Bio-Computational Evaluation of Compounds of Bacopa Monnieri as a Potential Treatment for Schizophrenia
Abstract
:1. Introduction
2. Material and Methods
2.1. Neurotransmitter Release Cycle Biomolecules Data Mining
2.2. In Silico Interaction Investigation
2.2.1. STXBP1 Preparation as a Receptor Molecule
2.2.2. Active Site Prediction by CASTp Server
2.2.3. Natural Compounds Library Preparation as a Ligand
2.2.4. Energy Minimization
2.2.5. Molecular Docking Analysis
2.2.6. Molecular Dynamics Simulation (MDS)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diaz Heijtz, R.; Almeida, R.; Eliasson, A.C.; Forssberg, H. Genetic Variation in the Dopamine System Influences Intervention Outcome in Children with Cerebral Palsy. EBioMedicine 2018, 28, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, U.E.; Puls, I.; Muller, D.J.; Strutz-Seebohm, N.; Gallinat, J. Molecular mechanisms of schizophrenia. Cell Physiol. Biochem. 2007, 20, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Mejia-Gutierrez, M.; Vasquez-Paz, B.D.; Fierro, L.; Maza, J.R. In Silico Repositioning of Dopamine Modulators with Possible Application to Schizophrenia: Pharmacophore Mapping, Molecular Docking and Molecular Dynamics Analysis. ACS Omega 2021, 6, 14748–14764. [Google Scholar] [CrossRef] [PubMed]
- Rathore, A.; Asati, V.; Mishra, M.; Das, R.; Kashaw, V.; Kashaw, S.K. Computational approaches for the design of novel dopamine D2 and serotonin 5-HT2A receptor dual antagonist towards schizophrenia. Silico Pharmacol. 2022, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Qian, P.P.; Wang, S.; Feng, K.R.; Ren, Y.J. Molecular modeling studies of 1,2,4-triazine derivatives as novel h-DAAO inhibitors by 3D-QSAR, docking and dynamics simulations. RSC Adv. 2018, 8, 14311–14327. [Google Scholar] [CrossRef] [Green Version]
- Gumus, M.; Babacan, S.N.; Demir, Y.; Sert, Y.; Koca, I.; Gulcin, I. Discovery of sulfadrug-pyrrole conjugates as carbonic anhydrase and acetylcholinesterase inhibitors. Arch. Pharm. 2022, 355, e2100242. [Google Scholar] [CrossRef]
- Dege, N.; Gökce, H.; Doğan, O.E.; Alpaslan, G.; Ağar, T.; Muthu, S.; Sert, Y. Quantum computational, spectroscopic investigations on N-(2-((2-chloro-4, 5-dicyanophenyl) amino) ethyl)-4-methylbenzenesulfonamide by DFT/TD-DFT with different solvents, molecular docking and drug-likeness researches. Colloids Surf. A Physicochem. Eng. Asp. 2022, 638, 128311. [Google Scholar] [CrossRef]
- Miao, J.; Wang, W.; Yao, S.; Navaratnam, S.; Parsons, B. Antioxidative properties of Martynoside: Pulse radiolysis and laser photolysis study. Free. Radic. Res. 2003, 37, 829–833. [Google Scholar] [CrossRef]
- Saxena, A.; Saxena, A.K.; Singh, J.; Bhushan, S. Natural antioxidants synergistically enhance the anticancer potential of AP9-cd, a novel lignan composition from Cedrus deodara in human leukemia HL-60 cells. Chem. Biol. Interact. 2010, 188, 580–590. [Google Scholar] [CrossRef]
- Pastore, S.; Lulli, D.; Fidanza, P.; Potapovich, A.I.; Kostyuk, V.A.; De Luca, C.; Mikhal’chik, E.; Korkina, L.G. Plant polyphenols regulate chemokine expression and tissue repair in human keratinocytes through interaction with cytoplasmic and nuclear components of epidermal growth factor receptor system. Antioxid Redox Signal 2012, 16, 314–328. [Google Scholar] [CrossRef]
- Kostyuk, V.A.; Potapovich, A.I.; Lulli, D.; Stancato, A.; De Luca, C.; Pastore, S.; Korkina, L. Modulation of human keratinocyte responses to solar UV by plant polyphenols as a basis for chemoprevention of non-melanoma skin cancers. Curr. Med. Chem. 2013, 20, 869–879. [Google Scholar]
- Peng, X.M.; Gao, L.; Huo, S.X.; Liu, X.M.; Yan, M. The Mechanism of Memory Enhancement of Acteoside (Verbascoside) in the Senescent Mouse Model Induced by a Combination of D-gal and AlCl3. Phytother. Res. 2015, 29, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Y.Q.; Fang, J.Y.; Li, P.; Li, F. Establishment of the concurrent experimental model of osteoporosis combined with Alzheimer’s disease in rat and the dual-effects of echinacoside and acteoside from Cistanche tubulosa. J. Ethnopharmacol. 2020, 257, 112834. [Google Scholar] [CrossRef] [PubMed]
- Murebwayire, S.; Ingkaninan, K.; Changwijit, K.; Frederich, M.; Duez, P. Triclisia sacleuxii (Pierre) Diels (Menispermaceae), a potential source of acetylcholinesterase inhibitors. J. Pharm. Pharmacol. 2009, 61, 103–107. [Google Scholar] [CrossRef]
- Dubey, T.; Chinnathambi, S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer’s disease. Arch. Biochem. Biophys. 2019, 676, 108153. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, K.S.; Tiwari, N.R.; Tiwari, R.R.; Sharma, R.S. Neurocognitive Effect of Nootropic Drug Brahmi (Bacopa monnieri) in Alzheimer’s Disease. Ann. Neurosci. 2017, 24, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Jamal, Q.M.S.; Siddiqui, M.U.; Alharbi, A.H.; Albejaidi, F.; Akhtar, S.; Alzohairy, M.A.; Kamal, M.A.; Kesari, K.K. A Computational Study of Natural Compounds from Bacopa monnieri in the Treatment of Alzheimer’s Disease. Curr. Pharm. Des. 2020, 26, 790–800. [Google Scholar] [CrossRef]
- Chirinskaite, A.V.; Siniukova, V.A.; Velizhanina, M.E.; Sopova, J.V.; Belashova, T.A.; Zadorsky, S.P. STXBP1 forms amyloid-like aggregates in rat brain and demonstrates amyloid properties in bacterial expression system. Prion 2021, 15, 29–36. [Google Scholar] [CrossRef]
- Stamberger, H.; Crosiers, D.; Balagura, G.; Bonardi, C.M.; Basu, A.; Cantalupo, G.; Chiesa, V.; Christensen, J.; Dalla Bernardina, B.; Ellis, C.A.; et al. Natural History Study of STXBP1-Developmental and Epileptic Encephalopathy Into Adulthood. Neurology 2022, 99, e221–e233. [Google Scholar] [CrossRef]
- Stamberger, H.; Nikanorova, M.; Willemsen, M.H.; Accorsi, P.; Angriman, M.; Baier, H.; Benkel-Herrenbrueck, I.; Benoit, V.; Budetta, M.; Caliebe, A.; et al. STXBP1 encephalopathy: A neurodevelopmental disorder including epilepsy. Neurology 2016, 86, 954–962. [Google Scholar] [CrossRef]
- O’Brien, S.; Ng-Cordell, E.; Study, D.D.D.; Astle, D.E.; Scerif, G.; Baker, K. STXBP1-associated neurodevelopmental disorder: A comparative study of behavioural characteristics. J. Neurodev. Disord. 2019, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Croft, D.; Mundo, A.F.; Haw, R.; Milacic, M.; Weiser, J.; Wu, G.; Caudy, M.; Garapati, P.; Gillespie, M.; Kamdar, M.R. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014, 42, D472–D477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Doncheva, N.T.; Assenov, Y.; Domingues, F.S.; Albrecht, M. Topological analysis and interactive visualization of biological networks and protein structures. Nat. Protoc. 2012, 7, 670–685. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Chen, V.B.; Arendall, W.B.; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef] [Green Version]
- López-López, E.; Naveja, J.J.; Medina-Franco, J.L. DataWarrior: An evaluation of the open-source drug discovery tool. Expert Opin. Drug Discov. 2019, 14, 335–341. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Zoete, V.; Cuendet, M.A.; Grosdidier, A.; Michielin, O. SwissParam: A fast force field generation tool for small organic molecules. J. Comput. Chem. 2011, 32, 2359–2368. [Google Scholar] [CrossRef]
- Gupta, S.; Tiwari, N.; Verma, J.; Waseem, M.; Subbarao, N.; Munde, M. Estimation of a stronger heparin binding locus in fibronectin domain III14 using thermodynamics and molecular dynamics. RSC Adv. 2020, 10, 20288–20301. [Google Scholar] [CrossRef] [PubMed]
- Kufareva, I.; Abagyan, R. Methods of protein structure comparison. Methods Mol. Biol. 2011, 857, 231–257. [Google Scholar]
- Kuzmanic, A.; Zagrovic, B. Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys. J. 2010, 98, 861–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramakrishnan, N.A.; Drescher, M.J.; Drescher, D.G. The SNARE complex in neuronal and sensory cells. Mol. Cell Neurosci. 2012, 50, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Cingovska, I.; Bogojeska, A.; Trivodaliev, K.; Kalajdziski, S. Protein Function Prediction by Clustering of Protein-Protein Interaction Network. In International Conference on ICT Innovations; Springer: Berlin/Heidelberg, Germany, 2011; pp. 39–49. [Google Scholar]
- Houtman, S.J.; Lammertse, H.C.A.; van Berkel, A.A.; Balagura, G.; Gardella, E.; Ramautar, J.R.; Reale, C.; Moller, R.S.; Zara, F.; Striano, P.; et al. STXBP1 Syndrome Is Characterized by Inhibition-Dominated Dynamics of Resting-State EEG. Front. Physiol. 2021, 12, 775172. [Google Scholar] [CrossRef]
- Studer, G.; Rempfer, C.; Waterhouse, A.M.; Gumienny, R.; Haas, J.; Schwede, T. QMEANDisCo—Distance constraints applied on model quality estimation. Bioinformatics 2020, 36, 1765–1771. [Google Scholar] [CrossRef]
S.No. | Name | Betweenness Centrality | Closeness Centrality | Degree | Number of Undirected Edges |
---|---|---|---|---|---|
1. | SNAP25 | 0.051693508 | 0.626761 | 84 | 84 |
2. | HSPA8 | 0.155216876 | 0.622378 | 80 | 80 |
3. | SYT1 | 0.026981174 | 0.613793 | 78 | 78 |
4. | STX1A | 0.027873305 | 0.605442 | 76 | 76 |
5. | VAMP2 | 0.027213137 | 0.605442 | 76 | 76 |
6. | SYN1 | 0.032573103 | 0.585526 | 74 | 74 |
7. | STXBP1 | 0.017975317 | 0.597315 | 74 | 74 |
8. | CPLX1 | 0.014901833 | 0.581699 | 72 | 72 |
9. | RAB3A | 0.013181649 | 0.585526 | 68 | 68 |
10. | SLC18A2 | 0.035491445 | 0.597315 | 68 | 68 |
11. | SYN2 | 0.011852705 | 0.536145 | 66 | 66 |
12. | GAD1 | 0.069874322 | 0.585526 | 62 | 62 |
13. | HSP90AA1 | 0.032707433 | 0.523529 | 62 | 62 |
14. | SLC17A7 | 0.030328683 | 0.542683 | 62 | 62 |
15. | GAD2 | 0.047526533 | 0.570513 | 60 | 60 |
S.No. | Complex Name | Binding Energy (Kcal/mol) | Hydrogen Bonds | H-Bond Length (Angstrom) | Hydrophobic Residues | Alkyl/Pi-Alkyl Residues | Other Type Interaction |
---|---|---|---|---|---|---|---|
1 | Drug as a Control Quetiapine | −7.18 | ASN261 | 2.68 | GLU141, ASP282, GLU283, LYS7, SER43, LEU138, LEU547, TYR254, THR574 | ILE572, TYR140 | Pi-Cation Pi-Anion ARG39, GLU260 LYS577 |
ASP262 | 3.56 | ||||||
ARG39 | 3.16 | ||||||
LYS577 | 2.62 | ||||||
ASN261 | 2.68 | ||||||
ASP262 | 3.56 | ||||||
2 | STXBP1_CID:5319292 Martynoside | −10.3 | ASP148 | 2.9 | GLN576, ILE259, LEU573, TYR254, SER146, SER149, THR570 | ALA150, LEU138, TYR140 | Pi-Cation ARG39 |
LYS577 | 2.40 | ||||||
LYS577 | 2.22 | ||||||
LYS577 | 2.94 | ||||||
ASP148 | 2.62 | ||||||
THR574 | 2.23 | ||||||
ASN261 | 2.41 | ||||||
GLU260 | 2.74 | ||||||
ASP262 | 3.56 | ||||||
ILE572 | 2.18 | ||||||
3 | STXBP1_CID:5281800 Acteoside | −9.2 | ARG39 | 1.67 | GLU260, ILE259, SER42, LEU280, LYS46, LYS7, GLU283, SER43, LEU138, THR570, HIS571, SER149, THR574, LEU573 | TYR254, LEU547, ALA150 | NA |
TYR140 | 3.06 | ||||||
SER146 | 1.77 | ||||||
ASN261 | 2.79 | ||||||
LYS577 | 2.06 | ||||||
LYS577 | 2.14 | ||||||
ASP282 | 2.40 | ||||||
ASP262 | 2.51 | ||||||
ILE572 | 3.71 | ||||||
ASP148 | 2.76 | ||||||
4 | STXBP1_CID:44559250 Dehydroapateline | −9.1 | ARG39 | 2.29 | THR574, GLN576, ASP580, LYS584, THR581, SER146, ILE572 | ALA150 | Pi-Cation Pi-Anion LYS577, GLU260 |
ASP151 | 3.26 | ||||||
5 | STXBP1_CID:5291488 Luteolin 7-galactoside | −8.6 | SER146 | 2.34 | THR574, TYR254, LEU138, HIS571, GLN35 | ILE572 ALA150 | Pi-Cation Pi-Anion LYS577, ARG39 UNFAVORABLE DONOR-DONOR SER149 |
SER146 | 2.03 | ||||||
ASP151 | 2.30 | ||||||
ASN261 | 2.15 | ||||||
ASP148 | 2.58 | ||||||
THR570 | 2.65 | ||||||
ILE259 | 2.31 | ||||||
6 | STXBP1_CID:11145924 Bacopaside C | −8.6 | ARG39 | 2.00 | HIS571, SER146, ASP262, THR254, THR574, GLN576 | NA | NA |
ALA150 | 2.34 | ||||||
ASN261 | 2.20 | ||||||
LYS577 | 2.27 | ||||||
ASP148 | 2.49 | ||||||
TYR140 | 2.23 | ||||||
ILE259 | 3.25 | ||||||
GLU260 | 3.55 | ||||||
ILE572 | 3.50 | ||||||
7 | STXBP1_CID:15922618 Bacopaside III | −8.5 | ARG39 | 1.86 | LEU547, ILE572, SER146, TYR254, ILE259, GLN576, PRO258, LEU36, GLU260, ASP151, GLN35, ASP148, ALA150, SER149, ASP262, TYR140, | NA | NA |
ASN261 | 2.143 | ||||||
THR574 | 2.01 | ||||||
LYS577 | 2.16 | ||||||
LYS577 | 2.25 | ||||||
ASN261 | 2.22 | ||||||
8 | STXBP1_CID:11091080 Monnieraside I | −8.3 | ARG39 | 2.70 | TYR254, ASP262, TYR140, LEU138, THR570, SER149, ASN261, | Pi-Cation Pi-Anion =GLU260 | NA |
SER146 | 1.86 | ||||||
LYS577 | 2.62 | ||||||
LYS577 | 2.05 | ||||||
ILE259 | 2.09 | ||||||
ASP148 | 2.73 | ||||||
ILE572 | 3.79 | ||||||
9 | STXBP1_CID:9847922 Plantainoside B | −8.3 | ASN261 | 2.60 | THR140, ARG39, ASP148, ALA150, ASP580, GLN576, ASP255, THR574 | ILE572 | Pi-Anion GLU260 |
ASP262 | 1.81 | ||||||
LYS577 | 2.68 | ||||||
LYS577 | 2.95 | ||||||
TYR254 | 2.74 | ||||||
ILE259 | 2.26 | ||||||
ILE259 | 2.75 | ||||||
ASN261 | 2.60 | ||||||
10 | STXBP1_CID:163188454 NA | −8.3 | ARG39 | 2.68 | SER149, HIS571, GLN35, TYR140, ILE259, ASP580 | ALA150 | Pi-Cation Pi-Anion GLU260, ASP148 UNFAVORABLE DONOR-DONOR ASP151, ILE572 |
ALA150 | 2.10 | ||||||
ALA150 | 2.30 | ||||||
ASN261 | 2.67 | ||||||
THR574 | 2.06 | ||||||
LYS577 | 2.24 | ||||||
ASP262 | 3.72 | ||||||
TYR254 | 3.40 | ||||||
GLN576 | 3.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, A.H. Bio-Computational Evaluation of Compounds of Bacopa Monnieri as a Potential Treatment for Schizophrenia. Molecules 2022, 27, 7050. https://doi.org/10.3390/molecules27207050
Alharbi AH. Bio-Computational Evaluation of Compounds of Bacopa Monnieri as a Potential Treatment for Schizophrenia. Molecules. 2022; 27(20):7050. https://doi.org/10.3390/molecules27207050
Chicago/Turabian StyleAlharbi, Ali H. 2022. "Bio-Computational Evaluation of Compounds of Bacopa Monnieri as a Potential Treatment for Schizophrenia" Molecules 27, no. 20: 7050. https://doi.org/10.3390/molecules27207050