Development and Validation of a UHPLC–MS/MS-Based Method to Quantify Cenobamate in Human Plasma Samples
Abstract
:1. Introduction
2. Results
2.1. Chromatographic and Mass Spectrometry Parameters Optimization
2.2. Method Validation
2.3. PK Analysis of Patients Undergoing CNB Treatment
3. Discussion
4. Materials and Methods
4.1. UHPLC–MS/MS Analyses
4.2. Stock Solutions, Calibration Curve and Quality Controls
4.3. Sample Preparation
4.4. Method Validation
4.4.1. Limits and Linearity
4.4.2. Inter- and Intra-Day Assay Precision and Trueness
4.4.3. Recovery and Matrix Effects
4.4.4. Interferences and Carry-Over
4.4.5. The Dilution Integrity Test
4.4.6. Stability
4.5. Statistical Analysis
4.6. Ethics Approval
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cross, J.H.; Kluger, G.; Lagae, L. Advancing the management of childhood epilepsies. Eur. J. Pediatr. Neurol. 2013, 17, 334–347. [Google Scholar] [CrossRef] [PubMed]
- Perrucca, P.; Scheffer, I.E.; Kiley, M. The management of epilepsy in children and adults. Med. J. Aust. 2018, 208, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Golyala, A.; Kwan, P. Drug development for refractory epilepsy: The past 25 years and beyond. Seizure 2017, 44, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohanraj, R.; Brodie, M.J. Measuring the efficacy of antiepileptic drugs. Seizure 2003, 12, 413–443. [Google Scholar] [CrossRef] [Green Version]
- Charlier, B.; Coglianese, A.; De Rosa, F.; de Grazia, U.; Operto, F.F.; Coppola, G.; Filippelli, A.; Dal Piaz, F.; Izzo, V. The Effect of Plasma Protein Binding on the Therapeutic Monitoring of Antiseizure Medications. Pharmaceutics 2021, 13, 1208. [Google Scholar] [CrossRef]
- Chen, Z.; Brodie, M.J.; Liew, D.; Kwan, P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: A 30-year longitudinal cohort study. JAMA Neurol. 2018, 75, 279–286. [Google Scholar] [CrossRef]
- Hauser, W.A. Questioning the effectiveness of newer antiseizure medications. JAMA Neurol. 2018, 75, 273–274. [Google Scholar] [CrossRef]
- Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res. 2013, 103, 2–30. [Google Scholar] [CrossRef] [Green Version]
- Roberta Roberti, R.; De Caro, C.; Iannone, L.F.; Zaccara, G.; Lattanzi, S. Pharmacology of Cenobamate: Mechanism of Action, Pharmacokinetics, Drug–Drug Interactions and Tolerability. CNS Drugs 2021, 35, 609–618. [Google Scholar] [CrossRef]
- Chung, S.S.; French, J.A.; Kowalski, J.; Krauss, G.L.; Lee, S.K.; Maciejowski, M.; Rosenfeld, W.E.; Sperling, M.R.; Mizne, S.; Kamin, M. Randomized phase 2 study of adjunctive cenobamate in patients with uncontrolled focal seizures. Neurology 2020, 94, e2311–e2322. [Google Scholar] [CrossRef]
- Krauss, G.L.; Klein, P.; Brandt, C.; Lee, S.K.; Milanov, I.; Milovanovic, M.; Steinhoff, B.J.; Kamin, M. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: A multicentre, double-blind, randomised, placebo-controlled, dose-response trial. Lancet Neurol. 2020, 19, 38–48. [Google Scholar] [CrossRef]
- Vossler, D.G. Remarkably high efficacy of cenobamate in adults with focal-onset seizures: A double-blind, randomized, placebo-controlled trial. Epilepsy Curr. 2020, 20, 85–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, J.A. Cenobamate for focal seizures—A game changer? Nat. Rev. Neurol. 2020, 16, 133–134. [Google Scholar] [CrossRef] [PubMed]
- Guignet, M.; Campbell, A.; White, H.S. Cenobamate (XCOPRI): Can preclinical and clinical evidence provide insight into its mechanism of action? Epilepsia 2020, 61, 2329–2339. [Google Scholar] [CrossRef]
- Nakamura, M.; Cho, J.H.; Shin, H.; Jang, I.S. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur. J. Pharmacol. 2019, 855, 175–182. [Google Scholar] [CrossRef]
- Sharma, R.; Nakamura, M.; Neupane, C.; Jeon, B.H.; Shin, H.; Melnick, S.M.; Glenn, K.J.; Jang, I.S.; Park, J.B. Positive allosteric modulation of GABA(A) receptors by a novel antiepileptic drug cenobamate. Eur. J. Pharmacol. 2020, 879, 173117. [Google Scholar] [CrossRef]
- Löscher, W.; Sills, G.J.; White, H.S. The ups and downs of alkyl-carbamates in epilepsy therapy: How does cenobamate differ? Epilepsia 2021, 62, 596–614. [Google Scholar] [CrossRef]
- Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020, 168, 107966. [Google Scholar] [CrossRef]
- Drug Approval Package: XCOPRI. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212839Orig1s000TOC.cfm (accessed on 21 November 2019).
- Vernillet, L.; Greene, S.A.; Kamin, M. Pharmacokinetics of cenobamate: Results from single and multiple oral ascending-dose studies in healthy subjects. Clin. Pharmacol. Drug Dev. 2020, 9, 428–443. [Google Scholar] [CrossRef]
- Sperling, M.R.; Klein, P.; Aboumatar, S.; Gelfand, M.; Halford, J.J.; Krauss, G.L.; Rosenfeld, W.E.; Vossler, D.G.; Wechsler, R.; Borchert, L.; et al. Cenobamate (YKP3089) as adjunctive treatment for uncontrolled focal seizures in a large, phase 3, multicenter, open-label safety study. Epilepsia 2020, 61, 1099–1108. [Google Scholar] [CrossRef]
- Sommerfeld-Klatta, K.; Zielińska-Psuja, B.; Karaźniewcz-Łada, M.; Główka, F.K. New Methods Used in Pharmacokinetics and Therapeutic Monitoring of the First and Newer Generations of Antiepileptic Drugs (AEDs). Molecules 2020, 25, 5083. [Google Scholar] [CrossRef] [PubMed]
- Perrucca, P.; Gilliam, F.G. Adverse effects of antiepileptic drugs. Lancet Neurol. 2012, 11, 792–802. [Google Scholar] [CrossRef]
- Oh, J.-H.; Jeong, J.-W.; Ji, Y.-G.; Shin, Y.-M.; Lee, K.-R.; Hyung Cho, K.; Koo, T.-S. Development of a liquid chromatography-tandem mass spectrometry method for assaying cenobamate in rat plasma. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 992–997. [Google Scholar] [CrossRef]
- Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212839Orig1s000ClinPharmR.pdf (accessed on 21 November 2018).
- Vernillet, L.; Greene, S.A.; Kim, H.W.; Melnick, S.M.; Glenn, K. Mass Balance, Metabolism, and Excretion of Cenobamate, a New Antiepileptic Drug, After a Single Oral Administration in Healthy Male Subjects. Eur. J. Drug Metab. Pharmacokinet. 2020, 45, 513–522. [Google Scholar] [CrossRef]
- Reimers, A.; Berg, J.A.; Burns, M.L.; Brodtkorb, E.; Johannessen, S.I.; Johannessen Landmark, C. Reference ranges for antiepileptic drugs revisited: A practical approach to establish national guidelines. Drug Des. Dev. Ther. 2018, 12, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Patsalos, P.N.; Spencer, E.P.; Berry, D.J. Therapeutic Drug Monitoring of Antiepileptic Drugs in Epilepsy: A 2018 Update. Ther. Drug Monit. 2018, 40, 526–548. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.B. An Updated Overview on Therapeutic Drug Monitoring of Recent Antiepileptic Drugs. Drugs R D 2016, 16, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, A.; Krasowski, M. Therapeutic Drug Monitoring Data: A Concise Guide, 4th ed.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Patsalos, P.N.; Zugman, M.; Lake, C.; James, A.; Ratnaraj, N.; Sander, J.W. Serum protein binding of 25 antiepileptic drugs in a routine clinical setting: A comparison of free non-protein-bound concentrations. Epilepsia 2017, 58, 1234–1243. [Google Scholar] [CrossRef]
- ICH Guideline M10 on Bioanalytical Method Validation and Study Sample Analysis. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m10-bioanalytical-method-validation-step-5_en.pdf (accessed on 28 March 2019).
INTER-DAY | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | ||||||
QCs | %bias | %CV | %bias | %CV | %bias | %CV | %bias | %CV | %bias | %CV |
LLQC | −17.8 | 3.7 | −15.0 | 1.1 | −12.7 | 5.3 | −17.0 | 1.4 | 4.0 | 1.2 |
LQC | 0.2 | 0.3 | 9.4 | 3.8 | −2.9 | 1.9 | 4.6 | 4.0 | −11.3 | 1.9 |
MQC | 4.7 | 1.2 | 11.6 | 5.0 | 14.9 | 3.1 | 9.7 | 3.8 | −1.3 | 0.4 |
HQC | 4.6 | 5.1 | 0.4 | 0.3 | 5.4 | 0.3 | 11.0 | 8.8 | 11.1 | 3.8 |
ULQC | −2.5 | 0.4 | −7.3 | 0.8 | −1.9 | 3.4 | −6.5 | 3.1 | 1.0 | 4.6 |
INTRA-DAY | ||||||||||
Injection 1 | Injection 2 | Injection 3 | Injection 4 | Injection 5 | ||||||
QCs | %bias | %CV | %bias | %CV | %bias | %CV | %bias | %CV | %bias | %CV |
LLQC | −14.8 | 1.7 | −15.7 | 11.3 | −11.4 | 0.6 | −1.6 | 0.0 | −1.3 | 5.3 |
LQC | 13.0 | 5.8 | 0.3 | 4.5 | 8.7 | 0.1 | 10.9 | 0.8 | 12.3 | 0.1 |
MQC | 9.7 | 3.8 | 3.4 | 0.9 | 12.6 | 2.9 | 12.6 | 1.0 | 4.5 | 0.6 |
HQC | 8.0 | 7.9 | 1.8 | 5.4 | 11.7 | 5.6 | 7.0 | 0.4 | 13.3 | 0.6 |
ULQC | −12.8 | 6.8 | −16.8 | 0.9 | −8.8 | 1.3 | 0.0 | 5.5 | −6.7 | 2.1 |
INTER-DAY | |||||
---|---|---|---|---|---|
Source of Variation | Degrees of Freedom | Sum of Square | Mean of Square | F Value | Level of Significance |
Between Groups | 4 | 0.60 | 0.15 | 0.002 | α = 0.05 |
Within Groups | 20 | 1357.13 | 67.86 | ||
Total | 24 | 1357.73 | 68.01 | ||
INTRA-DAY | |||||
Source of Variation | Degrees of Freedom | Sum of Square | Mean of Square | F Value | Level of Significance |
Between Groups | 4 | 2.72 | 0.68 | 0.011 | α = 0.05 |
Within Groups | 20 | 1280.23 | 64.01 | ||
Total | 24 | 1282.95 | 64.69 |
Storage Condition | |||||
---|---|---|---|---|---|
Storage Time | QCs | RT | 4 °C | −20 °C | −80 °C |
extract 24 h | LQC | - | 9.3 | - | - |
MQC | - | 11.7 | - | - | |
HQC | - | 4.5 | - | - | |
Average | 8.5 | ||||
STDEV | 3.7 | ||||
extract 48 h | LQC | - | −10.1 | - | - |
MQC | - | −5.4 | - | - | |
HQC | - | −1.9 | - | - | |
Average | −5.8 | ||||
STDEV | 4.1 | ||||
24 h | LQC | 14.9 | 5.1 | 8.1 | 4.0 |
MQC | 21.3 | 10.2 | 13.8 | 9.5 | |
HQC | 14.9 | 8.3 | 3.5 | 3.8 | |
Average | 17.0 | 7.9 | 8.5 | 5.7 | |
STDEV | 3.7 | 2.6 | 5.2 | 3.2 | |
48 h | LQC | - | 1.1 | 3.9 | 2.1 |
MQC | - | 7.0 | 3.6 | 1.5 | |
HQC | - | 4.6 | −3.0 | 3.1 | |
Average | 4.2 | 1.5 | 2.2 | ||
STDEV | 3.0 | 3.9 | 0.8 | ||
7 d | LQC | - | 21.9 | 18.1 | 9.1 |
MQC | - | 19.3 | 13.6 | 8.7 | |
HQC | - | 17.7 | 6.9 | 3.5 | |
Average | 19.6 | 12.9 | 7.1 | ||
STDEV | 2.1 | 5.6 | 3.1 | ||
15 d | LQC | - | 20.5 | 12.4 | 9.6 |
MQC | - | 14.8 | 18.0 | −2.0 | |
HQC | - | 13.8 | 5.5 | −0.1 | |
Average | 16.4 | 12.0 | 7.1 | ||
STDEV | 3.6 | 6.2 | 6.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charlier, B.; Coglianese, A.; Operto, F.F.; Coppola, G.; de Grazia, U.; Menna, P.; Filippelli, A.; Dal Piaz, F.; Izzo, V. Development and Validation of a UHPLC–MS/MS-Based Method to Quantify Cenobamate in Human Plasma Samples. Molecules 2022, 27, 7325. https://doi.org/10.3390/molecules27217325
Charlier B, Coglianese A, Operto FF, Coppola G, de Grazia U, Menna P, Filippelli A, Dal Piaz F, Izzo V. Development and Validation of a UHPLC–MS/MS-Based Method to Quantify Cenobamate in Human Plasma Samples. Molecules. 2022; 27(21):7325. https://doi.org/10.3390/molecules27217325
Chicago/Turabian StyleCharlier, Bruno, Albino Coglianese, Francesca Felicia Operto, Giangennaro Coppola, Ugo de Grazia, Pierantonio Menna, Amelia Filippelli, Fabrizio Dal Piaz, and Viviana Izzo. 2022. "Development and Validation of a UHPLC–MS/MS-Based Method to Quantify Cenobamate in Human Plasma Samples" Molecules 27, no. 21: 7325. https://doi.org/10.3390/molecules27217325
APA StyleCharlier, B., Coglianese, A., Operto, F. F., Coppola, G., de Grazia, U., Menna, P., Filippelli, A., Dal Piaz, F., & Izzo, V. (2022). Development and Validation of a UHPLC–MS/MS-Based Method to Quantify Cenobamate in Human Plasma Samples. Molecules, 27(21), 7325. https://doi.org/10.3390/molecules27217325