intelligence
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Antibody drug conjugate |
AntiSMASH | Antibiotics and secondary metabolite analysis shell |
BAC | Bacterial artificial chromosome |
BGC | Biosynthetic gene cluster |
CATCH | Cas9-assisted targeting of chromosome segment |
CRISPR-Cas | clustered regularly interspaced short palindromic repeats-CRISPR associated protein |
DCas | Dead Cas |
DSB | Double-strand break |
E. coli | Escherichia coli |
sNCBI | National center for biotechnology information |
NP | Natural product |
NRPS | Nonribosomal peptide synthetase |
PKS | Polyketide synthase |
RiPPs | Ribosomally synthesized and posttranslationally modified peptides |
S. cerevisiae | Saccharomyces cerevisiae |
TAR | Transformation-associated recombination |
U.S. FDA | United States Food and Drug Administration |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2020, 70, 209–249. [Google Scholar] [CrossRef]
- Parkin, D.M.; Bray, M.F.; Ferlay, M.J.; Pisani, P. Global Cancer Statistics, 2002. CA Cancer J. Clin. 2005, 55, 74. [Google Scholar] [CrossRef] [PubMed]
- Shiri, P.; Ramezanpour, S.; Amani, A.M.; Dehaen, W. A patent review on efficient strategies for the total synthesis of pazopanib, regorafenib and lenvatinib as novel anti-angiogenesis receptor tyrosine kinase inhibitors for cancer therapy. Mol. Divers. 2022, 26, 2981–3002. [Google Scholar] [CrossRef] [PubMed]
- Mashayekh, K.; Shiri, P. An overview of recent advances in the applications of click chemistry in the synthesis of bioconjugates with anticancer activities. ChemistrySelect 2019, 4, 13459–13478. [Google Scholar] [CrossRef]
- Tsai, C.H.; Lin, Y.H.; Li, Y.S.; Ho, T.L.; Hoai Thuong, L.H.; Liu, Y.H. Integrated medicine for chemotherapy-induced peripheral neuropathy. Int. J. Mol. Sci. 2021, 22, 9257. [Google Scholar] [CrossRef] [PubMed]
- Daudon, M.; Frochot, V.; Bazin, D.; Jungers, P. Drug-induced kidney stones and crystalline nephropathy: Pathophysiology, prevention and treatment. Drugs 2018, 78, 163–201. [Google Scholar] [CrossRef]
- Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biot. 2016, 43, 155–176. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Mirzaei, S.; Hashemi, F.; Zarrabi, A.; Zabolian, A.; Saleki, H.; Sharifzadeh, S.O.; Soleymani, L.; Daneshi, S.; Hushmandi, K.; et al. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed. Pharmacother. 2021, 141, 111824. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, F.; Zou, S.; Qu, L. Rapamycin: A bacteria-derived immunosuppressant that has anti-atherosclerotic effects and its clinical application. Front. Pharmacol. 2018, 9, 1520. [Google Scholar] [CrossRef]
- Talman, A.M.; Clain, J.; Duval, R.; Menard, R.; Ariey, F. Artemisinin bioactivity and resistance in malaria parasites. Trends Parasitol. 2019, 35, 953–963. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; Wright, G.D. Heterologous expression-facilitated natural products’ discovery in actinomycetes. J. Ind. Microbiol. Biot. 2019, 46, 415–431. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhang, D.; Li, G.; Liu, J.; He, G.; Zhang, P.; Yang, L.; Zhu, H.; Xu, N.; Liang, S. Antibacterial mechanism of daptomycin antibiotic against Staphylococcus aureus based on a quantitative bacterial proteome analysis. J. Proteom. 2017, 150, 242–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.M.; Yang, Z.J.; Xie, Q.; Zhang, Z.K.; Zhang, H.; Ma, J.Y. Natural products for treating colorectal cancer: A mechanistic review. Biomed. Pharmacother. 2019, 117, 109142. [Google Scholar] [CrossRef] [PubMed]
- Ri, M.H.; Ma, J.; Jin, X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. J. Ethnopharmacol. 2021, 281, 114370. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef] [Green Version]
- Goh, Y.J.; Barrangou, R. Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli. Curr. Opin. Biotechnol. 2018, 56, 163–171. [Google Scholar] [CrossRef]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.; Zhao, H.; Zhao, H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 2009, 37, e16. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, Z.; Jia, R.; Yin, J.; Li, A.; Xia, L.; Yin, Y.; Muller, R.; Fu, J.; Stewart, A.F.; et al. ExoCET: Exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes. Nucleic Acids Res. 2018, 46, e28. [Google Scholar] [CrossRef]
- Mao, X.M.; Luo, S.; Zhou, R.C.; Wang, F.; Yu, P.; Sun, N.; Chen, X.X.; Tang, Y.; Li, Y.Q. Transcriptional regulation of the daptomycin gene cluster in Streptomyces roseosporus by an autoregulator, AtrA. J. Biol. Chem. 2015, 290, 7992–8001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Zhang, R.; Wang, J.; Wilson, L.M.; Yan, Y. Protein engineering for improving and diversifying natural product biosynthesis. Trends Biotechnol. 2020, 38, 729–744. [Google Scholar] [CrossRef]
- Chandra Mohana, N.; Yashavantha Rao, H.C.; Rakshith, D.; Mithun, P.R.; Nuthan, B.R.; Satish, S. Omics based approach for biodiscovery of microbial natural products in antibiotic resistance era. J. Genet. Eng. Biotechnol. 2018, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, Y.; Du, G.; Ledesma-Amaro, R.; Liu, L. Microbial chassis development for natural product biosynthesis. Trends Biotechnol. 2020, 38, 779–796. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.K.; Hou, Y.; Sun, W.; Yu, J.; Liu, X.; Niu, Y.A.; Lu, J.J.; Chen, X.P. Natural products to prevent drug resistance in cancer chemotherapy: A review. Ann. N. Y. Acad. Sci. 2017, 1401, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Man, S.; Luo, C.; Yan, M.; Zhao, G.; Ma, L.; Gao, W. Treatment for liver cancer: From sorafenib to natural products. Eur. J. Med. Chem. 2021, 224, 113690. [Google Scholar] [CrossRef]
- Kumar, A.; Jaitak, V. Natural products as multidrug resistance modulators in cancer. Eur. J. Med. Chem. 2019, 176, 268–291. [Google Scholar] [CrossRef]
- Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; et al. Marine natural products: A source of novel anticancer drugs. Mar. Drugs 2019, 17, 491. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Mahalanobish, S.; Saha, S.; Ghosh, S.; Sil, P.C. Natural products: An upcoming therapeutic approach to cancer. Food Chem. Toxicol. 2019, 128, 240–255. [Google Scholar] [CrossRef]
- Cai, J.; Yi, M.; Tan, Y.; Li, X.; Li, G.; Zeng, Z.; Xiong, W.; Xiang, B. Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-II. J. Exp. Clin. Cancer Res. 2021, 40, 190. [Google Scholar] [CrossRef]
- Salzer, W.L.; Asselin, B.L.; Plourde, P.V.; Corn, T.; Hunger, S.P. Development of asparaginase Erwinia chrysanthemi for the treatment of acute lymphoblastic leukemia. Ann. N. Y. Acad. Sci. 2014, 1329, 81–92. [Google Scholar] [CrossRef]
- Nambiar, S.; Madurawe, R.D.; Zuk, S.M.; Khan, S.R.; Ellison, C.D.; Faustino, P.J.; Mans, D.J.; Trehy, M.L.; Hadwiger, M.E.; Boyne, M.T., 2nd; et al. Product quality of parenteral vancomycin products in the United States. Antimicrob. Agents Chemother. 2012, 56, 2819–2823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, M.M.; Gupte, S.U.; Patil, S.G.; Pathak, A.B.; Deshmukh, C.D.; Bhatt, N.; Haritha, C.; Govind Babu, K.; Bondarde, S.A.; Digumarti, R.; et al. Paclitaxel injection concentrate for nanodispersion versus nab-paclitaxel in women with metastatic breast cancer: A multicenter, randomized, comparative phase II/III study. Breast Cancer Res. Treat. 2016, 156, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Y.; Dong, T.X.; Li, Z.Z.; Li, T.T.; Jiang, J.; Zhu, M.W.; An, T.T.; Chen, Y.D.; Yang, X.H. Homoharringtonine inhibits the progression of hepatocellular carcinoma by suppressing the PI3K/AKT/GSK3β/Slug signaling pathway. Neoplasma 2021, 68, 924–937. [Google Scholar] [CrossRef] [PubMed]
- Hammadi, R.; Kúsz, N.; Dávid, C.Z.; Behány, Z.; Papp, L.; Kemény, L.; Hohmann, J.; Lakatos, L.; Vasas, A. Ingol and ingenol-type diterpenes from euphorbia trigona miller with keratinocyte inhibitory activity. Plants 2021, 10, 1206. [Google Scholar] [CrossRef] [PubMed]
- Chand, P.; Kumar, H.; Badduri, N.; Gupta, N.V.; Bettada, V.G.; Madhunapantula, S.V.; Kesharwani, S.S.; Dey, S.; Jain, V. Design and evaluation of cabazitaxel loaded NLCs against breast cancer cell lines. Colloids Surf. B. Biointerfaces 2021, 199, 111535. [Google Scholar] [CrossRef] [PubMed]
- Bianconi, M.; Cimadamore, A.; Faloppi, L.; Scartozzi, M.; Santoni, M.; Lopez-Beltran, A.; Cheng, L.; Scarpelli, M.; Montironi, R. Contemporary best practice in the management of urothelial carcinomas of the renal pelvis and ureter. Ther. Adv. Urol. 2019, 11, 1756287218815372. [Google Scholar] [CrossRef]
- Escrich, A.; Almagro, L.; Moyano, E.; Cusido, R.M.; Bonfill, M.; Hosseini, B.; Palazon, J. Improved biotechnological production of paclitaxel in Taxus media cell cultures by the combined action of coronatine and calix[8]arenes. Plant Physiol. Biochem. 2021, 163, 68–75. [Google Scholar] [CrossRef]
- Kawashiri, T.; Inoue, M.; Mori, K.; Kobayashi, D.; Mine, K.; Ushio, S.; Kudamatsu, H.; Uchida, M.; Egashira, N.; Shimazoe, T. Preclinical and clinical evidence of therapeutic agents for paclitaxel-induced peripheral neuropathy. Int. J. Mol. Sci. 2021, 22, 8733. [Google Scholar] [CrossRef]
- Yassine, F.; Salibi, E.; Gali-Muhtasib, H. Overview of the formulations and analogs in the taxanes’ story. Curr. Med. Chem. 2016, 23, 4540–4558. [Google Scholar] [CrossRef]
- Hur, J.; Ghosh, M.; Kim, T.H.; Park, N.; Pandey, K.; Cho, Y.B.; Hong, S.D.; Katuwal, N.B.; Kang, M.; An, H.J.; et al. Synergism of AZD6738, an ATR inhibitor, in combination with belotecan, a camptothecin analogue, in chemotherapy-resistant ovarian cancer. Int. J. Mol. Sci. 2021, 22, 1223. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Song, L.; Li, N.; Qiu, Z.; Zhou, S.; Li, C.; Zhao, J.; Song, H.; Chen, X. Pharmacokinetics and biodistribution study of paclitaxel liposome in Sprague-Dawley rats and Beagle dogs by liquid chromatography-tandem mass spectrometry. Drug. Res. 2013, 63, 603–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curran, M.; Wiseman, L. Fulvestrant. Drugs 2001, 61, 807–813; discussion 814. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.H.; Bhat, K.A.; Khuroo, M.A. Arglabin: From isolation to antitumor evaluation. Chem. Biol. Interact. 2015, 240, 180–198. [Google Scholar] [CrossRef] [PubMed]
- Riemsma, R.; Simons, J.P.; Bashir, Z.; Gooch, C.L.; Kleijnen, J. Systematic review of topotecan (Hycamtin) in relapsed small cell lung cancer. BMC Cancer 2010, 10, 436. [Google Scholar] [CrossRef] [Green Version]
- Hande, K.R. Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer 1998, 34, 1514–1521. [Google Scholar] [CrossRef]
- Sharma, S.; Pukale, S.S.; Sahel, D.K.; Agarwal, D.S.; Dalela, M.; Mohanty, S.; Sakhuja, R.; Mittal, A.; Chitkara, D. Folate-targeted cholesterol-grafted lipo-polymeric nanoparticles for chemotherapeutic agent delivery. AAPS Pharm. Sci. Technol. 2020, 21, 280. [Google Scholar] [CrossRef]
- Ando, K.; Ozonoff, A.; Lee, S.Y.; Voisine, M.; Parker, J.T.; Nakanishi, R.; Nishimura, S.; Yang, J.; Grace, Z.; Tran, B.; et al. Multicohort retrospective validation of a predictive biomarker for topoisomerase I inhibitors. Clin. Colorectal. Cancer 2021, 20, e129–e138. [Google Scholar] [CrossRef]
- Yang, C.H.; Horwitz, S.B. Taxol(®): The first microtubule dtabilizing agent. Int. J. Mol. Sci. 2017, 18, 1733. [Google Scholar] [CrossRef] [Green Version]
- Epstein, E. Warning! Masoprocol is a potent sensitizer. J. Am. Acad. Dermatol. 1994, 31, 295–297. [Google Scholar] [CrossRef]
- Reinhorn, D.; Kuchuk, I.; Shochat, T.; Nisenbaum, B.; Sulkes, A.; Hendler, D.; Rotem, O.; Tsoref, D.; Olitzky, O.; Goldvaser, H.; et al. Taxane versus vinorelbine in combination with trastuzumab and pertuzumab for first-line treatment of metastatic HER2-positive breast cancer: A retrospective two-center study. Breast Cancer Res. Treat. 2021, 188, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tang, X.; Ma, C.; Shi, Y.; Wu, W.; Hann, S.S. The regulation and interaction of colon cancer-associated transcript-1 and miR7-5p contribute to the inhibition of SP1 expression by solamargine in human nasopharyngeal carcinoma cells. Phytother. Res. 2020, 34, 201–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiyani, L.E.; Samperez, S.; Jouan, P. Inhibition by Celiptium of the fetal thymidine kinase synthesis induced by estrogens in the rat uterus. Chem. Biol. Interact. 1987, 62, 167–178. [Google Scholar] [CrossRef]
- Zhang, W.; Gou, P.; Dupret, J.M.; Chomienne, C.; Rodrigues-Lima, F. Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. Transl. Oncol. 2021, 14, 101169. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol. 2019, 858, 172472. [Google Scholar] [CrossRef] [PubMed]
- Zalesak, F.; Bon, D.J.D.; Pospisil, J. Lignans and neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol. Res. 2019, 146, 104284. [Google Scholar] [CrossRef]
- Vellemans, H.; André, M.P.E. Review of treatment options for the management of advanced stage hodgkin lymphoma. Cancers 2021, 13, 3745. [Google Scholar] [CrossRef]
- Zhao, J.C.; Agarwal, S.; Ahmad, H.; Amin, K.; Bewersdorf, J.P.; Zeidan, A.M. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev. 2022, 52, 100905. [Google Scholar] [CrossRef]
- Romidepsin. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Bukowski, R.M. Temsirolimus: A safety and efficacy review. Expert. Opin. Drug Saf. 2012, 11, 861–879. [Google Scholar] [CrossRef]
- Edelman, M.J.; Shvartsbeyn, M. Epothilones in development for non--small-cell lung cancer: Novel anti-tubulin agents with the potential to overcome taxane resistance. Clin. Lung Cancer 2012, 13, 171–180. [Google Scholar] [CrossRef]
- Horita, N.; Yamamoto, M.; Sato, T.; Tsukahara, T.; Nagakura, H.; Tashiro, K.; Shibata, Y.; Watanabe, H.; Nagai, K.; Nakashima, K.; et al. Amrubicin for relapsed small-cell lung cancer: A systematic review and meta-analysis of 803 patients. Sci. Rep. 2016, 6, 18999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onrust, S.V.; Lamb, H.M. Valrubicin. Drugs Aging 1999, 15, 69–75; discussion 76. [Google Scholar] [CrossRef] [PubMed]
- Okusaka, T.; Okada, S.; Ishii, H.; Ikeda, M.; Nakasuka, H.; Nagahama, H.; Iwata, R.; Furukawa, H.; Takayasu, K.; Nakanishi, Y.; et al. Transarterial chemotherapy with zinostatin stimalamer for hepatocellular carcinoma. Oncology 1998, 55, 276–283. [Google Scholar] [CrossRef]
- Ke, B.; Li, A.; Fu, H.; Kong, C.; Liu, T.; Zhu, Q.; Zhang, Y.; Zhang, Z.; Chen, C.; Jin, C. PARP-1 inhibitors enhance the chemosensitivity of leukemia cells by attenuating NF-кB pathway activity and DNA damage response induced by Idarubicin. Acta Biochim. Biophys. Sin. 2022, 54, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Qin, M.; Tan, Q.; Li, T.; Gu, Z.; Huang, P.; Ren, L. MicroRNA-129-1-3p protects cardiomyocytes from pirarubicin-induced apoptosis by down-regulating the GRIN2D-mediated Ca(2+) signalling pathway. J. Cell Mol. Med. 2020, 24, 2260–2271. [Google Scholar] [CrossRef] [Green Version]
- PLoSker, G.L.; Faulds, D. Epirubicin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in cancer chemotherapy. Drugs 1993, 45, 788–856. [Google Scholar] [CrossRef]
- Wander, D.P.A.; van der Zanden, S.Y.; van der Marel, G.A.; Overkleeft, H.S.; Neefjes, J.; Codée, J.D.C. Doxorubicin and aclarubicin: Shuffling anthracycline glycans for improved anticancer agents. J. Med. Chem. 2020, 63, 12814–12829. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.K.; Ultmann, J. Peplomycin. Cancer Treat. Rev. 1984, 11, 303–305. [Google Scholar] [CrossRef]
- Sankaran, H.; Sengupta, S.; Purohit, V.; Kotagere, A.; Moulik, N.R.; Prasad, M.; Dhamne, C.; Narula, G.; Banavali, S.; Gota, V. A comparison of asparaginase activity in generic formulations of E.coli derived L- asparaginase: In-vitro study and retrospective analysis of asparaginase monitoring in pediatric patients with leukemia. Br. J. Clin. Pharmacol. 2020, 86, 1081–1088. [Google Scholar] [CrossRef]
- Sinha, R.; Purkayastha, P. Daunomycin delivery by ultrasmall graphene quantum dots to DNA duplexes: Understanding the dynamics by resonance energy transfer. J. Mater. Chem. B 2020, 8, 9756–9763. [Google Scholar] [CrossRef]
- Bleomycin. Drugs and Lactation Database (LactMed); National Library of Medicine (US): Bethesda, MD, USA, 2006.
- Carvalho, C.; Santos, R.X.; Cardoso, S.; Correia, S.; Oliveira, P.J.; Santos, M.S.; Moreira, P.I. Doxorubicin: The good, the bad and the ugly effect. Curr. Med. Chem. 2009, 16, 3267–3285. [Google Scholar] [CrossRef]
- Dactinomycin. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Kormanec, J.; Novakova, R.; Csolleiova, D.; Feckova, L.; Rezuchova, B.; Sevcikova, B.; Homerova, D. The antitumor antibiotic mithramycin: New advanced approaches in modification and production. Appl. Microbiol. Biotechnol. 2020, 104, 7701–7721. [Google Scholar] [CrossRef] [PubMed]
- Sinawe, H.; Casadesus, D. Mitomycin. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Bleyer, W.A. New vistas for leucovorin in cancer chemotherapy. Cancer 1989, 63, 995–1007. [Google Scholar] [CrossRef]
- Targeting nectin-4 in bladder cancer. Cancer Discov. 2017, 7, Of3. [CrossRef] [Green Version]
- Wang, Y.; Liu, L.; Fan, S.; Xiao, D.; Xie, F.; Li, W.; Zhong, W.; Zhou, X. Antibody-drug conjugate using ionized Cys-linker-MMAE as the potent payload shows optimal therapeutic safety. Cancers 2020, 12, 744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2012, 367, 1783–1791. [Google Scholar] [CrossRef] [Green Version]
- Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Martinelli, G.; Liedtke, M.; Stock, W.; Gökbuget, N.; O’Brien, S.; Wang, K.; Wang, T.; et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N. Engl. J. Med. 2016, 375, 740–753. [Google Scholar] [CrossRef]
- Advani, R.H.; Moskowitz, A.J.; Bartlett, N.L.; Vose, J.M.; Ramchandren, R.; Feldman, T.A.; LaCasce, A.S.; Christian, B.A.; Ansell, S.M.; Moskowitz, C.H.; et al. Brentuximab vedotin in combination with nivolumab in relapsed or refractory Hodgkin lymphoma: 3-year study results. Blood 2021, 138, 427–438. [Google Scholar] [CrossRef]
- Lambert, J.; Pautas, C.; Terré, C.; Raffoux, E.; Turlure, P.; Caillot, D.; Legrand, O.; Thomas, X.; Gardin, C.; Gogat-Marchant, K.; et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: Final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica 2019, 104, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Baena, J.; Modrego, A.; Zeaiter, A.; Kahatt, C.; Alfaro, V.; Jimenez-Aguilar, E.; Mazarico, J.M.; Paz-Ares, L. Lurbinectedin in the treatment of relapsed small cell lung cancer. Future Oncol. 2021, 17, 2279–2289. [Google Scholar] [CrossRef]
- Le Tourneau, C.; Raymond, E.; Faivre, S. Aplidine: A paradigm of how to handle the activity and toxicity of a novel marine anticancer poison. Curr. Pharm. Des. 2007, 13, 3427–3439. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, C.; Francesch, A. Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat. Prod. Rep. 2009, 26, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.M. Eribulin. Drugs 2011, 71, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Abiraterone. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Calès, P. Vapreotide acetate for the treatment of esophageal variceal bleeding. Expert Rev. Gastroenter. Hepatol. 2008, 2, 185–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, L.J.; Wiseman, L.R. Exemestane. Drugs 1999, 58, 675–680; discussion 681–682. [Google Scholar] [CrossRef] [PubMed]
- Khoshghamat, N.; Jafari, N.; Toloue-Pouya, V.; Azami, S.; Mirnourbakhsh, S.H.; Khazaei, M.; Ferns, G.A.; Rajabian, M.; Avan, A. The therapeutic potential of renin-angiotensin system inhibitors in the treatment of pancreatic cancer. Life Sci. 2021, 270, 119118. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, L.R.; McTavish, D. Formestane. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the management of breast cancer and prostatic cancer. Drugs 1993, 45, 66–84. [Google Scholar] [CrossRef]
- Keating, G.M. Triptorelin embonate (6-month formulation). Drugs 2010, 70, 347–353. [Google Scholar] [CrossRef]
- Di Lorenzo, G. Estramustine in prostate cancer: New look at an old drug. Lancet Oncol. 2007, 8, 959–961. [Google Scholar] [CrossRef]
- Loke, S.; Liu, L.; Wenzel, M.; Scheffler, H.; Iannone, M.; de la Torre, X.; Schlörer, N.; Botrè, F.; Keiler, A.M.; Bureik, M.; et al. New insights into the metabolism of methyltestosterone and metandienone: Detection of novel A-ring reduced metabolites. Molecules 2021, 26, 1354. [Google Scholar] [CrossRef]
- Gordan, G.S.; Wessler, S.; Avioli, L.V. Calusterone in the therapy for advanced breast cancer. JAMA 1972, 219, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Ligibel, J.A.; Winer, E.P. Clinical differences among the aromatase inhibitors. Clin. Cancer Res. 2003, 9, 473s–479s. [Google Scholar] [PubMed]
- Waddell, W.R.; Kirsch, W.M. Testolactone, sulindac, warfarin, and vitamin K1 for unresectable desmoid tumors. Am. J. Surg. 1991, 161, 416–421. [Google Scholar] [CrossRef]
- Gaertner, R.A.; Lewison, E.F.; Finney, G.G., Jr.; Montague, A.C. Combined hormone therapy in advanced breast cancer. Triple-blind study of 68 patients treated with dromostanolone and fluorometholone. Johns Hopkins Med. J. 1968, 123, 138–141. [Google Scholar] [PubMed]
- Socas, L.; Zumbado, M.; Pérez-Luzardo, O.; Ramos, A.; Pérez, C.; Hernández, J.R.; Boada, L.D. Hepatocellular adenomas associated with anabolic androgenic steroid abuse in bodybuilders: A report of two cases and a review of the literature. Br. J. Sports Med. 2005, 39, e27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.D.; Panagi, M.; Wang, C.; Khan, T.T.; Martin, M.R.; Voutouri, C.; Toh, K.; Papageorgis, P.; Mpekris, F.; Polydorou, C.; et al. Dexamethasone increases cisplatin-loaded nanocarrier delivery and efficacy in metastatic breast cancer by normalizing the tumor microenvironment. ACS Nano 2019, 13, 6396–6408. [Google Scholar] [CrossRef] [PubMed]
- Madeddu, C.; Macciò, A.; Panzone, F.; Tanca, F.M.; Mantovani, G. Medroxyprogesterone acetate in the management of cancer cachexia. Expert Opin. Pharmacother. 2009, 10, 1359–1366. [Google Scholar] [CrossRef]
- Kim, J.G.; Bae, S.O.; Seo, K.S. A comparison of the effectiveness of complex decongestive physiotherapy and stellate ganglion block with triamcinolone administration in breast cancer-related lymphedema patients. Support Care Cancer 2015, 23, 2305–2310. [Google Scholar] [CrossRef]
- Vagos Mata, A.; Espada, E.; Alves, D.; Polo, B.; Costa, M.J.; Lopes, C.; Lacerda, J.F.; Raposo, J. Chronic lymphocytic leukaemia/small lymphocytic lymphoma treatment with rituximab and high-dose methylprednisolone, revisited. Cancer Med. 2021, 10, 8768–8776. [Google Scholar] [CrossRef]
- Lewis, D.J.; Duvic, M. Forodesine in the treatment of cutaneous T-cell lymphoma. Expert Opin. Investig. Drugs 2017, 26, 771–775. [Google Scholar] [CrossRef]
- Reinhold, U.; Dirschka, T.; Ostendorf, R.; Aschoff, R.; Berking, C.; Philipp-Dormston, W.G.; Hahn, S.; Lau, K.; Jager, A.; Schmitz, B.; et al. A randomized, double-blind, phase III, multicentre study to evaluate the safety and efficacy of BF-200 ALA (Ameluz(R)) vs. placebo in the field-directed treatment of mild-to-moderate actinic keratosis with photodynamic therapy (PDT) when using the BF-RhodoLED(R) lamp. Br. J. Dermatol. 2016, 175, 696–705. [Google Scholar] [PubMed]
- Kortuem, K.M.; Stewart, A.K. Carfilzomib. Blood 2013, 121, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Ando, K.; Mori, K.; Corradini, N.; Redini, F.; Heymann, D. Mifamurtide for the treatment of nonmetastatic osteosarcoma. Expert Opin. Pharmacother. 2011, 12, 285–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, G.S.; Wu, J. Methotrexate and pralatrexate. Dermatol. Clin. 2015, 33, 747–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichikawa, M.; Akimoto, J.; Miki, Y.; Maeda, J.; Takahashi, T.; Fujiwara, Y.; Kohno, M. Photodynamic therapy with talaporfin sodium induces dose- and time-dependent apoptotic cell death in malignant meningioma HKBMM cells. Photodiagnosis Photodyn. Ther. 2019, 25, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Vallecorsa, P.; Di Venosa, G.; Gola, G.; Sáenz, D.; Mamone, L.; MacRobert, A.J.; Ramírez, J.; Casas, A. Photodynamic therapy of cutaneous T-cell lymphoma cell lines mediated by 5-aminolevulinic acid and derivatives. J. Photochem. Photobiol. B 2021, 221, 112244. [Google Scholar] [CrossRef]
- Mahmoudi, K.; Garvey, K.L.; Bouras, A.; Cramer, G.; Stepp, H.; Jesu Raj, J.G.; Bozec, D.; Busch, T.M.; Hadjipanayis, C.G. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J. Neurooncol. 2019, 141, 595–607. [Google Scholar] [CrossRef]
- Cheng, C.; Michaels, J.; Scheinfeld, N. Alitretinoin: A comprehensive review. Expert Opin. Investig. Drugs 2008, 17, 437–443. [Google Scholar] [CrossRef]
- Goodman, G.R.; Beutler, E.; Saven, A. Cladribine in the treatment of hairy-cell leukaemia. Best Pract. Res. Clin. Haematol. 2003, 16, 101–116. [Google Scholar] [CrossRef]
- Horikoshi, A.; Takei, K.; Hosokawa, Y.; Sawada, S. The value of oral cytarabine ocfosfate and etoposide in the treatment of refractory and elderly AML patients. Int. J. Hematol. 2008, 87, 118–125. [Google Scholar] [CrossRef]
- Sauter, C.; Lamanna, N.; Weiss, M.A. Pentostatin in chronic lymphocytic leukemia. Expert Opin. Drug Metab. Toxicol. 2008, 4, 1217–1222. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, E.; Tura, S.; Burger, T. Decreasing risk of leukaemia during prolonged follow-up after mitobronitol therapy for polycythaemia vera. Lancet 1987, 2, 625. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Liehr, J.G.; Harris, N.J.; Mendoza, J.; Ahmed, A.E.; Giovanella, B.C. Pharmacology of camptothecin esters. Ann. N. Y. Acad. Sci. 2000, 922, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhou, C.; Guan, Z.Y.; Yin, P.; Chen, F.; Tang, Y.J. Structural insights into the inhibition of tubulin by the antitumor agent 4β-(1,2,4-triazol-3-ylthio)-4-deoxypodophyllotoxin. ACS Chem. Biol. 2017, 12, 746–752. [Google Scholar] [CrossRef]
- Bonofiglio, D.; Giordano, C.; De Amicis, F.; Lanzino, M.; Andò, S. Natural products as promising antitumoral agents in breast cancer: Mechanisms of action and molecular targets. Min. Rev. Med. Chem. 2016, 18, 596–604. [Google Scholar] [CrossRef]
- Tymon-Rosario, J.; Adjei, N.N.; Roque, D.M.; Santin, A.D. Microtubule-interfering drugs: Current and future roles in epithelial ovarian cancer treatment. Cancers 2021, 13, 6239. [Google Scholar] [CrossRef]
- Zhang, D.; Kanakkanthara, A. Beyond the paclitaxel and vincaalkaloids: Next generation of plant-derived microtubule-targeting agents with potential anticancer activity. Cancers 2020, 12, 1721. [Google Scholar] [CrossRef]
- Khaiwa, N.; Maarouf, N.R.; Darwish, M.H.; Alhamad, D.W.M.; Sebastian, A.; Hamad, M.; Omar, H.A.; Orive, G.; Al-Tel, T.H. Camptothecin’s journey from discovery to WHO essential medicine: Fifty years of promise. Eur. J. Med. Chem. 2021, 223, 113639. [Google Scholar] [CrossRef]
- He, W.; Lai, R.; Lin, Q.; Huang, Y.; Wang, L. Arglabin is a plant sesquiterpene lactone that exerts potent anticancer effects on human oral squamous cancer cells via mitochondrial apoptosis and downregulation of the mTOR/PI3K/Akt signaling pathway to inhibit tumor growth in vivo. JBUON 2018, 23, 1679–1685. [Google Scholar]
- Burger, T.; Mokoka, T.; Fouche, G.; Steenkamp, P.; Steenkamp, V.; Cordier, W. Solamargine, a bioactive steroidal alkaloid isolated from Solanum aculeastrum induces non-selective cytotoxicity and P-glycoprotein inhibition. BMC Complement. Altern. Med. 2018, 18, 137. [Google Scholar] [CrossRef] [PubMed]
- Risdian, C.; Mozef, T.; Wink, J. Biosynthesis of polyketides in Streptomyces. Microorganisms 2019, 7, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulst, M.B.; Grocholski, T.; Neefjes, J.J.C.; van Wezel, G.P.; Metsa-Ketela, M. Anthracyclines: Biosynthesis, engineering and clinical applications. Nat. Prod. Rep. 2021, 39, 814–841. [Google Scholar] [CrossRef] [PubMed]
- Frederick, C.A.; Williams, L.D.; Ughetto, G.; van der Marel, G.A.; van Boom, J.H.; Rich, A.; Wang, A.H. Structural comparison of anticancer drug-DNA complexes: Adriamycin and daunomycin. Biochemistry 1990, 29, 2538–2549. [Google Scholar] [CrossRef] [PubMed]
- Antoniak, S.; Phungphong, S.; Cheng, Z.; Jensen, B.C. Novel mechanisms of anthracycline-induced cardiovascular toxicity: A focus on thrombosis, cardiac atrophy, and programmed cell death. Front. Cardiovasc. Med. 2021, 8, 817977. [Google Scholar] [CrossRef]
- Qiao, X.; van der Zanden, S.Y.; Wander, D.P.A.; Borras, D.M.; Song, J.Y.; Li, X.; van Duikeren, S.; van Gils, N.; Rutten, A.; van Herwaarden, T.; et al. Uncoupling DNA damage from chromatin damage to detoxify doxorubicin. Proc. Natl. Acad. Sci. USA 2020, 117, 15182–15192. [Google Scholar] [CrossRef]
- Bolzan, A.D.; Bianchi, M.S. DNA and chromosome damage induced by bleomycin in mammalian cells: An update. Mutat. Res. Rev. Mutat. Res. 2018, 775, 51–62. [Google Scholar] [CrossRef]
- Roskoski, R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res. 2021, 165, 105463. [Google Scholar] [CrossRef]
- Tan, S.; Li, D.; Zhu, X. Cancer immunotherapy: Pros, cons and beyond. Biomed. Pharmacother. 2020, 124, 109821. [Google Scholar] [CrossRef]
- Dhillon, S. Trastuzumab emtansine: A review of its use in patients with HER2-positive advanced breast cancer previously treated with trastuzumab-based therapy. Drugs 2014, 74, 675–686. [Google Scholar] [CrossRef]
- Buckel, L.; Savariar, E.N.; Crisp, J.L.; Jones, K.A.; Hicks, A.M.; Scanderbeg, D.J.; Nguyen, Q.T.; Sicklick, J.K.; Lowy, A.M.; Tsien, R.Y.; et al. Tumor radiosensitization by monomethyl auristatin E: Mechanism of action and targeted delivery. Cancer Res. 2015, 75, 1376–1387. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.; Ravandi, F.; Short, N.J.; Huang, X.; Jain, N.; Sasaki, K.; Daver, N.; Pemmaraju, N.; Khoury, J.D.; Jorgensen, J.; et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: A single-arm, phase 2 study. Lancet Oncol. 2018, 19, 240–248. [Google Scholar] [CrossRef]
- Thara, E.; Gitlitz, B.J. Eribulin: A new-generation antimicrotubule agent in lung cancer therapy. Future Oncol. 2014, 10, 1913–1924. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.; Fu, J.; Zhang, Z.; Liu, D.; Cheng, D.; Fan, H. Comparison between trabectedin and doxorubicin in soft-tissue sarcomas: A systematic review and meta-analysis. Ann. Transl. Med. 2021, 9, 1764. [Google Scholar] [CrossRef]
- Losada, A.; Berlanga, J.J.; Molina-Guijarro, J.M.; Jimenez-Ruiz, A.; Gago, F.; Aviles, P.; de Haro, C.; Martinez-Leal, J.F. Generation of endoplasmic reticulum stress and inhibition of autophagy by plitidepsin induces proteotoxic apoptosis in cancer cells. Biochem. Pharmacol. 2020, 172, 113744. [Google Scholar] [CrossRef]
- Patel, S.; Petty, W.J.; Sands, J.M. An overview of lurbinectedin as a new second-line treatment option for small cell lung cancer. Ther. Adv. Med. Oncol. 2021, 13, 17588359211020529. [Google Scholar] [CrossRef]
- Jiménez, C. Marine natural products in medicinal chemistry. Front. Oncol. 2018, 9, 959–961. [Google Scholar] [CrossRef] [Green Version]
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2018, 35, 8–53. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2022, 39, 1122–1171. [Google Scholar] [CrossRef]
- Keiler, A.M.; Zierau, O.; Wolf, S.; Diel, P.; Schänzer, W.; Vollmer, G.; Machalz, D.; Wolber, G.; Parr, M.K. Androgen- and estrogen-receptor mediated activities of 4-hydroxytestosterone, 4-hydroxyandrostenedione and their human metabolites in yeast based assays. Toxicol. Lett. 2018, 292, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Sardela, V.F.; Sardela, P.D.O.; Lisboa, R.R.; Matias, B.F.; Anselmo, C.S.; de Carvalho, A.R.; Nunes, I.K.C. Comprehensive zebrafish water tank experiment for metabolic studies of testolactone. Zebrafish 2020, 17, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Suttmann, H.; Gleissner, J.; Huebner, A.; Mathes, T.; Baurecht, W.; Krützfeldt, K.; Sweiti, H.; Feyerabend, S. Adherence measures for patients with metastatic castration-resistant prostate cancer treated with abiraterone acetate plus prednisone: Results of a prospective, cluster-randomized trial. Cancers 2020, 12, 2550. [Google Scholar] [CrossRef] [PubMed]
- Rammohan, K.; Coyle, P.K.; Sylvester, E.; Galazka, A.; Dangond, F.; Grosso, M.; Leist, T.P. The development of cladribine tablets for the treatment of multiple sclerosis: A comprehensive review. Drugs 2020, 80, 1901–1928. [Google Scholar] [CrossRef]
- Brosa, M.; García del Muro, X.; Mora, J.; Villacampa, A.; Pozo-Rubio, T.; Cubells, L.; Montoto, C. Orphan drugs revisited cost-effectiveness analysis of the addition of mifamurtide to the conventional treatment of osteosarcoma. Expert Rev. Pharmacoecon. Outcomes Res. 2015, 15, 331–340. [Google Scholar] [CrossRef]
- Yee, A.J. The role of carfilzomib in relapsed/refractory multiple myeloma. Ther. Adv. Hematol. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Hoy, S.M. Carfilzomib triple combination therapy: A review in relapsed multiple myeloma. Target Oncol. 2016, 11, 255–262. [Google Scholar] [CrossRef]
- Sjoberg, H.T.; Philippou, Y.; Magnussen, A.L.; Tullis, I.D.C.; Bridges, E.; Chatrian, A.; Lefebvre, J.; Tam, K.H.; Murphy, E.A.; Rittscher, J.; et al. Tumour irradiation combined with vascular-targeted photodynamic therapy enhances antitumour effects in pre-clinical prostate cancer. Br. J. Cancer 2021, 125, 534–546. [Google Scholar] [CrossRef]
- Regillo, C.D. Update on photodynamic therapy. Curr. Opin. Ophthalmol. 2000, 11, 166–170. [Google Scholar] [CrossRef]
- He, J.; Liu, C.; Li, T.; Liu, Y.; Wang, S.; Zhang, J.; Chen, L.; Wang, C.; Feng, Y.; Floris, G.; et al. Pictorial imaging-histopathology correlation in a rabbit with hepatic VX2 tumor treated by transarterial vascular disrupting agent administration. Int. J. Med. Sci. 2020, 17, 2269–2275. [Google Scholar] [CrossRef]
- Suzuki, T.; Tanaka, M.; Sasaki, M.; Ichikawa, H.; Nishie, H.; Kataoka, H. Vascular shutdown by photodynamic therapy using talaporfin sodium. Cancers 2020, 12, 2369. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gao, C.; Guo, L.; Hu, G.; Luo, Q.; Liu, J.; Nielsen, J.; Chen, J.; Liu, L. DCEO biotechnology: Tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chem. Rev. 2018, 118, 4–72. [Google Scholar] [CrossRef]
- Weber, T.; Blin, K.; Duddela, S.; Krug, D.; Kim, H.U.; Bruccoleri, R.; Lee, S.Y.; Fischbach, M.A.; Muller, R.; Wohlleben, W.; et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015, 43, W237–W243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blin, K.; Wolf, T.; Chevrette, M.G.; Lu, X.; Schwalen, C.J.; Kautsar, S.A.; Suarez Duran, H.G.; de Los Santos, E.L.C.; Kim, H.U.; Nave, M.; et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017, 45, W36–W41. [Google Scholar] [CrossRef] [PubMed]
- Medema, M.H.; Blin, K.; Cimermancic, P.; de Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011, 39, W339–W346. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Kim, H.U.; Medema, M.H.; Weber, T. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief Bioinform. 2019, 20, 1103–1113. [Google Scholar] [CrossRef]
- Machado, H.; Tuttle, R.N.; Jensen, P.R. Omics-based natural product discovery and the lexicon of genome mining. Curr. Opin. Microbiol. 2017, 39, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, X.X.; Ye, Y.; He, Y.; He, F.Q.; Tian, Y.Q.; Luo, Y.Z.; Liang, S.F. Label-free proteomic dissection on dptP-deletion mutant uncovers dptP involvement in strain growth and daptomycin tolerance of Streptomyces roseosporus. Microb. Biotechnol. 2021, 14, 708–725. [Google Scholar] [CrossRef]
- Norsigian, C.J.; Pusarla, N.; McConn, J.L.; Yurkovich, J.T.; Drager, A.; Palsson, B.O.; King, Z. BiGG Models 2020: Multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic Acids Res. 2020, 48, D402–D406. [Google Scholar] [CrossRef]
- Sulheim, S.; Kumelj, T.; van Dissel, D.; Salehzadeh-Yazdi, A.; Du, C.; van Wezel, G.P.; Nieselt, K.; Almaas, E.; Wentzel, A.; Kerkhoven, E.J. Enzyme-constrained models and omics analysis of Streptomyces coelicolor reveal metabolic changes that enhance heterologous production. iScience 2020, 23, 101525. [Google Scholar] [CrossRef]
- Cotner, M.; Zhan, J.; Zhang, Z. A computational metabolic model for engineered production of resveratrol in Escherichia coli. ACS Synth. Biol. 2021, 10, 1992–2001. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, J.G.R.; Jensen, K.; Lieven, C.; Laerke Hansen, A.S.; Galkina, S.; Beber, M.; Ozdemir, E.; Herrgard, M.J.; Redestig, H.; Sonnenschein, N. Cameo: A python library for computer aided metabolic engineering and optimization of cell factories. ACS Synth. Biol. 2018, 7, 1163–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Enghiad, B.; Zhao, H. New tools for reconstruction and heterologous expression of natural product biosynthetic gene clusters. Nat. Prod. Rep. 2016, 33, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, D.G.; Young, L.; Chuang, R.Y.; Venter, J.C.; Hutchison, C.A., 3rd; Smith, H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 2009, 6, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Wang, W.; Wang, K.B.; Zhang, B.; Li, W.; Shi, J.; Jiao, R.H.; Tan, R.X.; Ge, H.M. Heterologous expression of a cryptic giant type I PKS gene cluster leads to the production of ansaseomycin. Org. Lett. 2019, 21, 3785–3788. [Google Scholar] [CrossRef]
- Jiang, W.; Zhao, X.; Gabrieli, T.; Lou, C.; Ebenstein, Y.; Zhu, T.F. Cas9-Assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat. Commun. 2015, 6, 8101. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, Z.; Jia, R.; Hou, Y.; Yin, J.; Bian, X.; Li, A.; Muller, R.; Stewart, A.F.; Fu, J.; et al. RecET direct cloning and Redalphabeta recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression. Nat. Protoc. 2016, 11, 1175–1190. [Google Scholar] [CrossRef]
- Chen, H.; Li, M.; Liu, C.; Zhang, H.; Xian, M.; Liu, H. Correction to: Enhancement of the catalytic activity of isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microb. Cell Fact. 2020, 19, 8. [Google Scholar] [CrossRef]
- Tong, Y.; Whitford, C.M.; Robertsen, H.L.; Blin, K.; Jørgensen, T.S.; Klitgaard, A.K.; Gren, T.; Jiang, X.; Weber, T.; Lee, S.Y. Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proc. Natl. Acad. Sci. USA. 2019, 116, 20366–20375. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.B.; Komor, A.C.; Levy, J.M.; Packer, M.S.; Zhao, K.T.; Liu, D.R. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 2017, 35, 371–376. [Google Scholar] [CrossRef]
- Eid, A.; Alshareef, S.; Mahfouz, M.M. CRISPR base editors: Genome editing without double-stranded breaks. Biochem. J. 2018, 475, 1955–1964. [Google Scholar] [CrossRef]
- Xia, H.; Li, X.; Li, Z.; Zhan, X.; Mao, X.; Li, Y. The application of regulatory cascades in Streptomyces: Yield ehancement and metabolite mining. Front. Microbiol. 2020, 11, 406. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cobb, R.E.; Zhao, H. High-efficiency genome editing of Streptomyces species by an engineered CRISPR/Cas system. Methods Enzymol. 2016, 575, 271–284. [Google Scholar]
- Liu, H.; Tian, Y.; Zhou, Y.; Kan, Y.; Wu, T.; Xiao, W.; Luo, Y. Multi-modular engineering of Saccharomyces cerevisiae for high-titre production of tyrosol and salidroside. Microb. Biotechnol. 2021, 14, 2605–2616. [Google Scholar] [CrossRef]
- Tan, G.Y.; Deng, K.; Liu, X.; Tao, H.; Chang, Y.; Chen, J.; Chen, K.; Sheng, Z.; Deng, Z.; Liu, T. Heterologous biosynthesis of spinosad: An omics-guided large polyketide synthase gene cluster reconstitution in Streptomyces. ACS Synth. Biol. 2017, 6, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, J.; Zhuo, J.; Li, Y.; Tian, Y.; Tan, H. Activation and mechanism of a cryptic oviedomycin gene cluster via the disruption of a global regulatory gene, adpA, in Streptomyces ansochromogenes. J. Biol. Chem. 2017, 292, 19708–19720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutledge, P.J.; Challis, G.L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 2015, 13, 509–523. [Google Scholar] [CrossRef]
- Kudo, K.; Hashimoto, T.; Hashimoto, J.; Kozone, I.; Kagaya, N.; Ueoka, R.; Nishimura, T.; Komatsu, M.; Suenaga, H.; Ikeda, H.; et al. In vitro Cas9-assisted editing of modular polyketide synthase genes to produce desired natural product derivatives. Nat. Commun. 2020, 11, 4022. [Google Scholar] [CrossRef] [PubMed]
- Myronovskyi, M.; Rosenkranzer, B.; Nadmid, S.; Pujic, P.; Normand, P.; Luzhetskyy, A. Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Metab. Eng. 2018, 49, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Bu, Q.T.; Yu, P.; Wang, J.; Li, Z.Y.; Chen, X.A.; Mao, X.M.; Li, Y.Q. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches. Microb. Cell Fact. 2019, 18, 16. [Google Scholar] [CrossRef]
- Lyu, H.N.; Liu, H.W.; Keller, N.P.; Yin, W.B. Harnessing diverse transcriptional regulators for natural product discovery in fungi. Nat. Prod. Rep. 2019, 37, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.Q.; Jin, W.R.; Ma, Z.C.; Shen, Q.; Cai, X.; Liu, Z.Q.; Zheng, Y.G. Promoter engineering strategies for the overproduction of valuable metabolites in microbes. Appl. Microbiol. Biotechnol. 2019, 103, 8725–8736. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Guo, F.; Dong, S.H.; Zhao, H. Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat. Chem. Biol. 2019, 15, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.I.; Fang, J.R.; Cheung, J.; Wang, H.H. Programmable CRISPR-Cas transcriptional activation in bacteria. Mol. Syst. Biol. 2020, 16, e9427. [Google Scholar] [CrossRef] [PubMed]
- Vickers, C.E.; Blank, L.M.; Kromer, J.O. Grand challenge commentary: Chassis cells for industrial biochemical production. Nat. Chem. Biol. 2010, 6, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Qin, C.; Tao, L.; Liu, X.; Shi, Z.; Ma, X.; Jia, J.; Tan, Y.; Cui, C.; Lin, J.; et al. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc. Natl. Acad. Sci. USA 2011, 108, 12943–12948. [Google Scholar] [CrossRef] [Green Version]
- Engels, B.; Dahm, P.; Jennewein, S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab. Eng. 2008, 10, 201–206. [Google Scholar] [CrossRef]
- Jiang, M.; Stephanopoulos, G.; Pfeifer, B.A. Toward biosynthetic design and implementation of Escherichia coli-derived paclitaxel and other heterologous polyisoprene compounds. Appl. Environ. Microbiol. 2012, 78, 2497–2504. [Google Scholar] [CrossRef] [Green Version]
- Ajikumar, P.K.; Xiao, W.H.; Tyo, K.E.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T.H.; Pfeifer, B.; Stephanopoulos, G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 2010, 330, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Maeda, H.A. Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. J. Biol. Chem. 2019, 294, 16549–16566. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, Y.; Fu, L.; Guo, E.; Wang, B.; Dai, L.; Si, T. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology. Curr. Opin. Biotechnol. 2021, 67, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Chao, R.; Mishra, S.; Si, T.; Zhao, H. Engineering biological systems using automated biofoundries. Metab. Eng. 2017, 42, 98–108. [Google Scholar] [CrossRef] [PubMed]
- HamediRad, M.; Chao, R.; Weisberg, S.; Lian, J.; Sinha, S.; Zhao, H. Towards a fully automated algorithm driven platform for biosystems design. Nat. Commun. 2019, 10, 5150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parakh, S.; Parslow, A.C.; Gan, H.K.; Scott, A.M. Antibody-mediated delivery of therapeutics for cancer therapy. Expert Opin. Drug Deliv. 2016, 13, 401–419. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, S.; Fang, F.; Xu, T.; Lan, M.; Zhang, J. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 2021, 268, 120557. [Google Scholar] [CrossRef] [PubMed]
- Deeks, E.D. Polatuzumab vedotin: First global approval. Drugs 2019, 79, 1467–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diefenbach, C.; Kahl, B.S.; McMillan, A.; Briones, J.; Banerjee, L.; Cordoba, R.; Miall, F.; Burke, J.M.; Hirata, J.; Jiang, Y.; et al. Polatuzumab vedotin plus obinutuzumab and lenalidomide in patients with relapsed or refractory follicular lymphoma: A cohort of a multicentre, single-arm, phase 1b/2 study. Lancet Haematol. 2021, 8, e891–e901. [Google Scholar] [CrossRef]
- He, Y.; Luo, Y.; Huang, L.; Zhang, D.; Wang, X.; Ji, J.; Liang, S. New frontiers against sorafenib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Pharmacol. Res. 2021, 170, 105732. [Google Scholar] [CrossRef]
Active Ingredient | Drug Name | Target Cancer Type | Year Intro. | Source | Ref. |
---|---|---|---|---|---|
plant NPs | |||||
asparaginase Erwinia chrysanthemi | Rylaze | acute lymphoblastic leukemia and lymphoblastic lymphoma | 2021 | Erwinia chrysanthemi | [31] |
padeliporfin potassium | Tookad | prostate cancer | 2015 | a derivative of chlorophyll | [32] |
paclitaxel injection concentrate for nanodispersion | PICN | metastatic breast cancer | 2014 | taxus species | [33] |
homoharringtonine | Ceflatonin | myeloid leukemia | 2012 | Cephalotaxus harringtonia | [34] |
ingenol mebutate | Picato | actinic keratosis | 2012 | Euphorbia peplu | [35] |
cabazitaxel | Jevtana | castration-resistant metastatic prostate cancer | 2010 | a taxane derivative | [36] |
vinflunine | Javlor | advanced and metastatic urothelial carcinoma | 2010 | a semisynthetic vinca-alkaloid | [37] |
nanoparticle-based formulation of paclitaxel | Nanoxel | ovarian, non-small cell lung, breast, gastric, endometrial and pancreatic cancers | 2007 | taxus species | [38] |
albumin-bound paclitaxel | Abraxane | ovarian, non-small cell lung, breast, gastric, endometrial and pancreatic cancers | 2005 | taxus species | [39,40] |
belotecan HCL | Camtobell | small cell lung cancer | 2004 | a camptothecin analog | [41] |
liposomal formulation of paclitaxel | Lipusu | non-small cell lung, breast, gastric, endometrial and pancreatic cancers | 2003 | taxus species | [42] |
fulvestrant | Faslodex | advanced breast cancer | 2002 | a taxane plant product | [43] |
arglabin | n.r. | oral squamous cell carcinoma, breast cancer | 1999 | Artemisia species | [44] |
topotecan HCl | Hycamptin | small cell lung cancer | 1996 | a camptothecin analog | [45] |
etoposide phosphate | Etopophos | advanced-stage Hodgkin lymphoma | 1996 | a semisynthetic derivative of podophyllotoxin | [46] |
docetaxel | Taxotere | HER2-positive metastatic breast cancer | 1995 | yew tree | [47] |
irinotecan HCl | Campto | colorectal and pancreatic cancer | 1994 | a camptothecin analog | [48] |
paclitaxel | Taxol | non-small cell lung, breast, gastric, endometrial and pancreatic cancers | 1993 | pacific yew trees | [49] |
masoprocol | Actinex | a potent sensitizer | 1992 | creosote bush | [50] |
vinorelbine | Navelbine | non-small cell lung cancer | 1989 | a semisynthetic vinca alkaloid | [51] |
solamargines | Curaderm | nasopharyngeal carcinoma cells | 1989 | Solanum undatum | [52] |
elliptinium acetate | Celiptium | breast cancer | 1983 | a derivative of ellipticine derived from plant | [53] |
etoposide | n.r. | extensive-stage small cell lung cancer | 1980 | a semisynthetic derivative of podophyllotoxin | [54] |
vindesine | n.r. | Leukemia, non-small-cell lung cancer | 1979 | Catharanthus roseus | [55] |
teniposide | n.r. | acute lymphoblastic leukemia | 1967 | a semisynthetic derivative of podophyllotoxin | [56] |
vinblastine | n.r. | Hodgkin lymphoma | 1965 | Catharanthus roseus | [57] |
vincristine | n.r. | hematologic malignancies and solid tumors | 1963 | nerium oleander | [57] |
microbial NPs | |||||
midostaurin | Rydapt | acute myeloid leukemia, advanced systemic mastocytosis | 2017 | a derivate of staurosporine produced by Streptomyces staurosporeus | [58] |
romidepsin | Istodax | T cell lymphomas | 2010 | Chromobacterium violaceum | [59] |
temsirolimus | Toricel | relapsed or refractory solid tumors | 2007 | a derivative of sirolimus produced by Streptomyces hygroscopicus | [60] |
ixabepilone | Ixempra | breast cancer | 2007 | a derivate of epothilone B produced by Sorangium cellulosum | [61] |
amrubicin HCl | Calsed | small-cell lung cancer | 2002 | an anthracyclin analogue | [62] |
valrubicin | Valstar | non-muscle invasive bladder cancer | 1999 | a derivative of the anthracycline doxorubicin | [63] |
zinostatin stimalamer | Smancs | hepatocellular carcinoma | 1994 | chemically synthesized by coupling one molecule of neocarzinostatin produced by Streptomyces carzinostaticus | [64] |
idarubicin HCl | Zavedos | acute myelogenous leukemia | 1990 | an analogue of daunorubicin produced by Streptomyces peucetius | [65] |
pirarubicin | Pinorubicin | lung cancer, breast cancer | 1988 | a novel anthracycline derivative of doxorubicin | [66] |
epirubicin HCI | Farmorubicin | B cell lymphoma, head and neck cancer and other solid cancers | 1984 | a semisynthetic derivative of doxorubicin | [67] |
aclarubicin | Aclacin | acute myeloid leukemia, hematologic cancers and solid tumors | 1981 | Streptomyces galilacus | [68] |
peplomycin | Pepleo | cutaneous squamous cell carcinoma, prostatic cancer, breast cancer | 1981 | a derivative of bleomycin | [69] |
asparaginase | n.r. | leukemia and lymphoma | 1969 | Escherichia coli | [70] |
daunomycin | n.r. | acute promyelocytic | 1967 | Streptomyces species | [71] |
bleomycin | n.r. | squamous cell carcinoma from head and necki, lymphomas, testicular carcinoma | 1966 | Streptomyces verticillus | [72] |
doxorubicin | n.r. | ladder, breast, stomach, lung, ovaries, thyroid, soft tissue sarcoma | 1966 | Streptomyces peucetius var. caesius | [73] |
actinomycin D | n.r. | solid tumors in children and choriocarcinoma in adult women | 1964 | Streptomyces species | [74] |
mithramycin | n.r. | chronic and acute myeloid leukemia, testicular carcinoma | 1961 | Streptomyces species | [75] |
mitomycin C | n.r. | bladder, breast carcinoma, head and neck malignancies, and some other gastrointestinal cancer | 1956 | Streptomyces caespitosus | [76] |
leucovorin | n.r. | haematologic malignancies and osteosarcomas | 1950 | Leuconostoc citrovorum | [77] |
antibody-conjugated NPs | |||||
enfortumab vedotin-ejfv | Padcev | refractory bladder cancer | 2019 | a nectin-4-targeted antibody conjugated to monomethyl auristatin E, which is a toxin | [78] |
polatuzumab vedotin | Polivy | relapsed or refractory diffuse large B-cell lymphoma | 2019 | an anti-CD79b antibody conjugated to monomethyl auristatin E, which is a toxin | [79] |
trastuzumab emtansine | Kadcyla | HER2-positive early breast cancer | 2019 | a monoclonal antibody trastuzumaba conjugated to emtansine, which is a derivative of maytansine | [80] |
inotuzumab ozogamicin | Mundesine | acute lymphoblastic leukemia | 2017 | an anti-22 antibody linked to calicheamicin | [81] |
brentuximab vedotin | Adcetris | relapsed or refractory hodgkin lymphoma | 2011 | an anti-CD30 antibody conjugated to monomethyl auristatin E, which is a toxin | [82] |
gemtuzumab ozogamicin | Mylotarg | acute myeloid leukemia | 2000 | anti-CD33 antibody linked to calicheamicin, a toxin | [83] |
marine NPs | |||||
lurbinectedin | Zepzelca | metastatic small cell lung cancer | 2020 | a marine-derived drug | [84] |
aplidine | Aplidin | acute lymphoblastic leukemia | 2018 | Aplidium albican | [85] |
trabectedin | Yondelis | soft tissue sarcomas—liposarcoma and leiomyosarcoma | 2015 | Ecteinascidia turbinata | [86] |
eribulin | Halaven | breast cancer and soft-tissue sarcoma | 2010 | a macrocyclic ketone analogue of the halichondrin | [87] |
hormones | |||||
abiraterone acetate | Zytiga | castration-resistant prostate cancer | 2011 | a semisynthetic steroid | [88] |
vapreotide acetate | Docrised | esophageal variceal bleeding | 2004 | a somatostatin analogue | [89] |
exemestane | Aromasin | hormone receptor-positive breast cancer | 1999 | endocrine agent, steroidal compound | [90] |
angiotensin II | Delivert | pancreatic cancer | 1994 | an endogenous hormone | [91] |
formestane | Lentaron | breast cancer, prostatic cancer | 1993 | a steroid substrate analog | [92] |
triptorelin | Decapeptyl | prostate cancer | 1986 | a decapeptide analog of luteinizing hormone releasing hormone | [93] |
estramustine | n.r. | prostate cancer | 1980 | a stable estradiol | [94] |
methyltestosterone | n.r. | breast cancer | 1974 | an anabolic–androgenic steroid | [95] |
calusterone | n.r. | advanced breast cancer | 1973 | an androgenic steroid | [96] |
megesterol acetate | n.r. | metastatic breast cancer | 1971 | n.r. | [97] |
testolactone | n.r. | desmoid tumors, breast cancer | 1969 | a nonselective steroid | [98] |
dromostanolone | n.r. | breast cancer | 1961 | an androgen steroid | [99] |
nandrolone phenylpropionate | n.r. | hepatocellular adenomas | 1959 | a steroid | [100] |
dexamethasone | n.r. | breast cancer, acute leukemia lymphoma | 1958 | a glucocorticoid | [101] |
medroxyprogesterone acetate | n.r. | hormone-related cancers, cachexia syndrome | 1958 | a hormone progesterone variant | [102] |
triamcinolone | n.r. | ocular conditions unresponsive to topical steroids | 1958 | a corticosteroid | [103] |
methylprednisolone | n.r. | hodgkin lymphoma | 1955 | a corticosteroid | [104] |
other NPs | |||||
forodesine HCl | Mundesine | relapsed peripheral T cell lymphoma | 2017 | a purine nucleoside analogue | [105] |
a nanoemulsion formulation containing 10% aminolaevulinic acid hydrochloride | Ameluz | lesion-directed and field-directed actinic keratosis | 2012 | the precursor of the endogenous photosensitizer Protoporphyrin IX | [106] |
carfilzomib | Kyprolis | relapsed or refractory multiple myeloma | 2012 | a peptide epoxyketone | [107] |
mifamurtide | Junovan | nonmetastatic osteosarcoma | 2010 | a conjugate of muramyl tripeptide linked to dipalmitoyl phosphatidyl ethanolamine | [108] |
pralatrexate | Folotyn | relapsed/refractory peripheral T cell lymphomas | 2009 | a folic acid analogue | [109] |
talaporfin sodium | Laserphyrin | esophageal cancer | 2004 | mono-L-asparthyl chlorine e6: NPe-6 | [110] |
methyl aminolaevulinate | Metvix | high-risk basal cell carcinoma | 2001 | the precursor of the endogenous photosensitizer Protoporphyrin IX | [111] |
aminolevulinic acid | Levulan | premalignant and malignant diseases | 2000 | the first metabolite in the heme biosynthesis pathway | [112] |
alitretinoin | Panretin | acute promyelocytic leukemia | 1999 | an endogenous vitamin A derivative, 9-cis-retinoic acid | [113] |
cladribine | Leustatin | hairy-cell leukaemia | 1993 | a purine nucleoside analogue | [114] |
cytarabine ocfosfate | Starsaid | acute myeloid leukemia | 1993 | an orally applicable prodrug of cytosine arabinoside | [115] |
pentostatin | Nipent | lymphocytic leukemia | 1992 | an analogue of purine | [116] |
mitobronitol | n.r. | acute myeloblastic leukemia | 1979 | n.r. | [117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; He, Y.; Jian, M.; Fu, X.; Cheng, Y.; He, Y.; Fang, J.; Li, L.; Zhang, D. Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology. Molecules 2022, 27, 7480. https://doi.org/10.3390/molecules27217480
Wang H, He Y, Jian M, Fu X, Cheng Y, He Y, Fang J, Li L, Zhang D. Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology. Molecules. 2022; 27(21):7480. https://doi.org/10.3390/molecules27217480
Chicago/Turabian StyleWang, Haibo, Yu He, Meiling Jian, Xingang Fu, Yuheng Cheng, Yujia He, Jun Fang, Lin Li, and Dan Zhang. 2022. "Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology" Molecules 27, no. 21: 7480. https://doi.org/10.3390/molecules27217480
APA StyleWang, H., He, Y., Jian, M., Fu, X., Cheng, Y., He, Y., Fang, J., Li, L., & Zhang, D. (2022). Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology. Molecules, 27(21), 7480. https://doi.org/10.3390/molecules27217480