Scattering of N2 Molecules from Silica Surfaces: Effect of Polymorph and Surface Temperature
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Long-Range Potential of N and N2 Interacting with Silica
2.2. Potential Energy Surface Determination
2.3. The Dynamics of N2 Interacting with Quartz
2.4. Effect of Surface Polymorph: N2/Cristobalite and N2/Quartz
2.5. Surface Temperature Effect
2.5.1. N2/Quartz
2.5.2. N2/Cristobalite
3. Methods
3.1. Computational Setup
- (1)
- A 3D slab of considered material is built up from crystallographic data or from ab initio calculations and the corresponding phonon dynamics is determined.
- (2)
- An accurate interaction potential for the [gas-phase species/surface] system is obtained as sum of pair-wise interaction starting from ab initio calculations.
- (3)
- The dynamics is carried out by self-consistently solving Hamilton’s equations of motion of the two interacting atoms [Equation (8)] and the dynamics of the phonons, i.e., by computing the phonon excitation strengths given in Equation (7) at each time step of the classical trajectory.
3.2. PES Formulation Details
3.3. Polarizability and Potential Parameters
3.4. Molecular Dynamics Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vattuone, L.; Savio, L.; Pirani, F.; Cappelletti, D.; Okada, M.; Rocca, M. Interaction of rotationally aligned and of oriented molecules in gas phase and at surfaces. Prog. Surf. Sci. 2010, 85, 92–160. [Google Scholar] [CrossRef]
- Aquilanti, V.; Bartolomei, M.; Pirani, F.; Cappelletti, D.; Vecchiocattivi, F.; Shimizu, Y.; Kasai, T. Orienting and aligning molecules for stereochemistry and photodynamics. Phys. Chem. Chem. Phys. 2005, 7, 291–300. [Google Scholar] [CrossRef]
- Yoder, B.L.; Bisson, R.; Beck, D. Steric Effects in the Chemisorption of Vibrationally Excited Methane on Ni(100). Science 2010, 329, 553–556. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Kondo, T.; Arakawa, K.; Saito, Y.; Nakamura, J.; Hayes, W.W.; Manson, J.R. Scattering of CO and N2 molecules by a graphite surface. J. Phys. Condens. Matter 2012, 24, 354001. [Google Scholar] [CrossRef]
- Godsi, O.; Corem, G.; Alkoby, Y.; Cantin, J.T.; Krems, R.V.; Somers, M.F.; Meyer, J.; Kroes, G.-J.; Maniv, T.; Alexandrowicz, G. A general method for controlling and resolving rotational orientation of molecules in molecule-surface collisions. Nat. Commun. 2017, 8, 15357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, N.A.; Murray, V.J.; Xu, C.; Levin, D.A.; Minton, T.K. Nonreactive Scattering of N2 from Layered Graphene Using Molecular Beam Experiments and Molecular Dynamics. J. Phys. Chem. C 2018, 122, 9859–9874. [Google Scholar] [CrossRef]
- Del Cueto, M.; Zhou, X.; Muzas, A.S.; Díaz, C.; Martín, F.; Jiang, B.; Guo, H. Quantum stereodynamics of H2 scattering from Co(0001): Influence of reaction channels. J. Phys. Chem. C 2019, 123, 16223–16231. [Google Scholar] [CrossRef]
- Santamaría, A.R.; Alducin, M.; Díez Muiño, R.; Juaristi, J.I. Ab initio molecular dynamics study of alignment-resolved O2 scattering from highly oriented pyrolytic graphite. J. Phys. Chem. C 2019, 123, 31094–31102. [Google Scholar] [CrossRef]
- Chen, J.-C.; Ramos, M.; Arasa, C.; Juanes-Marcos, J.C.; Somers, M.F.A.; Martínez, E.; Díaz, C.; Olsen, R.A.; Kroes, G.-J. Dynamics of H2 dissociation on the 1/2 ML c(2 × 2)-Ti/Al(100) surface. Phys. Chem. Chem. Phys. 2012, 14, 3234–3247. [Google Scholar] [CrossRef]
- Rutigliano, M.; Pirani, F. Selectivity in the inelastic rotational scattering of hydrogen molecules. Chem. Phys. 2016, 479, 11–19. [Google Scholar] [CrossRef]
- Rutigliano, M.; Pirani, F. Selectivity in the inelastic rotational scattering of D2 and HD molecules from graphite: Similarities and differences respect to the H2 case. Chem. Phys. 2018, 504, 38–47. [Google Scholar] [CrossRef]
- Rutigliano, M.; Pirani, F. On the influence of rotational motion of oxygen molecules on the scattering from graphite surfaces. J. Phys. Chem. C 2019, 123, 11752–11762. [Google Scholar] [CrossRef]
- Rutigliano, M.; Pirani, F. Selectivity and Stereodynamics Effects in the Scattering of Nitrogen Molecules from a Graphite Surface. J. Phys. Chem. C 2020, 124, 10470–10482. [Google Scholar] [CrossRef]
- Rutigliano, M.; Pirani, F. Stereodynamic Effects of CO Molecules Scattered from a Graphite Surface. J. Phys. Chem. C 2021, 125, 9074–9084. [Google Scholar] [CrossRef]
- Haenecour, P.; Zhao, X.; Floss, C.; Lin, Y.; Zinner, E. First Laboratory Observation of Silica Grains from Core Collapse Supernovae. Astrophys. J. Lett. 2013, 768, L17. [Google Scholar] [CrossRef] [Green Version]
- Kurotaki, T. Construction of Catalytic Model on SiO2-Based Surface and Application to Real Trajectory. In Proceedings of the AIAA 34th Thermophysics Conference, Denver, CO, USA, 19–22 June 2000. [Google Scholar] [CrossRef]
- Laskowski, Ł.; Laskowska, M.; Vila, N.; Schabikowski, M.; Walcarius, A. Mesoporous Silica-Based Materials for Electronics-Oriented Applications. Molecules 2019, 24, 2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Hableel, G.; Zhao, E.R.; Jokerst, J.V. Multifunctional Nanomedicine with Silica: Role of Silica in Nanoparticles for Theranostic, Imaging, and Drug Monitoring. J. Colloid Interface Sci. 2018, 521, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Levin, D.A. Molecular-Dynamics-Derived Gas–Surface Models for Use in Direct-Simulation Monte Carlo. J. Thermophys. Heat Trans. 2017, 31, 757–771. [Google Scholar] [CrossRef]
- Coasne, B.; Galarneau, A.; Di Renzo, F.; Pellenq, R.J.M. Molecular Simulation of Nitrogen Adsorption in Nanoporous Silica. Langmuir 2010, 26, 10872–10881. [Google Scholar] [CrossRef] [PubMed]
- MacElroy, J.M.D. Sorption in Energetically Heterogeneous Model Silica Systems. Langmuir 1993, 2, 2682–2692. [Google Scholar] [CrossRef]
- Gelb, L.D.; Gubbins, K.E. Characterization of Porous Glasses: Simulation Models Adsorption Isotherms, and the Brunauer-Emmett-Teller Analysis Method. Langmuir 1998, 14, 2097–2111. [Google Scholar] [CrossRef]
- Billing, G.D. Dynamics of Molecule Surface Interactions, 1st ed.; John-Wiley & Sons: New York, NY, USA, 2000; pp. 112–141. [Google Scholar]
- Rutigliano, M.; Pirani, F. The role of long-range interactions on the selectivity of gaseous molecule-surface scattering. Chem. Phys. Lett. 2021, 770, 138444. [Google Scholar] [CrossRef]
- Sanna, N.; Rutigliano, M.; Palma, A. Dispersion energy effects on oxygen interaction with cesiated molybdenum surface. Chem. Phys. Lett. 2021, 773, 138603. [Google Scholar] [CrossRef]
- Pirani, F.; Brizi, S.; Roncaratti, L.F.; Casavecchia, P.; Cappelletti, D.; Vecchiocattivi, F. Beyond the Lennard-Jones model: A simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys 2008, 10, 5489–5503. [Google Scholar] [CrossRef] [PubMed]
- Aquilanti, V.; Ascenzi, D.; Cappelletti, D.; Fedeli, R.; Pirani, F. Molecular beam scattering of nitrogen molecules in supersonic seeded beams: A probe of rotational alignment. J. Phys. Chem. A 1997, 101, 7648–7656. [Google Scholar] [CrossRef]
- Aquilanti, V.; Ascenzi, D.; de Castro Vitores, M.; Pirani, F.; Cappelletti, D. A quantum mechanical view of molecular alignment and cooling in seeded supersonic expansions. J. Chem. Phys. 1999, 111, 2620–2632. [Google Scholar] [CrossRef]
- Rutigliano, M.; Pirani, F. Surface processes involving nitrogen molecules and atoms on silica surface at low temperature: The role of energy exchanges. Plasma Sources Sci. Technol. 2022, in press. [Google Scholar] [CrossRef]
- Rutigliano, M.; Pieretti, A.; Cacciatore, M.; Sanna, N.; Barone, V. N atoms recombination on a silica surface: A global theoretical approach. Surf. Sci. 2006, 600, 4239–4246. [Google Scholar] [CrossRef]
- Kleyn, A.W. Rotational rainbow scattering of oriented molecules. Surf. Rev. Lett. 1994, 1, 157–173. [Google Scholar] [CrossRef]
- Kummel, A.C.; Sitz, G.O.; Zare, R.N.; Tully, J. Direct inelastic scattering of N2 from Ag(111). III. Normal incident N2. J. Chem. Phys. 1988, 89, 6947–6955. [Google Scholar] [CrossRef] [Green Version]
- Lykke, K.R.; Kay, B.D. Rotational rainbows in the inelastic scattering of N2 from Au(111). J. Phys. Condens. Matter 1991, 3, S65–S70. [Google Scholar] [CrossRef]
- Bedra, L.; Rutigliano, M.; Balat-Pichelin, M.; Cacciatore, M. Atomic Oxygen Recombination on Quartz at High Temperature: Experiments and Molecular Dynamics Simulation. Langmuir 2006, 22, 7208–7216. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, M.; Rutigliano, M. Eley-Rideal and Langmuir- Hinshelwood Recombination Coefficients for Oxygen on Silica Surfaces. J. Thermophys. Heat Trans. 1999, 13, 195–203. [Google Scholar] [CrossRef]
- Rutigliano, M.; Cacciatore, M. Isotope and Surface Temperature Effects for Hydrogen Recombination on a Graphite Surface. ChemPhysChem 2008, 9, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Rutigliano, M.; Gamallo, P.; Sayós, R.; Orlandini, S.; Cacciatore, M. A molecular dynamics simulation of hydrogen atoms collisions on an H-preadsorbed silica surface. Plasma Sources Sci. Technol. 2014, 23, 045016. [Google Scholar] [CrossRef]
- Cacciatore, M.; Christoffersen, E.; Rutigliano, M. Adsorption site and surface temperature effects in CO formation on Pt(111): A new semiclassical study. J. Phys. Chem. A 2004, 108, 8810–8818. [Google Scholar] [CrossRef]
- Rutigliano, M.; Palma, A.; Sanna, N. Hydrogen scattering from a cesiated surface model. Surf. Sci. 2017, 664, 194–200. [Google Scholar] [CrossRef]
- Huber, K.P.; Herzberg, G. Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules; Van Nostrand Reinhold Company: New York, NY, USA, 1979; pp. 412–413. [Google Scholar]
- Muckerman, J.T. Monte Carlo Calculations of Energy Partitioning and Isotope Effects in Reactions of Fluorine Atoms with H2, HD, and D2. J. Chem. Phys. 1971, 54, 1155–1164. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Academic Press: London, UK, 1992; pp. 155–157. [Google Scholar]
- Pirani, F.; Maciel, G.S.; Cappelletti, D.; Aquilanti, V. Experimental benchmarks and phenomenology of interatomic forces: Open-shell and electronic anisotropy effects. Int. Rev. Phys. Chem. 2006, 25, 165–199. [Google Scholar] [CrossRef]
- Brodka, A.; Zerda, T.W. Molecular dynamics of SF6 in porous silica. J. Chem. Phys. 1991, 95, 3710–3718. [Google Scholar] [CrossRef]
- Bezus, A.G.; Kiselev, A.V.; Lopatkin, A.A.; Du, P.Q. Molecular Statistical Calculation of the Thermodynamic Adsorption Characteristics of Zeolites using the Atom-Atom Approximation. J. Chem. Soc. Faraday Trans. 2 1978, 74, 367–379. [Google Scholar] [CrossRef]
- Brunetti, B.; Pirani, F.; Vecchiocattivi, F.; Luzzatti, E. Characterization of Ne-Ne long range interactions by absolute total cross section measurement. Chem. Phys. Lett. 1978, 58, 504–508. [Google Scholar] [CrossRef]
- Farrar, J.-M.; Lee, Y.T.; Goldman, V.V.; Klein, M.L. Neon interatomic potentials from scattering data and crystalline properties. Chem. Phys. Lett. 1973, 19, 359–362. [Google Scholar] [CrossRef]
- Kohler, A.E.J.; Garofalini, S.H. Effect of Composition on the Penetration of Inert Gases Adsorbed on to Silicate Glass Surfaces. Langmuir 1994, 10, 4664–4669. [Google Scholar] [CrossRef]
- Fatriansyah, J.F.; Dhaneswara, D.; Abdurrahman, M.H.; Kuskendrianto, F.R.; Yusuf, M.B. Modeling of Nitrogen Adsorption Phenomena in Amorphous Silica Using Molecular Dynamics Method. AIP Conf. Proc. 2019, 2169, 030001. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutigliano, M.; Pirani, F. Scattering of N2 Molecules from Silica Surfaces: Effect of Polymorph and Surface Temperature. Molecules 2022, 27, 7445. https://doi.org/10.3390/molecules27217445
Rutigliano M, Pirani F. Scattering of N2 Molecules from Silica Surfaces: Effect of Polymorph and Surface Temperature. Molecules. 2022; 27(21):7445. https://doi.org/10.3390/molecules27217445
Chicago/Turabian StyleRutigliano, Maria, and Fernando Pirani. 2022. "Scattering of N2 Molecules from Silica Surfaces: Effect of Polymorph and Surface Temperature" Molecules 27, no. 21: 7445. https://doi.org/10.3390/molecules27217445
APA StyleRutigliano, M., & Pirani, F. (2022). Scattering of N2 Molecules from Silica Surfaces: Effect of Polymorph and Surface Temperature. Molecules, 27(21), 7445. https://doi.org/10.3390/molecules27217445