Chemical Composition and Antioxidant Activity of the Essential Oils of Citral-Rich Chemotype Cinnamomum camphora and Cinnamomum bodinieri
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Yield
2.2. Chemical Constituents of Essential Oil
2.3. Antioxidant of the Essential Oil
2.3.1. DPPH Radical Scavenging Activity
2.3.2. ABTS Radical Scavenging Activity
2.3.3. Ferric Reducing Antioxidant Power (FRAP)
3. Discussion
4. Materials and Methods
4.1. Plant Material and Reagent
4.2. Isolation of Essential Oil
4.3. Gas Chromatography-Mass Spectrometry (GC-MS)
4.4. Antioxidant Activity DPPH Test
4.5. ABTS Radical Scavenging Activity
4.6. Ferric Reducing Antioxidant Power (FRAP)
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirai, M.; Ota, Y.; Ito, M. Diversity in principal constituents of plants with a lemony scent and the predominance of citral. J. Nat. Med. 2022, 76, 254–258. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Maternal Reproductive Toxicity of Some Essential Oils and Their Constituents. Int. J. Mol. Sci. 2021, 22, 2380. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, H.; Wen, Z.; Zhang, B.; Chen, G. Toward the Efficient Synthesis of Pseudoionone from Citral in a Continuous-Flow Microreactor. Ind. Eng. Chem. Res. 2018, 57, 11288–11298. [Google Scholar] [CrossRef]
- Southwell, I. Backhousia citriodora F. Muell. (Lemon Myrtle), an Unrivalled Source of Citral. Foods 2021, 10, 1596. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-A.; Jeon, S.-K.; Lee, E.-J.; Shim, C.-H.; Lee, I.-S. Comparative study of the chemical composition and antioxidant activity of six essential oils and their components. Nat. Prod. Res. 2010, 24, 140–151. [Google Scholar] [CrossRef]
- Bouzenna, H.; Hfaiedh, N.; Giroux-Metges, M.-A.; Elfeki, A.; Talarmin, H. Biological properties of citral and its potential protective effects against cytotoxicity caused by aspirin in the IEC-6 cells. Biomed. Pharmacother. 2017, 87, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Qi, H.; Luan, X.; Xu, W.; Yu, F.; Zhong, Y.; Xu, M. The chromosome-level genome sequence of the camphor tree provides insights into Lauraceae evolution and terpene biosynthesis. Plant Biotechnol. J. 2022, 20, 244–246. [Google Scholar] [CrossRef]
- Sun, W.-H.; Xiang, S.; Zhang, Q.-G.; Xiao, L.; Zhang, D.; Zhang, P.; Chen, D.-Q.; Hao, Y.; Liu, D.-K.; Ding, L.; et al. The camphor tree genome enhances the understanding of magnoliid evolution. J. Genet. Genom. 2021, 49, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Mao, Y.; Wang, L. A Chromosome-Level Genome of the Camphor Tree and the Underlying Genetic and Climatic Factors for Its Top-Geoherbalism. Front. Plant Sci. 2022, 13, 17. [Google Scholar] [CrossRef]
- Chen, C.; Zheng, Y.; Zhong, Y.; Wu, Y.; Li, Z.; Xu, L.-A.; Xu, M. Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora. BMC Genom. 2018, 19, 550. [Google Scholar] [CrossRef]
- Xiangmei, J.; Yanfang, W.; Fuming, X.; Zhenyu, X.; Haining, X. Transcriptome analysis for leaves of five chemical types in Cinnamomum camphora. Hereditas 2014, 36, 58–68. [Google Scholar] [CrossRef]
- Yang, T.; Li, J.; Wang, H.; Zeng, Y. A geraniol-synthase gene from Cinnamomum tenuipilum. Phytochemistry 2005, 66, 285–293. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, J.; Zhang, B.; Jin, X.; Zhang, H.; Jin, Z. Transcriptional Analysis of Metabolic Pathways and Regulatory Mechanisms of Essential Oil Biosynthesis in the Leaves of Cinnamomum camphora (L.) Presl. Front. Genet. 2020, 11, 598714. [Google Scholar] [CrossRef]
- Qiu, F.; Wang, X.; Zheng, Y.; Wang, H.; Liu, X.; Su, X. Full-Length Transcriptome Sequencing and Different Chemotype Expression Profile Analysis of Genes Related to Monoterpenoid Biosynthesis in Cinnamomum porrectum. Int. J. Mol. Sci. 2019, 20, 6230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Z.; Zhang, B.; Wang, Y.; Li, F.; Jin, Z.; Lü, X.; Zhang, H.; Zhang, J.; Zhao, J. Transcriptomic Analysis Reveals That Exogenous Indole-3-Butyric Acid Affects the Rooting Process during Stem Segment Culturing of Cinnamomum camphora Linalool Type. Plant Mol. Biol. Report. 2022, 40, 1–13. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, T.; Liao, X.; Zhou, Y.; Chen, S.; Chen, J.; Xiong, W. Extraction of Camphor Tree Essential Oil by Steam Distillation and Supercritical CO2 Extraction. Molecules 2022, 27, 5385. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Tian, Z.; Zheng, T.; Xu, S.; Ma, Y.; Zou, S.; Zuo, Z. Terpenoid composition and antioxidant activity of extracts from four chemotypes of Cinnamomum camphora and their main antioxidant agents. Biofuels Bioprod. Biorefining 2022, 16, 510–522. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Meng, Y.; Zu, Y.; Han, F.; Zhao, X. Isolation, Antibacterial, Nematicidal and Anxiolytic Activities of Essential Oil from Cinnamomum longepaniculatum (Gamble) N. Chao ex H. W. Li Leaves. J. Essent. Oil Bear. Plants 2022, 25, 581–600. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, C.; Xiao, Z.; Zhang, H.; Cao, M.; Liu, Y.; Jin, Z. Chemical Constituents and Chemotypes of Fresh Leaf Essential Oil of Wild Species Belonging to Sect. Camphor (Trew.) Meissn. in Southeastern China. J. Essent. Oil Bear. Plants 2019, 22, 1115–1122. [Google Scholar] [CrossRef]
- Xiao, Z. Effects of IBA on rooting ability of Cinnamomum bodinieri citral type micro-shoots from transcriptomics analysis. Plant Biotechnol. Rep. 2020, 14, 467–477. [Google Scholar] [CrossRef]
- Ksouda, G.; Sellimi, S.; Merlier, F.; Falcimaigne-cordin, A.; Thomasset, B.; Nasri, M.; Hajji, M. Composition, antibacterial and antioxidant activities of Pimpinella saxifraga essential oil and application to cheese preservation as coating additive. Food Chem. 2019, 288, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Hazzit, M.; Baaliouamer, A. Composition of the Essential Oils of the Leaves and Flowers of Thymus pallescens de Noé and Origanum floribundum Munby From Algeria. J. Essent. Oil Res. 2009, 21, 267–270. [Google Scholar] [CrossRef]
- Zhao, Q.; Ding, Q.; Yuan, G.; Xu, F.; Li, B.; Wang, J.; Ouyang, J. Comparison of the Essential Oil Composition of Wild Rhododendron tomentosum Stems, Leaves, and Flowers in Bloom and Non-bloom Periods from Northeast China. J. Essent. Oil Bear. Plants 2016, 19, 1216–1223. [Google Scholar] [CrossRef]
- Tangjitjaroenkun, J.; Tangchitcharoenkhul, R.; Yahayo, W.; Supabphol, S.; Sappapan, R.; Supabphol, R. Chemical compositions of essential oils of Amomum verum and Cinnamomum parthenoxylon and their in vitro biological properties. J. Herbmed Pharmacol. 2020, 9, 223–231. [Google Scholar] [CrossRef]
- Anifalaje, E.O.; Ibok, M.G. Chemical Compositions and Antioxidant Activities of Albizia lebbeck L. Essential Oils. J. Essent. Oil Bear. Plants 2020, 23, 810–820. [Google Scholar] [CrossRef]
- Lim, A.C.; Tang, S.G.H.; Zin, N.M.; Maisarah, A.M.; Ariffin, I.A.; Ker, P.J.; Mahlia, T.M.I. Chemical Composition, Antioxidant, Antibacterial, and Antibiofilm Activities of Backhousia citriodora Essential Oil. Molecules 2022, 27, 4895. [Google Scholar] [CrossRef]
- Liu, X.; Xu, D.; Yang, Z.; Zhang, N. Chemical Composition of Essential Oils from the Heartwood of Pterocarpus macrocarpus by Different Extraction Methods in Southern China. J. Essent. Oil Bear. Plants 2017, 20, 110–115. [Google Scholar] [CrossRef]
- Lu, C.; Li, H.; Li, C.; Chen, B.; Shen, Y. Chemical composition and radical scavenging activity of Amygdalus pedunculata Pall leaves’ essential oil. Food Chem. Toxicol. 2018, 119, 368–374. [Google Scholar] [CrossRef]
- Si, L.; Chen, Y.; Han, X.; Zhan, Z.; Tian, S.; Cui, Q.; Wang, Y. Chemical Composition of Essential Oils of Litsea cubeba Harvested from Its Distribution Areas in China. Molecules 2012, 17, 7057–7066. [Google Scholar] [CrossRef]
- Satyal, P.; Paudel, P.; Poudel, A.; Dosoky, N.S.; Pokharel, K.K.; Setzer, W.N. Bioactivities and Compositional Analyses of Cinnamomum Essential Oils from Nepal: C. camphora, C. tamala, and C. glaucescens. Nat. Prod. Commun. 2013, 8, 1934578X1300801. [Google Scholar] [CrossRef]
- Southwell, I.A.; Russell, M.; Smith, R.L.; Archer, D.W. Backhousia citriodora F. Muell. (Myrtaceae), A Superior Source of Citral. J. Essent. Oil Res. 2000, 12, 735–741. [Google Scholar] [CrossRef]
- Alhasan, A.S.; Abbas, M.K.; Al-Ameri, D.T. Response of Two Purple basil (Ocimum basilicum L.) Cultivars Grown Under Field Conditions to Different Rates of NPK Foliar Fertilization. IOP Conf. Ser. Earth Environ. Sci. 2021, 735, 012053. [Google Scholar] [CrossRef]
- Čeh, B.; Štraus, S.; Hladnik, A.; Kušar, A. Impact of Linseed Variety, Location and Production Year on Seed Yield, Oil Content and Its Composition. Agronomy 2020, 10, 1770. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Yousefzadeh, S.; Sabaghnia, N. Chemical Comparison of Essential Oils in Dragonhead (Dracocephalum moldavica L.) Samples Grown in Different Areas. J. Essent. Oil Bear. Plants 2018, 21, 950–962. [Google Scholar] [CrossRef]
- Shokrgoo, A.; Madandoust, M. Effect of Harvest Time on Essential Oil Content and Chemical Composition of Origanum vulgare (L.) from Iran. J. Essent. Oil Bear. Plants 2018, 21, 1682–1686. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Lu, Q.; Hu, Q.; Liu, P.; Yang, Y.; Li, G.; Xie, H.; Tang, H. Drying temperature affects essential oil yield and composition of black cardamom (Amomum tsao-ko). Ind. Crops Prod. 2021, 168, 113580. [Google Scholar] [CrossRef]
- Sarrazin, S.; da Silva, L.; de Assunção, A.; Oliveira, R.; Calao, V.; da Silva, R.; Stashenko, E.; Maia, J.; Mourão, R. Antimicrobial and Seasonal Evaluation of the Carvacrol-Chemotype Oil from Lippia origanoides Kunth. Molecules 2015, 20, 1860–1871. [Google Scholar] [CrossRef]
- Kazemi, S.Y.; Nabavi, J.; Zali, H.; Ghorbani, J. Effect of Altitude and Soil on the Essential Oils Composition of Juniperus communis. J. Essent. Oil Bear. Plants 2017, 20, 1380–1390. [Google Scholar] [CrossRef]
- Norouzi, M.; Maboud, H.E.; Seyedi, S.M.; Niknam, V. Changes in Pistachios Essential Oil Composition during Fruit Ripening. J. Essent. Oil Bear. Plants 2019, 22, 1481–1487. [Google Scholar] [CrossRef]
- Agha Mohammad Reza, M.; Paknejad, F.; Shirani Rad, A.H.; Ardakani, M.R.; Kashani, A. Change in plant densities combined with zinc application affects rapeseed seed oil and fatty acid composition. J. Plant Nutr. 2022, 45, 471–481. [Google Scholar] [CrossRef]
- Chen, H.; Gu, Z.; Yang, L.; Yang, R.; Ji, Y.; Zeng, Q.; Xiao, F.; Huang, P. Optimization extraction of rosemary essential oils using hydrodistillation with extraction kinetics analysis. Food Sci. Nutr. 2021, 9, 6069–6077. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Li, C.; Dai, J.; Cui, H.; Lin, L. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Ind. Crops Prod. 2019, 130, 34–41. [Google Scholar] [CrossRef]
- Mukarram, M.; Choudhary, S.; Khan, M.A.; Poltronieri, P.; Khan, M.M.A.; Ali, J.; Kurjak, D.; Shahid, M. Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants 2022, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Lal, R.K.; Chanotiya, C.S.; Dwivedi, A. The pre-eminence of agro-parameters and chemical constituents in the influence of harvest interval by traits × environment interaction over the years in lemon-scented basil (Ocimum africanum Lour.). Ind. Crops Prod. 2021, 172, 113989. [Google Scholar] [CrossRef]
- Kaskoos, R.A. Essential Oil Analysis by GC-MS and Analgesic Activity of Lippia citriodora and Citrus limon. J. Essent. Oil Bear. Plants 2019, 22, 273–281. [Google Scholar] [CrossRef]
- Fagodia, S.K.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Phytotoxicity and cytotoxicity of Citrus aurantiifolia essential oil and its major constituents: Limonene and citral. Ind. Crops Prod. 2017, 108, 708–715. [Google Scholar] [CrossRef]
- Hammid, S.A.; Ahmad, F. Chemotype of Litsea cubeba Essential Oil and Its Bioactivity. Nat. Prod. Commun. 2015, 10, 1934578X1501000. [Google Scholar] [CrossRef] [Green Version]
- Ray, A.; Jena, S.; Dash, B.; Kar, B.; Halder, T.; Chatterjee, T.; Ghosh, B.; Panda, P.C.; Nayak, S.; Mahapatra, N. Chemical diversity, antioxidant and antimicrobial activities of the essential oils from Indian populations of Hedychium coronarium Koen. Ind. Crops Prod. 2018, 112, 353–362. [Google Scholar] [CrossRef]
- Udayaprakash, N.K.; Ranjithkumar, M.; Deepa, S.; Sripriya, N.; Al-Arfaj, A.A.; Bhuvaneswari, S. Antioxidant, free radical scavenging and GC–MS composition of Cinnamomum iners Reinw. ex Blume. Ind. Crops Prod. 2015, 69, 175–179. [Google Scholar] [CrossRef]
- Mathela, C.; Joshi, S. Antioxidant and antibacterial activities of the leaf essential oil and its constituents furanodienone and curzerenone from Lindera pulcherrima (Nees.) Benth. ex hook. f. Pharmacogn. Res. 2012, 4, 80. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Pękal, A. Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Anal. Methods 2013, 5, 4288–4295. [Google Scholar] [CrossRef]
- Wojtunik, K.A.; Ciesla, L.M.; Waksmundzka-Hajnos, M. Model Studies on the Antioxidant Activity of Common Terpenoid Constituents of Essential Oils by Means of the 2,2-Diphenyl-1-picrylhydrazyl Method. J. Agric. Food Chem. 2014, 62, 9088–9094. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Burgos, E.; Gomez-Serranillos, M.P. Terpene Compounds in Nature: A Review of Their Potential Antioxidant Activity. CMC 2012, 19, 5319–5341. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
Varieties | Geographical Origins | Species | Density (g/cm3) | Percentage Yield % | Essential Oil Characteristics | |
---|---|---|---|---|---|---|
Fresh Weight | Dry Weight | |||||
N1 | Guangxi | C. camphora | 0.887 ± 0.003 | 1.02 ± 0.05 a | 2.34 ± 0.17 ab | Cloudy and yellowish |
N2 | Guangxi | C. bodinieri | 0.868 ± 0.005 | 0.77 ± 0.06 b | 1.78 ± 0.15 cd | Cloudy and yellowish |
N3 | Guangxi | C. camphora | 0.880 ± 0.016 | 1.11 ± 0.07 a | 2.64 ± 0.15 a | Transparent and yellowish |
N4 | Jiangxi | C. camphora | 0.894 ± 0.001 | 0.82 ± 0.06 b | 2.04 ± 0.14 bc | Transparent and yellowish |
N5 | Jiangxi | C. camphora | 0.879 ± 0.021 | 1.08 ± 0.04 a | 2.60 ± 0.17 a | Transparent and yellowish |
N6 | Hubei | C. bodinieri | 0.886 ± 0.010 | 0.60 ± 0.09 c | 1.45 ± 0.23 d | Transparent and yellowish |
N7 | Guizhou | C. bodinieri | 0.884 ± 0.002 | 0.83 ± 0.05 b | 2.04 ± 0.12 bc | Transparent and yellowish |
No | RI a (lit) | RI b (exp) | Compounds c | Molecular Formula | Percent Composition | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N1 | N2 | N3 | N4 | N5 | N6 | N7 | |||||
1 | 972 | 975 | sabinene | C10H16 | - | 6.0 | - | - | - | - | - |
2 | 981 | 978 | β-Pinene | C10H16 | - | - | 0.4 | 0.3 | - | - | - |
3 | 1026 | 1025 | limonene | C10H16 | - | - | - | - | - | - | 0.2 |
4 | 1030 | 1029 | eucalyptol | C10H18O | 1.1 | 4.5 | 0.1 | - | - | - | - |
5 | 1101 | 1098 | linalool | C10H18O | - | 2.0 | - | - | - | - | 0.3 |
6 | 1158 | 1156 | citronellal | C10H18O | - | - | - | - | - | - | 1.5 |
7 | 1165 | 1165 | Z-isocitral | C10H16O | 3.2 | 3.2 | 3.1 | - | - | 1.8 | - |
8 | 1184 | 1179 | E-isocitral | C10H16O | 3.8 | 3.5 | 3.2 | 3.9 | 4.7 | - | - |
9 | 1227 | 1217 | nerol | C10H18O | 1.2 | - | - | - | - | 1.1 | - |
10 | 1245 | 1247 | neral | C10H16O | 28.7 | 28.6 | 32.6 | 30.7 | 34.1 | 39.2 | 34.6 |
11 | 1254 | 1244 | geraniol | C10H18O | 2.0 | - | - | 1.5 | 2.6 | 1.9 | 1.3 |
12 | 1276 | 1277 | geranial | C10H16O | 31.8 | 35.3 | 36.9 | 40.2 | 44.7 | 35.3 | 54.1 |
13 | 1355 | 1346 | geranic acid | C10H16O2 | - | - | 0.1 | 0.1 | - | 2.6 | 2.0 |
14 | 1354 | 1353 | β-Citronellyl acetate | C12H22O2 | 0.3 | - | 0.6 | 0.4 | - | - | - |
15 | 1362 | 1361 | neryl acetate | C12H20O2 | - | - | 0.3 | - | - | - | - |
16 | 1371 | 1370 | α-copaene | C15H24 | - | - | 0.2 | - | - | - | - |
17 | 1388 | 1380 | β-elemene | C15H24 | 0.3 | 0.2 | - | - | - | - | - |
18 | 1384 | 1383 | geranyl acetate | C12H20O2 | 0.6 | 0.1 | 4.1 | 0.8 | - | - | - |
19 | 1410 | 1403 | caryophyllene | C15H24 | 1.9 | 1.6 | 2.2 | 1.0 | 2.4 | - | 0.6 |
20 | 1454 | 1454 | humulene | C15H24 | 1.0 | 0.5 | 1.3 | 1.0 | - | - | - |
21 | 1480 | 1477 | germacrene D | C15H24 | 0.3 | 0.3 | 0.2 | 0.3 | - | 0.3 | - |
22 | 1486 | 1484 | β-selinene | C15H24 | 0.7 | 0.2 | 0.4 | 0.6 | - | - | - |
23 | 1495 | 1491 | bicyclogermacrene | C15H24 | 2.2 | 2.8 | 0.8 | 2.1 | 2.6 | 0.7 | - |
24 | 1524 | 1518 | delta-cadinene | C15H24 | - | - | 0.2 | - | - | - | - |
25 | 1537 | 1540 | elemol | C15H26O | 0.2 | 0.1 | 0.4 | 0.4 | 0.5 | - | - |
26 | 1550 | 1548 | (1E,5E)-germacrene B | C15H24 | 0.1 | 0.1 | 0.1 | 0.1 | - | - | - |
27 | 1562 | 1557 | (E)-nerolidol | C15H26O | 0.2 | 0.1 | 0.3 | 1.6 | 1.5 | - | - |
28 | 1577 | 1571 | 10′-apocarotenal | C15H24O | 2.9 | - | 3.9 | 0.9 | 0.6 | 2.8 | - |
29 | 1576 | 1572 | spathulenol | C15H24O | 0.4 | 3.2 | 0.5 | 0.3 | - | 0.3 | - |
30 | 1578 | 1574 | caryophyllene oxide | C15H24O | 2.7 | - | 0.1 | 1.1 | 0.8 | - | - |
31 | 1591 | 1587 | guaiol | C15H26O | 0.3 | 0.2 | - | 0.3 | 0.4 | - | - |
32 | 1593 | 1589 | humulene oxide I | C15H24O | - | - | 0.3 | - | - | - | - |
33 | 1606 | 1600 | humulene epoxide II | C15H24O | 1.2 | 0.2 | 1.5 | 1.4 | - | 0.2 | - |
34 | 1631 | 1624 | caryophylla-4(12),8(13)-dien-5.alpha.-ol | C15H24O | 0.1 | - | - | - | - | - | - |
35 | 1635 | 1635 | τ-cadinol | C15H26O | - | - | 0.2 | - | - | - | - |
36 | 1643 | 1645 | τ-muurolol | C15H26O | - | 0.3 | - | - | - | - | - |
37 | 1651 | 1647 | selin-11-en-4-α-ol | C15H26O | 0.5 | - | 0.7 | - | - | 0.3 | - |
38 | 1705 | 1705 | (Z,Z)-2,6-farnesol | C15H26O | 0.2 | - | 0.2 | 0.2 | - | - | - |
39 | 1709 | 1709 | (Z)-epi-β-santalol | C15H24O | - | - | - | - | - | 1.0 | - |
40 | 1720 | 1721 | (E,Z)-2,6-farnesal | C15H24O | 0.1 | - | - | - | - | - | - |
Amount of chemical compounds | 27 | 21 | 28 | 22 | 11 | 13 | 8 | ||||
Total identified constituents | 88.0 | 93.0 | 94.9 | 89.2 | 94.9 | 87.5 | 94.6 | ||||
Hydrocarbon monoterpenes (HM) 1,2,3. | 0.0 | 6.0 | 0.4 | 0.3 | 0.0 | 0.0 | 0.2 | ||||
Oxygenated monoterpenes (OM) 4,5,6,7,8,9,10,11,12,13. | 71.7 | 77.2 | 75.9 | 76.4 | 86.1 | 81.8 | 93.7 | ||||
Hydrocarbon sesquiterpenes (HS) 16,17,19,20,21,22,23,24,26. | 6.4 | 5.6 | 5.1 | 5.0 | 5.0 | 1.0 | 0.6 | ||||
Oxygenated sesquiterpenes (OS) 25,27,28,29,30,31,32,33,34,35,36,37,38,39,40. | 8.8 | 4.2 | 8.0 | 6.1 | 3.7 | 4.5 | 0.0 | ||||
Non-terpenic compounds (NT) 14,15,18. | 0.9 | 0.1 | 0.6 | 1.2 | 0.0 | 0.0 | 0.0 |
No | DPPH | ABTS | ||||
---|---|---|---|---|---|---|
IC50 (mg/mL) | Fitting Equation | R2 | IC50 (mg/mL) | Fitting Equation | R2 | |
N1 | 28.133 ± 0.44 a | 0.997 | 117.22 ± 5.4 a | 0.995 | ||
N2 | 14.504 ± 0.40 b | 0.996 | 57.33 ± 0.08 c | 0.988 | ||
N3 | 12.229 ± 0.169 c | 0.990 | 66.9 ± 0.13 b | 0.999 | ||
N4 | 7.527 ± 0.106 d | 0.989 | 37.87 ± 0.06 d | 0.999 | ||
N5 | 7.065 ± 0.086 e | 0.987 | 29.91 ± 0.06 de | 0.986 | ||
N6 | 7.371 ± 0.067 de | 0.985 | 22.53 ± 0.04 e | 0.997 | ||
N7 | 6.887 ± 0.151 e | 0.996 | 19.08 ± 0.02 e | 0.991 | ||
BHT | 0.015 ± 0.007 f | 0.994 | 0.10 ± 0.004 f | 0.870 |
HM | OM | HS | OS | NT | DPPH | ABTS | |
---|---|---|---|---|---|---|---|
HM | 1.000 | ||||||
OM | −0.185 | 1.000 | |||||
HS | 0.243 | −0.811 * | 1.000 | ||||
OS | 0 | −0.964 ** | 0.667 | 1.000 | |||
NT | 0.346 | −0.852 * | 0.617 | 0.778 * | 1.000 | ||
DPPH | 0.296 | −0.893 ** | 0.937 ** | 0.786 * | 0.704 | 1.000 | |
ABTS | 0.259 | −0.929 ** | 0.955 ** | 0.821 * | 0.741 | 0.929 ** | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, Q.; Zhang, B.; Wang, Y.; Xiao, Z.; Hou, J.; Xiao, C.; Liu, Y.; Jin, Z. Chemical Composition and Antioxidant Activity of the Essential Oils of Citral-Rich Chemotype Cinnamomum camphora and Cinnamomum bodinieri. Molecules 2022, 27, 7356. https://doi.org/10.3390/molecules27217356
Ling Q, Zhang B, Wang Y, Xiao Z, Hou J, Xiao C, Liu Y, Jin Z. Chemical Composition and Antioxidant Activity of the Essential Oils of Citral-Rich Chemotype Cinnamomum camphora and Cinnamomum bodinieri. Molecules. 2022; 27(21):7356. https://doi.org/10.3390/molecules27217356
Chicago/Turabian StyleLing, Qingyan, Beihong Zhang, Yanbo Wang, Zufei Xiao, Jiexi Hou, Changlong Xiao, Yuanqiu Liu, and Zhinong Jin. 2022. "Chemical Composition and Antioxidant Activity of the Essential Oils of Citral-Rich Chemotype Cinnamomum camphora and Cinnamomum bodinieri" Molecules 27, no. 21: 7356. https://doi.org/10.3390/molecules27217356
APA StyleLing, Q., Zhang, B., Wang, Y., Xiao, Z., Hou, J., Xiao, C., Liu, Y., & Jin, Z. (2022). Chemical Composition and Antioxidant Activity of the Essential Oils of Citral-Rich Chemotype Cinnamomum camphora and Cinnamomum bodinieri. Molecules, 27(21), 7356. https://doi.org/10.3390/molecules27217356