A Computational Study on the Mechanism of Catalytic Cyclopropanation Reaction with Cobalt N-Confused Porphyrin: The Effects of Inner Carbon and Intramolecular Axial Ligand
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reaction Mechanism
2.2. Energy Diagram for the Reaction with Co(NCTPPSpy)
2.3. Acceleration Effect
2.4. Structures of A and B
2.5. Trans/Cis Stereoselectivity
2.6. Structures of C
3. Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Groves, J.T. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chem. Rev. 2018, 118, 2491–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barona-Castaño, J.C.; Carmona-Vargas, C.C.; Brocksom, T.J.; De Oliveira, K.T. Porphyrins as Catalysts in Scalable Organic Reactions. Molecules 2016, 21, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simões, M.M.Q.; Gonzaga, D.T.G.; Cardoso, M.F.C.; Forezi, L.D.S.M.; Gomes, A.T.P.C.; Da Silva, F.D.C.; Ferreira, V.F.; Neves, M.G.P.M.S.; Cavaleiro, J.A.S. Carbene Transfer Reactions Catalysed by Dyes of the Metalloporphyrin Group. Molecules 2018, 23, 792. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Mukherjee, A. Metalloporphyrin Catalyzed C–H Amination. ACS Catal. 2019, 9, 3604–3617. [Google Scholar] [CrossRef]
- Pereira, M.M.; Dias, L.D.; Calvete, M.J.F. Metalloporphyrins: Bioinspired Oxidation Catalysts. ACS Catal. 2018, 8, 10784–10808. [Google Scholar] [CrossRef]
- Ebner, C.; Carreira, E.M. Cyclopropanation Strategies in Recent Total Syntheses. Chem. Rev. 2017, 117, 11651–11679. [Google Scholar] [CrossRef] [PubMed]
- Talele, T.T. The “Cyclopropyl Fragment” is a Versatile Player that Frequently Appears in Preclinical/Clinical Drug Molecules. J. Med. Chem. 2016, 59, 8712–8756. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, J.L.; Brown, K.C.; Bartley, D.W.; Kodadek, T. Mechanism of the Rhodium Porphyrin-Catalyzed Cyclopropanation of Alkenes. Science 1992, 256, 1544–1547. [Google Scholar]
- Ciammaichella, A.; Cardoni, V.; Leoni, A.; Tagliatesta, P. Rhodium Porphyrin Bound to a Merrifield Resin as Heterogeneous Catalyst for the Cyclopropanation Reaction of Olefins. Molecules 2016, 21, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, C.-M.; Huang, J.-S. Ruthenium and osmium porphyrin carbene complexes: Synthesis, structure, and connection to the metal-mediated cyclopropanation of alkenes. Coord. Chem. Rev. 2002, 231, 151–164. [Google Scholar] [CrossRef]
- Intrieri, D.; Gac, S.L.; Caselli, A.; Rose, E.; Boitrel, B.; Gallo, E. Highly diastereoselective cyclopropanation of α-methylstyrene catalysed by a C2-symmetrical chiral iron porphyrin complex. Chem. Commun. 2014, 50, 1811–1813. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Tinoco, A.; Steck, V.; Fasan, R.; Zhang, Y. Cyclopropanations via Heme Carbenes: Basic Mechanism and Effects of Carbene Substituent, Protein Axial Ligand, and Porphyrin Substitution. J. Am. Chem. Soc. 2018, 140, 1649–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonneaux, G.; Maux, P.L. Optically active ruthenium porphyrins: Chiral recognition and asymmetric catalysis. Coord. Chem. Rev. 2002, 228, 43–60. [Google Scholar] [CrossRef]
- Wolf, M.W.; Vargas, D.A.; Lehnert, N. Engineering of RuMb: Toward a Green Catalyst for Carbene Insertion Reactions. Inorg. Chem. 2017, 56, 5623–5635. [Google Scholar] [CrossRef] [PubMed]
- Anding, B.J.; Ellern, A.; Woo, L.K. Olefin Cyclopropanation Catalyzed by Iridium(III) Porphyrin Complexes. Organometallics 2012, 31, 3628–3635. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Chen, Y.; Gao, G.-Y.; Zhang, X.P. Diastereoselective and Enantioselective Cyclopropanation of Alkenes Catalyzed by Cobalt Porphyrins. J. Org. Chem. 2003, 68, 8179–8184. [Google Scholar] [CrossRef]
- Chen, Y.; Fields, K.B.; Zhang, X.P. Bromoporphyrins as Versatile Synthons for Modular Construction of Chiral Porphyrins: Cobalt-Catalyzed Highly Enantioselective and Diastereoselective Cyclopropanation. J. Am. Chem. Soc. 2004, 126, 14718–14719. [Google Scholar] [CrossRef] [PubMed]
- De Montellano, P.R.O. Hydrocarbon Hydroxylation by Cytochrome P450 Enzymes. Chem. Rev. 2010, 110, 932–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, T.; Yamamoto, T.; Mashita, S.; Deguchi, Y.; Fukuyama, K.; Ishida, M.; Mori, S.; Furuta, H. N-Confused Porphyrin Metal Complexes with an Axial Pyridine Directly Tethered from an Inner Carbon: A Bioinspired Ligand as a Versatile Platform for Catalysis. Eur. J. Inorg. Chem. 2018, 2018, 203–207. [Google Scholar] [CrossRef]
- Miyazaki, T.; Fukuyama, K.; Mashita, S.; Deguchi, Y.; Yamamoto, T.; Ishida, M.; Mori, S.; Furuta, H. Ruthenium N-Confused Porphyrins: Selective Reactivity for Ambident 2-Heteroatom-Substituted Pyridines Serving as Axial Ligands. ChemPlusChem 2019, 84, 603–607. [Google Scholar] [CrossRef]
- Furuta, H.; Asano, T.; Ogawa, T. “N-Confused Porphyrin”: A New Isomer of Tetraphenylporphyrin. J. Am. Chem. Soc. 1994, 116, 767–768. [Google Scholar] [CrossRef]
- Chmielewski, P.J.; Latos-Grażyński, L.; Rachlewicz, K.; Głowiak, T. Tetra-p-tolylporphyrin with an Inverted Pyrrole Ring: A Novel Isomer of Porphyrin. Angew. Chem. Int. Ed. Engl. 1994, 33, 779–781. [Google Scholar] [CrossRef]
- Toganoh, M.; Furuta, H. Creation from Confusion and Fusion in Porphyrin World—The Last Three Decades of N-Confused Porphyrinoid Chemistry. Chem. Rev. 2022, 122, 8313–8437. [Google Scholar] [CrossRef] [PubMed]
- Furuta, H.; Ishizuka, T.; Osuka, A.; Dejima, H.; Nakagawa, H.; Ishikawa, Y. NH Tautomerism of N-Confused Porphyrin. J. Am. Chem. Soc. 2001, 123, 6207–6208. [Google Scholar] [CrossRef] [PubMed]
- Furuta, H.; Ogawa, T.; Uwatoko, Y.; Araki, K. N-Confused Tetraphenylporphyrin–Silver(III) Complex. Inorg. Chem. 1999, 38, 2676–2682. [Google Scholar] [CrossRef]
- Maeda, H.; Ishikawa, Y.; Matsuda, T.; Osuka, A.; Furuta, H. Control of Cu(II) and Cu(III) States in N-Confused Porphyrin by Protonation/Deprotonation at the Peripheral Nitrogen. J. Am. Chem. Soc. 2003, 125, 11822–11823. [Google Scholar] [CrossRef] [PubMed]
- Niino, T.; Toganoh, M.; Andrioletti, B.; Furuta, H. Rhodium N-confused porphyrin-catalyzed alkene cyclopropanation. Chem. Commun. 2006, 41, 4335–4337. [Google Scholar] [CrossRef]
- Fields, K.B.; Engle, J.T.; Sripothongnak, S.; Kim, C.; Zhang, X.P.; Ziegler, C.J. Cobalt carbaporphyrin-catalyzed cyclopropanation. Chem. Commun. 2011, 47, 749–751. [Google Scholar] [CrossRef]
- Yamamoto, T.; Toganoh, M.; Furuta, H. Cooperation between metal and ligand in oxygen atom transport by N-confused porphyrin oxorhenium(V) complexes. Dalton Trans. 2012, 41, 9154–9157. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.-H.; Mahmood, M.H.; Zou, H.-B.; Yang, S.-B.; Liu, H.-Y. The first manganese N-confused porphyrins catalyzed oxidation of alkene. J. Mol. Catal. A-Chem. 2014, 395, 180–185. [Google Scholar] [CrossRef]
- Dela Cruz, J.B.; Ruamps, M.; Arco, S.; Hung, C.-H. Ni and Pd N-confused porphyrin complexes as catalysts for the synthesis of cyclic carbonates from epoxides and CO2. Dalton Trans. 2019, 48, 7527–7531. [Google Scholar] [CrossRef]
- Ge, Y.; Cheng, G.; Xu, N.; Wang, W.; Ke, H. Zinc 2-N-methyl N-confused porphyrin: An efficient catalyst for the conversion of CO2 into cyclic carbonates. Catal. Sci. Technol. 2019, 9, 4255–4261. [Google Scholar] [CrossRef]
- Dzik, W.I.; Xu, X.; Zhang, X.P.; Reek, J.N.H.; de Bruin, B. ‘Carbene Radicals’ in CoII(por)-Catalyzed Olefin Cyclopropanation. J. Am. Chem. Soc. 2010, 132, 10891–10902. [Google Scholar] [CrossRef]
- Lu, H.; Dzik, W.I.; Xu, X.; Wojtas, L.; de Bruin, B.; Zhang, X.P. Experimental Evidence for Cobalt(III)-Carbene Radicals: Key Intermediates in Cobalt(II)-Based Metalloradical Cyclopropanation. J. Am. Chem. Soc. 2011, 133, 8518–8521. [Google Scholar] [CrossRef] [PubMed]
- Oohora, K.; Meichin, H.; Kihira, Y.; Sugimoto, H.; Shiro, Y.; Hayashi, T. Manganese(V) Porphycene Complex Responsible for Inert C–H Bond Hydroxylation in a Myoglobin Matrix. J. Am. Chem. Soc. 2017, 139, 18460–18463. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza, J.P.T.; Yosca, T.H.; Siegler, M.A.; Moënne-Loccoz, P.; Green, M.T.; Goldberg, D.P. Direct Observation of Oxygen Rebound with an Iron-Hydroxide Complex. J. Am. Chem. Soc. 2017, 139, 13640–13643. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision E.01; Gaussian Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Wachters, A.J.H. Gaussian Basis Set for Molecular Wavefunctions Containing Third-Row Atoms. J. Chem. Phys. 1970, 52, 1033–1036. [Google Scholar] [CrossRef]
- Hay, P.J. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms. J. Chem. Phys. 1977, 66, 4377–4384. [Google Scholar] [CrossRef]
- Raghavachari, K.; Trucks, G.W. Highly correlated systems. Excitation energies of first-row transition metals Sc–Cu. J. Chem. Phys. 1989, 91, 1062–1065. [Google Scholar] [CrossRef]
- Dunning, T.H.; Hay, P.J. Modern Theoretical Chemistry; Schaefer, H.F., III, Ed.; Plenum: New York, NY, USA, 1976; Volume 3, pp. 1–27. [Google Scholar]
Entry | Catalyst | Cat. (mol%) | Yield (%) | trans/cis | Ref |
---|---|---|---|---|---|
1 | Co(MeNCTPP)(py) | 1 | 85 | 93/7 | [28] |
2 2 | Co(TPP) | 1 | 67 | 74/26 | [28] |
3 | reduced 1a [Co(NCTPPSpy)] | 0.5 | 78 | 92/8 | [19] |
4 | Co(MeNCTPP)(py) | 0.5 | 31 | 92/8 | [19] |
5 | Co(TPP) | 0.5 | 6 | 72/28 | [19] |
ΔG(B–A) | Ea(TS1trans) 1 | ΔG(Ctrans–Ccis) | Ea(TS2cis) 2 | Ea[TSi(Ccis→Ctrans)] 3 | |
---|---|---|---|---|---|
Co(TPP) | 4.8 | 18.7 | −1.8 | 0.2 | 2.9 |
Co(MeNCTPP) | 1.8 | 19.4 | −0.5 | 1.3 | 2.4 |
Co(MeNCTPP)(py) | 0.9 | 20.6 | −1.4 | 2.3 | 1.9 |
Co(NCTPPSpy) | 0.4 | 22.3 | −0.4 | 2.0 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwanaga, O.; Miyanishi, M.; Tachibana, T.; Miyazaki, T.; Shiota, Y.; Yoshizawa, K.; Furuta, H. A Computational Study on the Mechanism of Catalytic Cyclopropanation Reaction with Cobalt N-Confused Porphyrin: The Effects of Inner Carbon and Intramolecular Axial Ligand. Molecules 2022, 27, 7266. https://doi.org/10.3390/molecules27217266
Iwanaga O, Miyanishi M, Tachibana T, Miyazaki T, Shiota Y, Yoshizawa K, Furuta H. A Computational Study on the Mechanism of Catalytic Cyclopropanation Reaction with Cobalt N-Confused Porphyrin: The Effects of Inner Carbon and Intramolecular Axial Ligand. Molecules. 2022; 27(21):7266. https://doi.org/10.3390/molecules27217266
Chicago/Turabian StyleIwanaga, Osamu, Mayuko Miyanishi, Toshihiro Tachibana, Takaaki Miyazaki, Yoshihito Shiota, Kazunari Yoshizawa, and Hiroyuki Furuta. 2022. "A Computational Study on the Mechanism of Catalytic Cyclopropanation Reaction with Cobalt N-Confused Porphyrin: The Effects of Inner Carbon and Intramolecular Axial Ligand" Molecules 27, no. 21: 7266. https://doi.org/10.3390/molecules27217266
APA StyleIwanaga, O., Miyanishi, M., Tachibana, T., Miyazaki, T., Shiota, Y., Yoshizawa, K., & Furuta, H. (2022). A Computational Study on the Mechanism of Catalytic Cyclopropanation Reaction with Cobalt N-Confused Porphyrin: The Effects of Inner Carbon and Intramolecular Axial Ligand. Molecules, 27(21), 7266. https://doi.org/10.3390/molecules27217266