Non-Invasive Paleo-Metabolomics and Paleo-Proteomics Analyses Reveal the Complex Funerary Treatment of the Early 18th Dynasty Dignitary NEBIRI (QV30)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Paleo-Proteomic Investigation of Nebiri’s Remains
2.1.1. Paleo-Proteins Extracted from the External Surface of the Right Parietal Bone
2.1.2. Lung Proteins
2.1.3. Proteins from the Scalp
2.1.4. Ancient Protein Damage
2.2. Identification of Small Molecules with Untargeted Metabolomics Analysis
2.2.1. Textiles Wrapping the Lungs
2.2.2. The Jar Containing the Lung
2.2.3. Lung
3. Materials and Methods
3.1. Nebiri’s Lung and Head
3.2. Small Molecules Extraction and Derivatization
3.3. Proteins Extraction and Digestion
3.4. GC-MS and GCXGC-MS Analyses
3.5. LC-MS Analysis and Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robotti, E.; Bearman, G.; France, F.; Barberis, E.; Shor, P.; Marengo, E. Direct Analysis in Real Time Mass Spectrometry for the Nondestructive Investigation of Conservation Treatments of Cultural Heritage. J. Anal. Methods Chem. 2016, 2016, 6853591. [Google Scholar]
- Poulin, J.; Kearney, M.; Veall, M.-A. Direct Inlet Py-GC-MS analysis of cultural heritage materials. J. Anal. Appl. Pyrolysis 2022, 164, 105506. [Google Scholar] [CrossRef]
- Manfredi, M.; Barberis, E.; Gosetti, F.; Conte, E.; Gatti, G.; Mattu, C.; Robotti, E.; Koman, I.; Zilberstein, S.; Korman, I.; et al. Method for Noninvasive Analysis of Proteins and Small Molecules from Ancient Objects. Anal. Chem. 2017, 89, 3310–3317. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, M.; Barberis, E.; Rava, A.; Poli, T.; Chiantore, O.; Marengo, E. An analytical approach for the non-invasive selection of consolidants in rubber artworks. Anal. Bioanal. Chem. 2016, 408, 5711–5722. [Google Scholar] [CrossRef]
- Calvano, C.D.; Rigante, E.C.L.; Cataldi, T.R.I.; Sabbatini, L. In Situ Hydrogel Extraction with Dual-Enzyme Digestion of Proteinaceous Binders: The Key for Reliable Mass Spectrometry Investigations of Artworks. Anal. Chem. 2020, 92, 10257–10261. [Google Scholar] [CrossRef] [PubMed]
- Ntasi, G.; Kirby, D.P.; Stanzione, I.; Carpentieri, A.; Somma, P.; Cicatiello, P.; Marino, G.; Giardina, P.; Birolo, L. A versatile and user-friendly approach for the analysis of proteins in ancient and historical objects. J. Proteom. 2021, 231, 104039. [Google Scholar] [CrossRef] [PubMed]
- Cicatiello, P.; Ntasi, G.; Rossi, M.; Marino, G.; Giardina, P.; Birolo, L. Minimally Invasive and Portable Method for the Identification of Proteins in Ancient Paintings. Anal. Chem. 2018, 90, 10128–10133. [Google Scholar] [CrossRef]
- Fiddyment, S.; Holsinger, B.; Ruzzier, C.; Collins, M. Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting. Proc. Natl. Acad. Sci. USA 2015, 112, 15066–15071. [Google Scholar] [CrossRef] [Green Version]
- Multari, D.H.; Ravishankar, P.; Sullivan, G.J.; Power, R.K.; Lord, C.; Fraser, J.A.; Haynes, P.A. Development of a novel minimally invasive sampling and analysis technique using skin sampling tape strips for bioarchaeological proteomics. J. Archeol. Sci. 2022, 139, 105548. [Google Scholar] [CrossRef]
- Barberis, E.; Marcello, M.; Marengo, E.; Zilberstein, G.; Zilberstein, S.; Kossolapov, A.; Righetti, G. Leonardo’s Donna Nuda unveiled. J. Proteom. 2019, 207, 103450. [Google Scholar] [CrossRef] [PubMed]
- Barberis, E.; Baiocco, S.; Conte, E.; Gosetti, F.; Rava, A.; Zilberstein, G.; Righetti, P.G.; Marengo, E.; Manfredi, M. Towards the non-invasive proteomic analysis of cultural heritage objects. Microchem. J. 2018, 139, 450–457. [Google Scholar] [CrossRef]
- Habicht, M.E.; Bianucci, R.; Buckley, S.A.; Fletcher, J.; Bouwman, A.S.; Öhrström, L.M.; Seiler, R.; Galassi, F.M.; Hajdas, I.; Vassilika, E.; et al. Queen Nefertari, the Royal Spouse of Pharaoh Ramses II: A Multidisciplinary Investigation of the Mummified Remains Found in Her Tomb (QV66). PLoS ONE 2016, 11, e0166571. [Google Scholar]
- Bianucci, R.; Habicht, M.E.; Buckley, S.A.; Fletcher, J.; Seiler, R.; Öhrström, L.M.; Vassilika, E.; Böni, T.; Rühli, F.J. Shedding new light on the 18th Dynasty mummies of the Royal Architect Kha and his spouse Merit. PLoS ONE 2015, 10, e0131916. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.; Higham, T.F.G.; Chivall, D.; Bianucci, R.; Kay, G.l.; Pallen, M.J.; Oldfield, R.; Ugliano, F.; Buckley, S.A. A prehistoric Egyptian mummy: Evidence for an ‘embalming recipe’ and the evolution of early formative funerary treatments. J. Archaeol. Sci. 2018, 100, 191–200. [Google Scholar] [CrossRef]
- Jones, J.; Mirzaei, M.; Ravishankar, P.; Xavier, D.; Lim, D.S.; Shin, D.H.; Bianucci, R.; Haynes, P.A. Identification of proteins from 4200-year-old skin and muscle tissue biopsies from ancient Egyptian mummies of the first intermediate period shows evidence of acute inflammation and severe immune response. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockbals, L.; Habicht, M.; Hajdas, I.; Galassi, F.M.; Rühli, F.J.; Kraemer, T. Untargeted metabolomics-like screening approach for chemical characterization and differentiation of canopic jar and mummy samples from Ancient Egypt using GC-high resolution MS. Analyst 2018, 143, 4503–4512. [Google Scholar] [CrossRef]
- Lebedev, A.T.; Polyakova, O.V.; Artaev, V.B.; Mednikova, M.B.; Anokhina, E.A. Comprehensive two-dimensional gas chromatography-highresolution mass spectrometry with complementary ionizationmethods in the study of 5000-year-old mummy. Rapid Commun. Mass Spectrom. 2021, 35, e9058. [Google Scholar] [CrossRef]
- Coltherd, J.B. The Domestic Fowl in Ancient Egypt. IBIS 1966, 108, 217–223. [Google Scholar] [CrossRef]
- Darrow, F.L. The Story of an Ancient Art, from the Earliest Adhesives to Vegetable Glue, 1st ed.; Perkins Glue Company: Lansdale, PA, USA; South Bend, IN, USA, 1930. [Google Scholar]
- Aarbiou, J.; Ertmann, M.; van Wetering, S.; van Noort, P.; Rook, D.; Rabe, K.F.; Litvinov, S.V.; van Krieken, J.H.; de Boer, W.I.; Hiemstra, P.S. Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J. Leukoc. Biol. 2002, 72, 167–174. [Google Scholar] [CrossRef]
- Steinwede, K.; Maus, R.; Bohling, J.; Voedisch, S.; Braun, A.; Ochs, M.; Schmiedl, A.; Länger, F.; Gauthier, F.; Roes, J.; et al. Cathepsin G and neutrophil elastase contribute to lung-protective immunity against mycobacterial infections in mice. J. Immunol. 2012, 188, 4476–4487. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Haile, D.J.; Coalson, J.J.; Ghio, A.J. Haptoglobin in lung defence. Redox Rep. 2001, 6, 372–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leo, G.; Bonaduce, I.; Andreotti, A.; Marino, G.; Pucci, P.; Colombini, M.P.; Birolo, L. Deamidation at asparagine and glutamine as a major modification upon deterioration/aging of proteinaceous binders in mural paintings. Anal. Chem. 2011, 83, 2056–2064. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, E.; Jensen, L.J.; Szklarczyk, D.; Ginolhac, A.; da Fonseca, R.A.; Stafford, T.W.; Holen, S.R.; Collins, M.J.; Orlando, L.; Willerslev, E.; et al. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J. Proteome Res. 2012, 11, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.A.; Andrew, W.; Stott, A.W.; Evershed, R.P. Studies of organic residues from ancient Egyptian mummies using high temperature-gas chromatography-mass spectrometry and sequential thermal desorption-gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. Analyst 1999, 124, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.A.; Evershed, R.P. Organic chemistry of embalming agents in Pharaonic and Graeco-Roman mummies. Nature 2001, 413, 837–841. [Google Scholar] [CrossRef]
- Charrié-Duhaut, A.; Burger, P.; Maurer, J.; Connan, J.; Albrecht, P. Molecular and isotopic archaeology: Top grade tools to investigate organic archaeological materials. Comptes Rendus Chim. 2009, 12, 1140–1153. [Google Scholar] [CrossRef]
- Colombini, M.P.; Modugno, F.; Ribechini, E. Caratterizzazione di resine vegetali in reperti archeologici. Sci. Tecnol. 2000, 84, 1–6. [Google Scholar]
- Jones, J.; Higham, T.F.G.; Oldfield, R.; O’Connor, T.P.; Buckley, S.A. Evidence for Prehistoric Origins of Egyptian Mummification in Late Neolithic Burials. PLoS ONE 2014, 9, e103608. [Google Scholar] [CrossRef] [Green Version]
- Loynes, R.D.; Charlier, P.; Froesch, P.; Houlton, T.M.R.; Lallo, R.; Di Vella, G.; Bianucci, R. Virtopsy shows a high status funerary treatment in an early 18th Dynasty non-royal individual. Forensic Sci. Med. Pathol. 2017, 13, 302–311. [Google Scholar] [CrossRef]
- Charrié-Duhaut, A.; Connan, J.; Rouquette, N.; Adam, P.; Barbotin, C.; de Rozière, M.-F.; Tchapla, A.; Albrecht, P. The canopic jars of Rameses II: Real use revealed by molecular study of organic residues. J. Archaeol. Sci. 2007, 34, 957–967. [Google Scholar] [CrossRef]
- Assimopoulou, A.N.; Papageorgiou, V.P. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part, I. Pistacia lentiscus var. Chia. Biomed. Chromatogr. 2005, 19, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Daifas, D.P.; Smith, J.P.; Blanchfield, B.; Sanders, G.; Austin, J.W.; Koukoutisis, J. Effects of mastic resin and its essential oil on the growth of proteolytic Clostridium botulinum. Int. J. Food Microbiol. 2004, 94, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, T.M.; Gradl, M.; Welte, B.; Metzger, M.; Pusch, C.M.; Albert, K. Enlightening the past: Analytical proof for the use of Pistacia exudates in ancient Egyptian embalming resins. J. Sep. Sci. 2011, 34, 3364–3371. [Google Scholar] [CrossRef] [PubMed]
- Baumann, B.B. The Botanical Aspects of Ancient Egyptian Embalming and Burial. Econ. Bot. 1960, 14, 84–104. [Google Scholar] [CrossRef]
- Mills, J.S.; White, R. The identity of the resins from the late bronze age shipwreck at Uluburun (Kaş). Archeometry 1989, 31, 37–44. [Google Scholar] [CrossRef]
- Abdel-Maksouda, G.; El-Aminb, A.-R. A review on the materials used during the mummification processes in Ancient Egypt. Mediterr. Archaeol. Archaeom. 2011, 11, 129–150. [Google Scholar]
- Hawass, Z.A.; Saleem, S.N. Scanning the Pharaohs: CT Imaging of the New Kingdom Royal Mummies; AUC Press: Cairo, Egypt, 2016. [Google Scholar]
- Bianucci, R.; Loynes, R.; Sutherland, M.L.; Lallo, R.; Kay, G.; Froesch, P.; Pallen, M.; Charlier, P.; Nerlich, A. Forensic analysis reveals acute decompensation of chronic heart failure in a 3500-year-old Egyptian dignitary. J. Forensic Sci. 2016, 61, 1374–1381. [Google Scholar] [CrossRef] [Green Version]
- Barberis, E.; Amede, E.; Tavecchia, M.; Marengo, E.; Cittone, M.G.; Rizzi, E.; Pedrinelli, A.R.; Tonello, S.; Minisini, R.; Pirisi, M.; et al. Understanding protection from SARS-CoV-2 using metabolomics. Sci. Rep. 2021, 11, 13796. [Google Scholar] [CrossRef]
- Barberis, E.; Joseph, S.; Amede, E.; Clavenna, M.G.; La Vecchia, M.; Sculco, M.; Aspesi, A.; Occhipinti, P.; Robotti, E.; Boldorini, R.; et al. A new method for investigating microbiota-produced small molecules in adenomatous polyps. Anal. Chim. Acta 2021, 1179, 338841. [Google Scholar] [CrossRef]
Sample | Proteins | Accession Name | Score | N. of Peptides |
---|---|---|---|---|
External table of the right parietal bone | Collagen alpha-1(I) chain | CO1A1_HUMAN | 1436 | 23 |
Collagen alpha-2(I) chain | CO1A2_HUMAN | 1127 | 22 | |
Collagen alpha-1(I) chain | CO1A1_CHICK | 764 | 12 | |
Collagen alpha-2(I) chain | CO1A2_ONCMY | 66 | 3 | |
Keratin, type I cytoskeletal 9 | K1C9_HUMAN | 464 | 5 | |
Keratin, type I cytoskeletal 10 | K1C10_HUMAN | 236 | 5 | |
Keratin, type II cytoskeletal 1 | K2C1_HUMAN | 225 | 5 | |
Keratin, type II cytoskeletal 2 epidermal | K22E_HUMAN | 40 | 3 | |
Keratin, type II cytoskeletal 5 | K2C5_HUMAN | 39 | 3 | |
Collagen alpha-1(IX) chain | CO9A1_CHICK | 207 | 3 | |
Collagen alpha-1(III) chain | CO3A1_HUMAN | 82 | 2 | |
Lung tissue (most abundant proteins) | Serum albumin | ALBU_HUMAN | 942 | 12 |
Protein S100-A9 | S10A9_HUMAN | 640 | 6 | |
Ig alpha-1 chain C region | IGHA1_HUMAN | 469 | 5 | |
Alpha-1-antitrypsin | A1AT_HUMAN | 376 | 7 | |
Cathepsin G | CATG_HUMAN | 367 | 5 | |
Hemoglobin subunit beta | HBB_HUMAN | 350 | 3 | |
Histone H2A type 1 | H2A1_HUMAN | 340 | 3 | |
Isoform H14 of Myeloperoxidase | PERM_HUMAN | 288 | 7 | |
Alpha-1-antichymotrypsin | AACT_HUMAN | 236 | 6 | |
Collagen alpha-1(III) chain | CO3A1_HUMAN | 210 | 5 | |
Ig gamma-1 chain C region | IGHG1_HUMAN | 209 | 5 | |
Hemoglobin subunit alpha | HBA_HUMAN | 190 | 3 | |
Neutrophil defensin 1 | DEF1_HUMAN | 177 | 3 | |
Lysozyme C | LYSC_HUMAN | 166 | 2 | |
Histone H4 | H4_HUMAN | 158 | 2 | |
Histone H2B type F-S | H2BFS_HUMAN | 137 | 4 | |
Peroxiredoxin-2 | PRDX2_HUMAN | 125 | 2 | |
Actin, cytoplasmic 1 | ACTB_HUMAN | 120 | 2 | |
Tubulin beta-2B chain | TBB2B_HUMAN | 118 | 4 | |
Fibrinogen beta chain | FIBB_HUMAN | 110 | 4 | |
Neutrophil elastase | ELNE_HUMAN | 104 | 2 | |
Isoform Gamma-A of Fibrinogen gamma chain | FIBG_HUMAN | 100 | 3 | |
Band 3 anion transport protein | B3AT_HUMAN | 77 | 2 | |
Isoform 2 of Haptoglobin | HPT_HUMAN | 77 | 2 | |
Isoform 2 of Complement C4-A | CO4A_HUMAN | 76 | 3 | |
Isoform 2 of Heat shock protein HSP 90-alpha | HS90A_HUMAN | 76 | 2 | |
Myeloblastin | PRTN3_HUMAN | 75 | 2 | |
Scalp | Collagen alpha-1(I) chain | CO1A1_HUMAN | 1145 | 12 |
Collagen alpha-2(I) chain | CO1A2_HUMAN | 1010 | 13 | |
Collagen alpha-2(I) chain | CO1A2_CHICK | 134 | 3 | |
Collagen alpha-1(III) chain | CO3A1_HUMAN | 400 | 9 | |
Keratin, type I cytoskeletal 9 | K1C9_HUMAN | 327 | 5 | |
Keratin, type I cytoskeletal 10 | K1C10_HUMAN | 103 | 3 |
Protein | Modification | Scalp | Parietal Bone | Lung |
---|---|---|---|---|
Collagen alpha-1(I) chain | Deamidated (NQ) | 8 | 11 | 4 |
Collagen alpha-1(III) chain | Deamidated (NQ) | 3 | 2 | 2 |
Collagen alpha-2(I) chain | Deamidated (NQ) | 3 | 4 | 1 |
Lys-> AminoadipicAcid (K) | - | 1 | - | |
Collagen alpha-5(VI) chain | Deamidated (NQ) | - | 1 | - |
Collagen alpha-3(VI) chain | Deamidated (NQ) | - | - | 1 |
Collagen alpha-1(IX) chain | Deamidated (NQ) | 1 | - | - |
Collagen alpha-1(V) chain | Deamidated (NQ) | - | - | 1 |
Lys-> AminoadipicAcid (K) | - | - | 1 | |
Collagen alpha-1(XXVIII) chain | Deamidated (NQ) | - | 1 | - |
Collagen alpha-1(X) chain | Lys-> AminoadipicAcid (K) | - | 1 | - |
Class of Compound | Sample | Recipe Products |
---|---|---|
Linear monocarboxylic saturated fatty acids; Dicarboxylic acids; Hydroxycarboxylic acids; Monounsaturated fatty acids | Lung, canopic jar, head | Plant oils and relative oxidation products |
Diterpenoids | Lung, canopic jar, head | Pinaceae resins |
Aromatic acids | Lung, canopic jar, head | Vegetable balms |
Monosaccharides | Lung, canopic jar, head | Human tissue or gums |
Triterpenoids | Lung | Pistacia resin |
Tannins | Lung, canopic jar, head | Cedar oil/wood smoke |
Collagen proteins | Scalp | Animal glue (fish and fowl) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barberis, E.; Manfredi, M.; Ferraris, E.; Bianucci, R.; Marengo, E. Non-Invasive Paleo-Metabolomics and Paleo-Proteomics Analyses Reveal the Complex Funerary Treatment of the Early 18th Dynasty Dignitary NEBIRI (QV30). Molecules 2022, 27, 7208. https://doi.org/10.3390/molecules27217208
Barberis E, Manfredi M, Ferraris E, Bianucci R, Marengo E. Non-Invasive Paleo-Metabolomics and Paleo-Proteomics Analyses Reveal the Complex Funerary Treatment of the Early 18th Dynasty Dignitary NEBIRI (QV30). Molecules. 2022; 27(21):7208. https://doi.org/10.3390/molecules27217208
Chicago/Turabian StyleBarberis, Elettra, Marcello Manfredi, Enrico Ferraris, Raffaella Bianucci, and Emilio Marengo. 2022. "Non-Invasive Paleo-Metabolomics and Paleo-Proteomics Analyses Reveal the Complex Funerary Treatment of the Early 18th Dynasty Dignitary NEBIRI (QV30)" Molecules 27, no. 21: 7208. https://doi.org/10.3390/molecules27217208
APA StyleBarberis, E., Manfredi, M., Ferraris, E., Bianucci, R., & Marengo, E. (2022). Non-Invasive Paleo-Metabolomics and Paleo-Proteomics Analyses Reveal the Complex Funerary Treatment of the Early 18th Dynasty Dignitary NEBIRI (QV30). Molecules, 27(21), 7208. https://doi.org/10.3390/molecules27217208