Conjugated Polymers-Based Ternary Hybrid toward Unique Photophysical Properties
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duan, L.; Zhang, Y.; Deng, R.; Yi, H.; Uddin, A. Balance between energy transfer and exciton separation in ternary organic solar cells with two conjugated polymer donors. ACS Appl. Energy Mater. 2020, 3, 5792–5803. [Google Scholar] [CrossRef]
- Sharma, G.; Kattayat, S.; Naqvi, S.F.; Hashmi, S.; Alvi, P. Role of MEH: PPV polymer in single layer OLEDs with its optoelectronic characteristics. Mater. Today Proc. 2021, 42, 1678–1681. [Google Scholar] [CrossRef]
- Ashizawa, M.; Zheng, Y.; Tran, H.; Bao, Z. Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Prog. Polym. Sci. 2020, 100, 101181. [Google Scholar] [CrossRef]
- Mergu, N.; Kim, H.; Ryu, J.; Son, Y.-A. A simple and fast responsive colorimetric moisture sensor based on symmetrical conjugated polymer. Sens. Actuator B Chem. 2020, 311, 127906. [Google Scholar] [CrossRef]
- Zhang, S.; Yue, S.; Wu, Q.; Zhang, Z.; Chen, Y.; Wang, X.; Liu, Z.; Xie, G.; Xue, Q.; Qu, D.; et al. Color stable multilayer all-phosphor white organic light-emitting diodes with excellent color quality. Org. Electron. 2013, 14, 2014–2022. [Google Scholar] [CrossRef]
- Divayana, Y.; Liu, S.; Kyaw, A.K.K.; Sun, X.W. Efficient extraction of singlet–triplet excitons for high-efficient white organic light-emitting diode with a multilayer emission region. Org. Electron. 2011, 12, 1–7. [Google Scholar] [CrossRef]
- Yang, H.; Xie, W.; Zhao, Y.; Hou, J.; Liu, S. High efficiency small molecule white organic light-emitting devices with a multilayer structure. Solid State Commun. 2006, 139, 468–472. [Google Scholar] [CrossRef]
- Liu, J.; Li, W.; Wang, B.; He, Y.; Miao, T.; Lü, X.; Fu, G. Single-component white polymer light-emitting diode (WPLED) based on a binary tris-pyrazolonate-Sm-complex. J. Lumin. 2020, 221, 117054. [Google Scholar] [CrossRef]
- Gutiérrez–Llorente, A. Effect of an assistant dopant on the vibrational satellites of a phosphorescent emitter: Application to solution–processed single–layer white organic light–emitting diodes. Org. Electron. 2020, 84, 105786. [Google Scholar] [CrossRef]
- da Silva, M.A.; Thomazini, E.F.; Albertini, M.; Renzi, W.; Franchello, F.; Dias, I.F.L.; Duarte, J.L.; Poças, L.C.; Lourenço, S.A. Characterization of digital textile printing and polymer blend (PFO-DMP: P3HT) for application in manufacture of organic diodes emitting white light–WOLEDS. Opt. Mater. 2016, 62, 119–131. [Google Scholar] [CrossRef]
- Mortensen, K. Characterization of Polymer Blends Miscibility, Morphology and Interfaces; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Förster, T. Fluoreszenz Organischer Verbindungen; Vandenhoeck & Ruprecht: Göttingen, Germany, 1982. [Google Scholar]
- Allen, N.S. Photochemistry and Photophysics of Polymeric Materials; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Al-Asbahi, B.A.; Qaid, S.M.; Hj Jumali, M.H.; AlSalhi, M.S.; Aldwayyan, A.S. Long-range dipole–dipole energy transfer enhancement via addition of SiO2/TiO2 nanocomposite in PFO/MEH-PPV hybrid thin films. J. Appl. Polym. Sci. 2019, 136, 47845. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Al-Asbahi, B.; Alsalhi, M.; Al-Dwayyan, A.; Jumali, M.H. Förster-type energy transfer mechanism in PF2/6 to MEH-PPV conjugated polymers. J. Lumin. 2012, 132, 386–390. [Google Scholar] [CrossRef]
- Virgili, T.; Lidzey, D.G.; Bradley, D.D. Efficient energy transfer from blue to red in tetraphenylporphyrin-doped poly (9, 9-dioctylfluorene) light-emitting diodes. Adv. Mater. 2000, 12, 58–62. [Google Scholar] [CrossRef]
- Cerullo, G.; Stagira, S.; Zavelani-Rossi, M.; De Silvestri, S.; Virgili, T.; Lidzey, D.G.; Bradley, D.D.C. Ultrafast Förster transfer dynamics in tetraphenylporphyrin doped poly (9, 9-dioctylfluorene). Chem. Phys. Lett. 2001, 335, 27–33. [Google Scholar] [CrossRef]
- Cossiello, R.F.; Susman, M.D.; Aramendía, P.F.; Atvars, T.D. Study of solvent-conjugated polymer interactions by polarized spectroscopy: MEH–PPV and Poly (9, 9′-dioctylfluorene-2, 7-diyl). J. Lumin. 2010, 130, 415–423. [Google Scholar] [CrossRef]
- List, E.J.; Creely, C.; Leising, G.; Graupner, W. Excitation energy migration in highly emissive semiconducting polymers. Chem. Phys. Lett. 2000, 325, 132–138. [Google Scholar] [CrossRef]
- Förster, T. Transfer mechanisms of electronic excitation energy. Radiat. Res. Suppl. 1960, 2, 326–339. [Google Scholar] [CrossRef]
- Shaheen, S.; Kippelen, B.; Peyghambarian, N.; Wang, J.-F.; Anderson, J.D.; Mash, E.A.; Lee, P.A.; Armstrong, N.R.; Kawabe, Y. Energy and charge transfer in organic light-emitting diodes: A soluble quinacridone study. J. Appl. Phys. 1999, 85, 7939–7945. [Google Scholar] [CrossRef]
- Mattoussi, H.; Murata, H.; Merritt, C.D.; Iizumi, Y.; Kido, J.; Kafafi, Z.H. Photoluminescence quantum yield of pure and molecularly doped organic solid films. J. Appl. Phys. 1999, 86, 2642–2650. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A. Dual Förster resonance energy transfer in ternary PFO/MEH-PPV/F7GA hybrid thin films for white organic light-emitting diodes. Dye. Pigm. 2021, 186, 109011. [Google Scholar] [CrossRef]
- Bajpai, M.; Srivastava, R.; Kamalasanan, M.; Tiwari, R.; Chand, S. Charge transport and microstructure in PFO: MEH-PPV polymer blend thin films. Synth. Met. 2010, 160, 1740–1744. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A.; Haji Jumali, M.H.; AlSalhi, M.S. Enhanced optoelectronic properties of PFO/Fluorol 7GA hybrid light emitting diodes via additions of TiO2 nanoparticles. Polymers 2016, 8, 334. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A.; AlSalhi, M.S.; Fatehmulla, A.; Jumali, M.H.H.; Qaid, S.M.H.; Mujamammi, W.M.; Ghaithan, H. Controlling the Emission Spectrum of Binary Emitting Polymer Hybrids by a Systematic Doping Strategy via Förster Resonance Energy Transfer for White Emission. Micromachines 2021, 12, 1371. [Google Scholar] [CrossRef]
- Jumali, M.H.H.; Al-Asbahi, B.A.; Yap, C.C.; Salleh, M.M.; Alsalhi, M.S. Optoelectronic property enhancement of conjugated polymer in poly (9, 9′-di-n-octylfluorenyl-2.7-diyl)/titania nanocomposites. Thin Solid Films 2012, 524, 257–262. [Google Scholar] [CrossRef]
- Sengwa, R.J.; Choudhary, S. Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 2014, 131, 40617–40628. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Z.; Zhu, C.; Peng, H.; Zou, Y. Bromination and increasing the molecular conjugation length of the non-fullerene small-molecule acceptor based on benzotriazole for efficient organic photovoltaics. RSC Adv. 2021, 11, 13571–13578. [Google Scholar] [CrossRef]
- Keshav, R.; Padiyar, M.; Meghana, N.; Mahesha, M. Analysis of PV deposited ZnTe thin films through Urbach tail and photoluminescence spectroscopy. J. Lumin. 2018, 194, 257–263. [Google Scholar] [CrossRef]
- Qaid, S.M.; Al-Asbahi, B.; Ghaithan, H.M.; AlSalhi, M. Optical and structural properties of CsPbBr3 perovskite quantum dots/PFO polymer composite thin films. J. Colloid Interface Sci. 2020, 563, 426–434. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Asbahi, B.A.; AlSalhi, M.S.; Jumali, M.H.H.; Fatehmulla, A.; Qaid, S.M.H.; Mujamammi, W.M.; Ghaithan, H.M. Conjugated Polymers-Based Ternary Hybrid toward Unique Photophysical Properties. Molecules 2022, 27, 7011. https://doi.org/10.3390/molecules27207011
Al-Asbahi BA, AlSalhi MS, Jumali MHH, Fatehmulla A, Qaid SMH, Mujamammi WM, Ghaithan HM. Conjugated Polymers-Based Ternary Hybrid toward Unique Photophysical Properties. Molecules. 2022; 27(20):7011. https://doi.org/10.3390/molecules27207011
Chicago/Turabian StyleAl-Asbahi, Bandar Ali, Mohamad S. AlSalhi, Mohammad Hafizuddin Hj. Jumali, Amanullah Fatehmulla, Saif M. H. Qaid, Wafa Musa Mujamammi, and Hamid M. Ghaithan. 2022. "Conjugated Polymers-Based Ternary Hybrid toward Unique Photophysical Properties" Molecules 27, no. 20: 7011. https://doi.org/10.3390/molecules27207011
APA StyleAl-Asbahi, B. A., AlSalhi, M. S., Jumali, M. H. H., Fatehmulla, A., Qaid, S. M. H., Mujamammi, W. M., & Ghaithan, H. M. (2022). Conjugated Polymers-Based Ternary Hybrid toward Unique Photophysical Properties. Molecules, 27(20), 7011. https://doi.org/10.3390/molecules27207011