New Insight into CO2 Reduction to Formate by In Situ Hydrogen Produced from Hydrothermal Reactions with Iron
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Analysis of Geometric Parameters
3.2. Energy Diagram for HCOO Production
3.3. IRC and HOMO/LUMO Calculation of Transition State
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, M.; Niu, D. Modeling CO2 emissions from fossil fuel combustion using the logistic equation. Energy 2011, 36, 3355–3359. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Ma, X.; Gong, J.L. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703–3727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huff, C.A.; Sanford, M.S. Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J. Am. Chem. Soc. 2011, 133, 18122–18125. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.C.; Varghese, O.K.; Paulose, M.; Grimes, C.A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J. Am. Chem. Soc. 2008, 130, 2023–2031. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.M.; Enomoto, H. Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: Chemistry of acid/base-catalysed and oxidation reactions. Energy Environ. Sci. 2011, 4, 382–397. [Google Scholar] [CrossRef]
- Takahashi, H.; Kori, T.; Onoki, T.; Tohji, K.; Yamasaki, N. Hydrothermal processing of metal based compounds and carbon dioxide for the synthesis of organic compounds. J. Mater. Sci. 2008, 43, 2487–2491. [Google Scholar] [CrossRef]
- Tian, G.; He, C.; Chen, Y.; Yuan, H.M.; Liu, Z.W.; Shi, Z.; Feng, S.H. Hydrothermal Reactions from Carbon Dioxide to Phenol. ChemSusChem 2010, 3, 323–324. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.; Gabor, L. Formic Acid as a Hydrogen Source-Recent Developments and Future Trends. Energy Environ. Sci. 2012, 5, 8171–8181. [Google Scholar]
- Galvez, M.E.; Loutzenhiser, P.G.; Hischier, I.; Steinfeld, A. CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions: Thermodynamic analysis. Energy Fuels 2008, 22, 3544–3550. [Google Scholar] [CrossRef]
- Hu, Y.H. A highly efficient photocatalyst hydrogenated black TiO2 for the photocatalytic splitting of water. Angew. Chem. Int. Ed. 2012, 51, 12410–12412. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Hatakeyama, M.; Ogata, K.; Liu, J.K.; Wang, Y.Q.; Gao, Q.; Fujii, K.; Fujihira, M.; Jin, F.M.; Nakamura, S. New insights into highly efficient reduction of CO2 to formic acid by using zinc under mild hydrothermal conditions: A joint experimental and theoretical study. Phys. Chem. Chem. Phys. 2014, 16, 19836–19840. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Gao, Y.; Yao, G.D.; Zeng, X.; Li, Q.J.; Huo, Z.B.; Jin, F.M. Highly efficient water splitting and carbon dioxide reduction into formic acid with iron and copper powder. Chem. Eng. J. 2015, 280, 215–221. [Google Scholar] [CrossRef]
- Duo, J.; Jin, F.M.; Wang, Y.Q.; Zhong, H.; Lyu, L.Y.; Yao, G.D.; Huo, Z.B. NaHCO3-enhanced hydrogen production from water with Fe and in situ highly efficient and autocatalytic NaHCO3 reduction into formic acid. Chem. Commun. 2016, 52, 3316–3319. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.E.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.P.G.A.; Petersson, G.A.; Nakatsuji, H.J.R.A.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, UK, 2016. [Google Scholar]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Yin, G.-D.; Zhou, Y.-Y.; Zhao, J.-F. New Insight into CO2 Reduction to Formate by In Situ Hydrogen Produced from Hydrothermal Reactions with Iron. Molecules 2022, 27, 7371. https://doi.org/10.3390/molecules27217371
Zeng X, Yin G-D, Zhou Y-Y, Zhao J-F. New Insight into CO2 Reduction to Formate by In Situ Hydrogen Produced from Hydrothermal Reactions with Iron. Molecules. 2022; 27(21):7371. https://doi.org/10.3390/molecules27217371
Chicago/Turabian StyleZeng, Xu, Guo-Dong Yin, Yang-Yuan Zhou, and Jian-Fu Zhao. 2022. "New Insight into CO2 Reduction to Formate by In Situ Hydrogen Produced from Hydrothermal Reactions with Iron" Molecules 27, no. 21: 7371. https://doi.org/10.3390/molecules27217371
APA StyleZeng, X., Yin, G. -D., Zhou, Y. -Y., & Zhao, J. -F. (2022). New Insight into CO2 Reduction to Formate by In Situ Hydrogen Produced from Hydrothermal Reactions with Iron. Molecules, 27(21), 7371. https://doi.org/10.3390/molecules27217371