Bioassay-Guided Fractionation of Siparuna glycycarpa n-Butanol Extract with Inhibitory Activity against Influenza A(H1N1)pdm09 Virus by Centrifugal Partition Chromatography (CPC)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Centrifugal Partition Chromatography of the n-Butanol Extract from S. glycycarpa
2.2. In Vitro Anti-Influenza Activity of Fractions Acquired by CPC
2.3. LC-HRMS/MS and Molecular Networking Analyses of CPC Fractions
3. Materials and Methods
3.1. Solvents and Chemical Reagents
3.2. Plant Material and Extracts Preparation
3.3. Thin Layer Chromatography (TLC)
3.4. Centrifugal Partition Chromatography (CPC)
3.4.1. Apparatus
3.4.2. Solvent System Selection
3.4.3. Solvent System and Sample Preparation
3.4.4. CPC Fractionation Procedure
3.5. CPC Fractions Preparation for Antiviral and Cytotoxicity Assays
3.6. Cells and Viruses
3.7. Cell Viability (Cytotoxicity Assay)
3.8. Influenza Replication Inhibition Assay
3.9. Neuraminidase Activity
3.10. Statistical Analysis
3.11. LC-HRMS/MS Analysis
3.12. Global Natural Products Social Molecular Networking (GNPS)
4. Conclusions
Supplementary Materials
254 nm;
365 nm;
200–400 nm). (B) TLC analysis of CPC fractions pooled according to chemical and chromatographic similarities. Figure S3: (A) CPC-UV chromatogram of the n-butanol extract fractionation at 1300 rpm rotation (
254 nm;
365 nm;
200–400 nm). (B) CPC fractions by TLC analysis. Figure S4: Ultraviolet spectra of selected fractions acquired by CPC fractionation at 1300 rpm rotation. Figure S5: (A) CPC-UV chromatogram of the n-butanol extract fractionation at 1300 rpm rotation and local minimum function (
254 nm;
365 nm;
200–400 nm). (B) CPC fractions by TLC analysis. Figure S6: (A) SGO, (B) SGD, (C) SGA, (D) SGC LC-HRMS/MS analysis in positive ionization mode. (E) SGO LC-HRMS/MS analysis in negative ionization mode. Figure S7: (A) MS spectrum with m/z 272.1283 [M + H]+ and (B) MS2 spectrum of demethyl-coclaurine 1. Figure S8: (A) MS spectrum with m/z 286.1444 [M + H]+ and (B) MS2 spectrum of coclaurine 2. Figure S9: (A) MS spectrum with m/z 300.1593 [M + H]+ and (B) MS2 spectrum of N-methylcoclaurine 3. Figure S10: (A) MS spectrum with m/z 330.1720 [M + H]+ and (B) MS2 spectrum of reticuline 4. Figure S11: (A) MS spectrum with m/z 346.1655 [M + H]+ and (B) MS2 spectrum of reticuline N-oxide 5. Figure S12: (A) MS spectrum with m/z 282.1475 [M + H]+ and (B) MS2 spectrum of nornuciferine 6. Figure S13: (A) MS spectrum with m/z 298.1438 [M + H]+ and (B) MS2 spectrum of isopiline 7. Figure S14: (A) MS spectrum with m/z 312.1595 [M + H]+ and (B) MS2 spectrum of O-methylisopiline 8. Figure S15: (A) MS spectrum with m/z 328.1564 [M + H]+ and (B) MS2 spectrum of stepholidine 9. Figure S16: (A) MS spectrum with m/z 342.1704 [M + H]+ and (B) MS2 spectrum of isocorypalmine 10. Figure S17: (A) MS spectrum with m/z 611.1639 [M + H]+ and (B) MS2 spectrum of quercetin-3-O-rhamnoside-7-O-glucoside or quercetin-3-O-glucoside-7-O-rhamnoside 11. Figure S18: (A) MS spectrum with m/z 595.1705 [M + H]+ and (B) MS2 spectrum of kaempferol-3-O-glucoside-7-O-rhamnoside 12. Figure S19: (A) MS spectrum with m/z 449.1096 [M + H]+ and (B) MS2 spectrum of kaempferol 3-O-glucoside 13. Figure S20: (A) MS spectrum with m/z 609.1524 [M − H]− and (B) MS2 spectrum of quercetin-3-O-rutinoside (Rutin) 14. Figure S21: (A) MS spectrum with m/z 593.1579 [M − H]− and (B) MS2 spectrum of kaempferol-3-O-rutinoside 15. Figure S22: (A) MS spectrum with m/z 301.1104 [M − H]− and (B) MS2 spectrum of 2′,6′-dihydroxy-4,4′-dimethoxydihydrochalcone 16. Figure S23: (A) MS spectrum with m/z 271.1012 [M − H]− and (B) MS2 spectrum of 2′,6′-dihydroxy-4′-methoxy-dihydrochalcone 17. Figure S24. MS2 spectrum of magnocurarine m/z 314.1792 [M]+. Figure S25. MS2 spectrum of kaempferol-3-O-hexose-O-deoxyhexose-O-pentoside m/z 727.2089 [M + H]+. Figure S26. MS2 spectrum of quercetin-3-O-(2′’-O-galloyl)-pentoside m/z 585.2190 [M − H]−. Figure S27. MS2 spectrum of quercetin-3-O-(6′’-O-galloyl)-β-galactopyranoside m/z 615.2335 [M − H]−. Table S1: Pooled fractions from the n-butanol extract fractionation at 1300 rpm rotation and local minimum function (Supplementary Figure S5). Table S2: Cell viability of pooled fractions from the n-butanol extract fractionation by CPC. Table S3: Anti-influenza activity of CPC pooled fractions with cell viability above 80%.Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Silva, T.; Salomon, P.S.; Hamerski, L.; Walter, J.; Menezes, R.B.; Siqueira, J.E.; Santos, A.; Santos, J.A.M.; Ferme, N.; Guimarães, T.; et al. Inhibitory effect of microalgae and cyanobacteria extracts on influenza virus replication and neuraminidase activity. PeerJ 2018, 6, e5716. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Influenza (Seasonal). Available online: http://www.who.int/mediacentre/factsheets/fs211/en/ (accessed on 14 June 2021).
- Sovann, L.Y.; Sar, B.; Kab, V.; Yann, S.; Kinzer, M.; Raftery, P.; Albalak, R.; Patel, S.; Hay, P.L.; Seng, H.; et al. An influenza A (H3N2) virus outbreak in the Kingdom of Cambodia during the COVID-19 pandemic of 2020. Int. J. Infect. Dis. 2021, 103, 352–357. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Wani, A.R.; Yadav, K.; Khursheed, A.; Rather, M.A. An update and comprehensive review of the antiviral potencial of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb. Pathog. 2021, 152, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Leitão, G.G.; Soares, S.S.V.; Brito, T.B.M.; Monache, F.D. Kaempferol glycosides from Siparuna apiosyce. Phytochemistry 2000, 55, 679–682. [Google Scholar] [CrossRef]
- Renner, S.S.; Hausner, G. Siparunaceae. In Flora Neotropica; Monograph 95; The New York Botanical Garden: New York, NY, USA, 2005. [Google Scholar]
- Leal, C.M.; Simas, R.C.; Miranda, M.; Campos, M.F.; Gomes, B.A.; Siqueira, M.M.; Do Valle, G.; De Almeida, C.V.G.; Leitão, S.G.; Leitão, G.G. Amazonian Siparuna extracts as potential anti-influenza agentes: Metabolic fingerprinting. J. Ethnopharmacol. 2021, 270, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.T.; Karimi, A.; Shahrani, M.; Hashemi, L.; Goosheh, M.S.C. Anti-influenza virus activity and phenolic content of pomegranate (Punica granatum L.) peel extract and fractions. Avicenna J. Med. Biotechnol. 2019, 11, 285–291. [Google Scholar]
- Grienke, U.; Schmidtke, M.; Grafenstein, S.V.; Kirchmair, J.; Liedl, K.R.; Rollinger, J.M. Influenza neuraminidase: A druggable target for natural products. Nat. Prod. Rep. 2012, 29, 11–36. [Google Scholar] [CrossRef]
- Yang, Z.F.; Bai, L.P.; Huang, W.B.; Li, X.Z.; Zhao, S.S.; Zhong, N.S.; Jiang, Z.H. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis. Fitoterapia 2014, 93, 47–53. [Google Scholar] [CrossRef]
- Giri, G.F.; Viarengo, G.; Furlán, R.L.E.; Suárez, A.G.; Eleonora, G.V.; Spanevello, R.A. Soybean hulls, an alternative source of bioactive compounds: Combining pyrolysis with bioguided fractionation. Ind. Crop. Prod. 2017, 105, 113–123. [Google Scholar] [CrossRef]
- Rufatto, L.C.; Luchtenberg, P.; Garcia, C.; Thomasssigny, C.; Bouttier, S.; Henriques, J.A.P.; Roesch-Ely, M.; Dumas, F.; Moura, S. Brazilian red propolis: Chemical composition and antibacterial activity determined using bioguided fractionation. Microbiol. Res. 2018, 214, 74–82. [Google Scholar] [CrossRef]
- Nothias, L.F.; Nothias-Esposito, M.; Da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J.; et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J. Nat. Prod. 2018, 81, 758–767. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Zhou, R.; Tong, R.; Shi, S.; Chen, X. At-line hyphenation of high-speed countercurrent chromatography with sephadex LH-20 column chromatography for bioassay-guided separation of antioxidants from vine tea (Ampelopsis grossedentata). J. Chromatogr. B 2017, 1040, 112–117. [Google Scholar] [CrossRef]
- Xu, F.; Huang, Y.; Ding, S.; Cai, X.; Liu, C.; Ji, Z.; Tang, J.; Yang, Y.; Tian, J. Counter-current fractionation-assisted bioassay-guided separation of active composition from the edible medicinal insect Blaps rynchopetera Fairmaire. J. Chromatogr. A 2019, 1603, 433–437. [Google Scholar] [CrossRef]
- Xue, H.; Tan, J.; Zhu, X.; Li, Q.; Tang, J.; Cai, X. Counter-current fractionation assisted and bioassay-guided separation of active compounds from cranberry and their interaction with α-glucosidase. LWT 2021, 145, 1–10. [Google Scholar] [CrossRef]
- Costa, F.d.N.; Hubert, J.; Borie, N.; Kotland, A.; Hewitson, P.; Ignatova, S.; Renault, J.H. Schinus terebinthifolius countercurrent chromatography (part III): Method transfer from small CCC column to preparative CPC ones as a part of method development. J. Chromatogr. A. 2017, 1487, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Messaili, S.; Colas, C.; Fougere, L.; Destandau, E. Combination of molecular network and centrifugal partition chromatography fractionation for targeting and identifying Artemisia annua L. antioxidant compounds. J. Chromatogr. A 2020, 1615, 1–21. [Google Scholar] [CrossRef]
- Bojczuk, M.; Zyzelewicz, D.; Hodurek, P. Centrifugal partition chromatography- a review of recent applications and some classic references. J. Sep. Sci. 2017, 40, 1429–1630. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.S.; De Oliveira, B.S.; Shabudin, S.V.; Almeida, M.; Freire, M.G.; Bica, K. Purification of anthocyanins from grape pomace by centrifugal partition chromatography. J. Mol. Liq. 2021, 326, 1–9. [Google Scholar] [CrossRef]
- Chami, M.C.; Bouju, E.; Lequemener, C.; De Vaumas, R.; Hadji-Minaglou, F.; Fernandez, X.; Michel, T. Purification of two valepotriates from Centranthus ruber by centrifugal partition chromatography: From analytical to preparative scale. J. Chromatogr. A 2018, 1580, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, Y.; Liu, C.; Liu, C.; Li, S. Screening and isolation of potential neuraminidase inhibitors from leaves of Ligustrum lucidum Ait. Based on ultrafiltration, LC/MS, and online extraction-separation methods. J. Chromatogr. B 2018, 1083, 102–109. [Google Scholar] [CrossRef]
- Mandova, T.; Audo, G.; Michel, S.; Grougnet, R. Off-line coupling of new generation centrifugal partition chromatography device with preparative high pressure liquid chromatography-mass spectrometry triggering fraction collection applied to the recovery of secoiridoid glycosides from Centaurium erythraea Rafn. (Gentianaceae). J. Chromatogr. A 2017, 1513, 149–156. [Google Scholar]
- Kim, J.H.; Jung, E.J.; Lee, Y.J.; Gao, E.M.; Syed, A.S.; Kim, C.Y. Bioassay-guided separation of Centipeda minima using comprehensive linear gradient centrifugal partition chromatography. Molecules 2020, 25, 3077. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Zhang, Z.; Qi, Y.; Wu, G.; Li, S. Solvent gradient elution for comprehensive separation of constituents with wide range of polarity in Apocynum venetum leaves by high-speed counter-current chromatography. J. Sep. Sci. 2010, 33, 2743–2748. [Google Scholar] [CrossRef]
- Ren, D.B.; Yi, L.Z.; Qin, Y.H.; Yun, Y.H.; Deng, B.C.; Lu, H.M.; Chen, X.Q.; Liang, Y.Z. Systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient model for real-life counter-current chromatography separation. J. Chromatogr. A 2015, 1393, 47–56. [Google Scholar] [CrossRef]
- Michel, T.; Destandau, E.; Pecher, V.; Renimel, I.; Pasquier, L.; André, P.; Elfakir, C. Two-step centrifugal partition chromatography (CPC) fractionation of Butea monosperma (Lam.) biomarkers. Sep. Purif. Technol. 2011, 80, 32–37. [Google Scholar] [CrossRef]
- Fromme, A.; Fischer, C.; Keine, K.; Schembecker, G. Characterization and correlation of mobile phase dispersion of aqueous-organic solvent systems in centrifugal partition chromatography. J. Chromatogr. A 2020, 1620, 460990. [Google Scholar] [CrossRef] [PubMed]
- Sangster, A.W.; Stuart, K.L. Ultraviolet spectra of alkaloids. Chem. Rev. 1965, 65, 69–130. [Google Scholar] [CrossRef]
- Villiers, A.; Venter, P.; Pasch, H. Recent advances and trends in the liquid-chromatography-mass-spectrometry analysis of flavonoids. J. Chromatogr. A 2016, 1430, 16–78. [Google Scholar] [CrossRef]
- Lima, B.R.; Da Silva, F.M.A.; Soares, E.R.; De Almeida, R.A.; Da Silva-Filho, F.A.; Barison, A.; Costa, E.V.; Koolen, H.H.F.; De Souza, A.D.L.; Pinheiro, M.L.B. Integrative approach based on leaf spray mass spectrometry, HPLC-DAD-MS/MS, and NMR for comprehensive characterization of isoquinoline-derived alkaloids in leaves of Onychopetalum amazonicum R. E. Fr. J. Braz. Chem. Soc. 2020, 31, 79–89. [Google Scholar]
- Stévigny, C.; Jiwan, J.L.H.; Rozenberg, R.; Hoffmann, E.; Quetin-Leclercq, J. Key fragmentation patterns of aporphine alkaloids by electrospray ionization with multistage mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 523–528. [Google Scholar] [CrossRef]
- Sobral, F.; Calhelha, R.C.; Barros, L.; Dueñas, M.; Tomás, A.; Santos-Buelga, C.; Vilas-Boas, M.; Ferreira, I.C.F.R. Flavonoid composition and antitumor activity of bee bread collected in northeast Portugal. Molecules 2017, 22, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, W.T.; Kwon, O.C.; Kim, H.B.; Sung, G.B.; Kim, H.W.; Kim, Y.S. Qualitative and quantitative analysis of flavonoids from 12 species of Korean mulberry leaves. J. Food Sci. Technol. 2018, 55, 1789–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francescato, L.N.; Debenedetti, S.L.; Schwanz, T.G.; Bassani, V.L.; Henriques, A.T. Identification of phenolic compounds in Equisetum giganteum by LC-ESI-MS/MS and a new approach to total flavonoid quantification. Talanta 2013, 105, 192–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portet, B.; Fabre, N.; Rozenberg, R.; Habib-Jiwan, J.L.; Moulis, C.; Quetin-Leclercq, J. Analysis of minor flavonoids in Piper hostmannianum var. berbicense using liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 2008, 1210, 45–54. [Google Scholar]
- Nikolic, D.; Godecke, T.; Chen, S.N.; White, J.; Lankin, D.C.; Pauli, G.F.; Breemen, R.B.V. Mass spectrometric dereplication of nitrogen-containing constituents of black cohosh (Cimicifuga racemosa L.). Fitoterapia 2012, 83, 441–460. [Google Scholar] [CrossRef] [Green Version]
- Martucci, M.E.P.; De Vos, R.C.H.; Carollo, C.A.; Gobbo-Neto, L. Metabolomics as a potential chemotaxonomical tool: Application in the genus Vernonia Schreb. PLoS ONE 2014, 9, e93149. [Google Scholar] [CrossRef] [Green Version]
- Sobeh, M.; ElHawary, E.; Peixoto, H.; Labib, R.M.; Handoussa, H.; Swilam, N.; El-Khatib, A.H.; Sharapov, F.; Mohamed, T.; Krstin, S.; et al. Identification of phenolic secondary metabolites from Schotia brachypetala Sond. (Fabaceae) and demonstration of their antioxidant activities in Caenorhabditis elegans. PeerJ 2016, 4, e2404. [Google Scholar] [CrossRef] [Green Version]
- Saldanha, L.L.; Vilegas, W.; Dokkedal, A.L. Characterization of flavonoids and phenolic acids in Myrcia bella Cambess. using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS combined with NMR. Molecules 2013, 18, 8402–8416. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza. 2011. Available online: http://www.who.int/influenza/gisrs_laboratory/manual_diagnosis_surveillance_influenza/en/ (accessed on 20 October 2021).
- Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.; Vargas, F.; et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020, 15, 1954–1991. [Google Scholar] [CrossRef]
- Holman, J.D.; Tabb, D.L.; Mallick, P. Employing ProteoWizard to convert raw mass spectrometry data. Curr. Protoc. Bioinform. 2014, 46, 13–24. [Google Scholar] [CrossRef] [PubMed]

; the most active fractions (SGO)
, (SGD)
, (SGC)
and (SGA)
; the least active fractions (LAF)
, which were SGB, SGE, SGF, SGG, SGH, SGI and SGK.
; the most active fractions (SGO)
, (SGD)
, (SGC)
and (SGA)
; the least active fractions (LAF)
, which were SGB, SGE, SGF, SGG, SGH, SGI and SGK.
| CPC Fractions | [M + H]+ (m/z) | [M − H]− (m/z) | Molecular Formula | Error (ppm) | MS/MS (MS2) | Proposed Compound |
|---|---|---|---|---|---|---|
| Network 1 (Positive Ionization Mode Data) | ||||||
| LAF | 272.1283 | - | C16H17NO3 | −1.10 | 255.10, 237.08, 223.07, 209.09, 194.06 | Demethyl-coclaurine 1 |
| All fractions | 286.1444 | - | C17H19NO3 | 0.35 | 269.12, 237.09, 209.09, 194.07, 178.08, 115.05, 107.05 | Coclaurine 2 |
| SGO, SGD, LAF | 300.1593 | - | C18H21NO3 | −1.99 | 269.11, 257.11, 237.09, 225.08, 209.09, 194.07, 181.06, 107.04 | N-methylcoclaurine 3 |
| All fractions | 330.1720 | - | C19H23NO4 | 4.54 | 299.13, 265.08, 207.0793, 192.10, 178.08, 163.06, 137.06 | Reticuline 4 |
| LAF | 346.1655 | - | C19H23NO5 | 0.28 | 329.16, 312.12, 299.13, 286.11, 267.09, 238.08, 185.08, 137.06, 115.05, 91.05 | Reticuline N-oxide 5 |
| Network 4 (Positive Ionization Mode Data) | ||||||
| SGO | 282.1475 | - | C18H19NO2 | −6.73 | 265.12, 250.10, 234.10, 219.07, 207.08, 189.07, 179.08 | Nornuciferine 6 |
| SGO | 298.1438 | - | C18H19NO3 | −1.67 | 281.11, 266.09, 250.09, 233.06, 221.09, 205.06, 189.06, 178.07 | Isopiline 7 |
| SGO | 312.1595 | - | C19H21NO3 | −1.28 | 295.13, 280.10, 264.11, 249.08, 234.06, 219.07 | O-Methylisopiline 8 |
| LAF | 328.1564 | - | C19H21NO4 | 4.87 | 313.13, 192.10, 178.08 | Stepholidine 9 |
| SGO, LAF | 342.1704 | - | C20H23NO4 | −0.29 | 324.19, 312.12, 297.11, 194.08, 178.08, 163.06 | Isocorypalmine 10 |
| Network 13 (Positive Ionization Mode Data) | ||||||
| SGO, LAF | 611.1639 | - | C27H30O16 | 4.41 | 465.10, 303.05 | Quercetin-3-O-rhamnoside-7-O-glucoside 11 Quercetin-3-O-glucoside-7-O-rhamnoside 11 |
| SGO, LAF | 595.1705 | - | C27H30O15 | 7.05 | 449.11, 287.05 | Kaempferol-3-O-glucoside-7-O-rhamnoside 12 |
| SGO | 449.1096 | - | C21H20O11 | 2.67 | 287.05, 249.14, 227.17, 100.11 | Kaempferol 3-O-glucoside 13 |
| Networks 6 and 8 (Negative Ionization Mode Data) | ||||||
| SGO | - | 609.1524 | C27H30O16 | 11.0 | 300.03, 271.02, 243.03, 199.04, 151.00, 148.01, 108.02 | Quercetin-3-O-rutinoside (Rutin) 14 |
| SGO | - | 593.1579 | C27H30O15 | −12.0 | 285.04, 255.03, 227.04, 211.0433, 183.05, 107.01 | Kaempferol-3-O-rutinoside 15 |
| SGO | - | 301.1104 | C17H18O5 | 9.30 | 253.05, 225.05, 188.05, 165.02, 152.01, 124.01 | 2′,6′-Dihydroxy-4,4′-dimethoxydihydrochalcone 16 |
| SGO | - | 271.1012 | C16H16O4 | 15.5 | 238.06, 210.07, 184.00, 165.02, 152.01, 124.01 | 2′,6′-Dihydroxy-4′-methoxy-dihydrochalcone 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leal, C.M.; Leitão, S.G.; de Mello, L.L.O.; Rangel, I.d.C.; da Silva, C.V.A.; Miranda, M.D.; Tucci, A.R.; de Assis, C.B.; Sacramento, C.d.Q.; Fintelman-Rodrigues, N.; et al. Bioassay-Guided Fractionation of Siparuna glycycarpa n-Butanol Extract with Inhibitory Activity against Influenza A(H1N1)pdm09 Virus by Centrifugal Partition Chromatography (CPC). Molecules 2022, 27, 399. https://doi.org/10.3390/molecules27020399
Leal CM, Leitão SG, de Mello LLO, Rangel IdC, da Silva CVA, Miranda MD, Tucci AR, de Assis CB, Sacramento CdQ, Fintelman-Rodrigues N, et al. Bioassay-Guided Fractionation of Siparuna glycycarpa n-Butanol Extract with Inhibitory Activity against Influenza A(H1N1)pdm09 Virus by Centrifugal Partition Chromatography (CPC). Molecules. 2022; 27(2):399. https://doi.org/10.3390/molecules27020399
Chicago/Turabian StyleLeal, Carla Monteiro, Suzana Guimarães Leitão, Leonardo Luiz Oliveira de Mello, Isabel de Castro Rangel, Carlos Vinicius Azevedo da Silva, Milene Dias Miranda, Amanda Resende Tucci, Camilla Blanco de Assis, Carolina de Queiroz Sacramento, Natalia Fintelman-Rodrigues, and et al. 2022. "Bioassay-Guided Fractionation of Siparuna glycycarpa n-Butanol Extract with Inhibitory Activity against Influenza A(H1N1)pdm09 Virus by Centrifugal Partition Chromatography (CPC)" Molecules 27, no. 2: 399. https://doi.org/10.3390/molecules27020399
APA StyleLeal, C. M., Leitão, S. G., de Mello, L. L. O., Rangel, I. d. C., da Silva, C. V. A., Miranda, M. D., Tucci, A. R., de Assis, C. B., Sacramento, C. d. Q., Fintelman-Rodrigues, N., Koolen, H. H. F., Vaz, B. G., Simas, R. C., & Leitão, G. G. (2022). Bioassay-Guided Fractionation of Siparuna glycycarpa n-Butanol Extract with Inhibitory Activity against Influenza A(H1N1)pdm09 Virus by Centrifugal Partition Chromatography (CPC). Molecules, 27(2), 399. https://doi.org/10.3390/molecules27020399

