Study on Quality Control of Compound Anoectochilus roxburghii (Wall.) Lindl. by Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Chromatographic and MS Conditions
2.2. Method Validation
2.2.1. Linear Range, LOQ, and LOD
2.2.2. Precision, Repeatability, and Stability
2.2.3. Recovery
2.3. Sample Analysis
2.3.1. Analysis of CAROL
2.3.2. Analysis of Extracts of A. Roxburghii and G. lucidum
3. Materials and Methods
3.1. Chemicals, Materials, and Reagents
3.2. Instrumentation
3.3. Preparation of Standard Solutions
3.4. Sample Preparation
3.4.1. Working Solution of CAROL
3.4.2. Extract of Nucleosides and Nucleobases
3.4.3. Extract of Ganoderic Acid
3.5. Instrument Conditions
3.6. Sample Determination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liu, Z.; Li, Q. Compound Anoectochilus oral solution combined with entecavir in treating 30 cases of chronic hepatitis B. Fujian Tradit. 2008, 5, 3–4. [Google Scholar]
- Xu, X.; Huang, L.; Wu, Y.; Yang, L.; Huang, L. Synergic cloud-point extraction using [Cmim][PF] and Triton X-114 as extractant combined with HPLC for the determination of rutin and narcissoside in Anoectochilus roxburghii (Wall.) Lindl. and its compound oral liquid. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1168, 122589. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, X.; Ye, H. Research progress on hepatoprotective effect and mechanism of Anoectochilus roxburghii (Wall.) Lindl. Mod. Chin. Med. 2022, 24, 920–925. [Google Scholar]
- Chen, X.; Wu, Y.; Huang, L.; Yang, L.; Hong, R.; Yao, H.; Li, S. Magnetic dispersive solid-phase micro-extraction combined with high-performance liquid chromatography for determining nucleotides in Anoectochilus roxburghii (Wall.) Lindl. J. Pharm. Biomed. Anal. 2019, 174, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, J.Q.; Zhang, J.; Li, Z.M.; Liu, H.G.; Wang, Y.Z. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: A review. RSC Adv. 2020, 10, 42084–42097. [Google Scholar] [CrossRef]
- Li, T.; Yu, H.; Song, Y.; Zhang, R.; Ge, M. Protective effects of Ganoderma triterpenoids on cadmium-induced oxidative stress and inflammatory injury in chicken livers. J. Trace Elem. Med. Biol. 2019, 52, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Zhong, D.; Yang, B. Preventive and Therapeutic Effect of Ganoderma (Lingzhi) on Liver Injury. Adv. Exp. Med. Biol. 2019, 1182, 217–242. [Google Scholar]
- Wu, P.; Huang, L. Determination of Nucleosides in Anoectochilus roxburghii by HPLC. J. Fujian Med. Univ. 2019, 53, 309–313. [Google Scholar]
- Ding, X.; Xiong, X.; Zhou, Q.; Ye, Q.; Guo, L.; Liu, F. Advances in Studies on Chemical Structure and Pharmacological Activities of Natural Nucleosides. J. Chengdu Univ. Tradit. Chin. Med. 2018, 41, 102–108. [Google Scholar]
- Fukuda, T.; Majumder, K.; Zhang, H.; Matsui, T.; Mine, Y. Adenine has an anti-inflammatory effect through the activation of adenine receptor signaling in mouse macrophage. J. Funct. Foods 2017, 28, 235–239. [Google Scholar] [CrossRef]
- Urasaki, Y.; Pizzorno, G.; Le, T.T. Chronic Uridine Administration Induces Fatty Liver and Pre-Diabetic Conditions in Mice. PLoS ONE 2016, 11, e0146994. [Google Scholar]
- Souza, D.; Bellaver, B.; Bobermin, L.; Souza, D.; Quincozes-Santos, A. Anti-aging effects of guanosine in glial cells. Purinergic Signal. 2016, 12, 697–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, P.; Singh, P.; Kumar, B.; Guniyal, H.M.; Shaw, A.K. Stereoselective synthesis of 2′-deoxynucleoside analogues as building blocks for deoxynucleoside chemistry. Tetrahedron-Asymmetry 2011, 22, 992–999. [Google Scholar] [CrossRef]
- Shafique, H.; Ahad, A.; Khan, W.; Want, M.Y.; Bhatt, P.C.; Ahmad, S.; Panda, B.P.; Mujeeb, M. Ganoderic acid-loaded solid lipid nanoparticles ameliorate D-galactosamine induced hepatotoxicity in Wistar rats. J. Drug Deliv. Sci. Technol. 2019, 50, 48–56. [Google Scholar] [CrossRef]
- Zhao, C.; Fan, J.L.; Liu, Y.Y.; Guo, W.L.; Cao, H.; Xiao, J.B.; Wang, Y.; Liu, B. Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol-induced liver injury in mice, an iTRAQ-based proteomic analysis. Food Chem. 2019, 271, 148–156. [Google Scholar] [CrossRef]
- Xu, L.X.; Yan, L.J.; Huang, S.P. Ganoderic acid A against cyclophosphamide-induced hepatic toxicity in mice. J. Biochem. Mol. Toxicol. 2019, 33, e22271. [Google Scholar]
- Yu, S.; Bao, X.; Liang, M.; Jin, C.; Tian, W. Preparation of Triterpenoids from Fruit Bodies of Ganoderma lucidum Using Supercritical Fluid Extraction and Simulated Moving Bed Chromatography. Food Chem. 2019, 40, 286–292. [Google Scholar]
- Weng, C.; Chau, C.; Chen, K.; Chen, D.; Yen, G. The anti-invasive effect of lucidenic acids isolated from a new Ganoderma lucidum strain. Mol. Nutr. Food Res. 2007, 51, 1472–1477. [Google Scholar] [CrossRef]
- Xu, X.; Hong, R.; Yang, L.; Huang, L. Determination of Four Active Ingredients in Compound Anorctochilus Roxburghii (Wall.) Lindl by QAMS. J. Fujian Med. Univ. 2020, 54, 213–219. [Google Scholar]
- Zheng, L.; Huang, L.; Chen, Y.; Ling, S.; Huang, B. Determination of Nucleosides and Nucleobases in Natural, Cultured and Tissue Culture Anoectochilus roxburghii Using LC-MS. J. Chin. Med. Mater. 2015, 38, 2269–2273. [Google Scholar]
- Cheung, H.; Ng, C.; Hood, D. Identification and quantification of base and nucleoside markers in extracts of Ganoderma lucidum, Ganoderma japonicum and Ganoderma capsules by micellar electrokinetic chromatography. J. Chromatogr. A 2001, 911, 119–126. [Google Scholar] [CrossRef]
- Sakamoto, S.; Kohno, T.; Shimizu, K.; Tanaka, H.; Morimoto, S. Detection of Ganoderic Acid A in Ganoderma lingzhi by an Indirect Competitive Enzyme-Linked Immunosorbent Assay. Planta Med. 2016, 82, 747–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, C.-S.; Shin, H.-K. Simultaneous Analysis for Quality Control of Traditional Herbal Medicine, Gungha-Tang, Using Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2022, 27, 1223. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Sun, H.-M.; Wang, T.-L. Simultaneous Determination of Multiple Classes of Hydrophilic and Lipophilic Components in Shuang-Huang-Lian Oral Liquid Formulations by UPLC-Triple Quadrupole Linear Ion Trap Mass Spectrometry. Molecules 2017, 22, 2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurtado-Gaitan, E.; Selles-Marchart, S.; Martinez-Marquez, A.; Samper-Herrero, A.; Bru-Martinez, R. A Focused Multiple Reaction Monitoring (MRM) Quantitative Method for Bioactive Grapevine Stilbenes by Ultra-High-Performance Liquid Chromatography Coupled to Triple-Quadrupole Mass Spectrometry (UHPLC-QqQ). Molecules 2017, 22, 418. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Jiang, X.; Zhang, S.; Dai, X.; Liu, Y.; Tan, H.; Gao, L.; Xia, T. Quantification of flavonol glycosides in Camellia sinensis by MRM mode of UPLC-QQQ-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1017, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Aral, H.; Çelik, K.; Altındağ, R.; Aral, T. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography. Talanta 2017, 174, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Xue, P.; Li, X.; Chen, J.; Li, J. Determination of nucleosides and nucleobases in Isatidis Radix by HILIC-UPLC-MS/MS. Anal. Methods 2013, 5, 6395–6400. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, D.; Chen, G.; Guo, M. Comparative and chemometric analysis of correlations between the chemical fingerprints and anti-proliferative activities of ganoderic acids from three Ganoderma species. Phytochem. Anal. 2019, 30, 474–480. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L. Simultaneous Determination of Contents of 7 Triterpenoid Acids in Lingzhi Capsule by LC-MS/MS. Chin. J. Mod. Appl. Pharm. 2021, 38, 2852–2857. [Google Scholar]
- Cebi, N.; Dogan, C.; Olgun, E.; Sagdic, O. A survey of free glutamic acid in foods using a robust LC-MS/MS method. Food Chem. 2018, 248, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, C. Study on Optimization of Fermentation Technology and the Effect of Liver Protection of GMP. Master’s Thesis, Henan University of Technology, Zhengzhou, China, 2018. [Google Scholar]
- Dal-Cim, T.; Ludka, F.K.; Martins, W.C.; Reginato, C.; Parada, E.; Egea, J.; Lopez, M.G.; Tasca, C.I. Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J. Neurochem. 2013, 126, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Shi, K.; Dong, J.; Jin, Z.; Wu, Y.; Cai, Y.; Lin, T.; Cai, Q.; Liu, L.; Zhang, Y. Ganoderic acid A attenuates high-fat-diet-induced liver injury in rats by regulating the lipid oxidation and liver inflammation. Arch. Pharmacal Res. 2020, 43, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Guo, D.-A.; Liu, L. Quality transitivity and traceability system of herbal medicine products based on quality markers. Phytomedicine 2018, 44, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.; Bhatt, I.D.; Nandi, S.K. Environmental stresses in Himalayan medicinal plants: Research needs and future priorities. Biodivers. Conserv. 2019, 28, 2431–2455. [Google Scholar] [CrossRef]
- Zhao, A.; Ni, F.; Chen, P.; Liu, Y.; Liu, A. Current studies on quality of Chinese patent drugs with consistency as core and discussions on new high-quality evaluation model. China J. Chin. Mater. Med. 2020, 45, 3740–3748. [Google Scholar]
Analytes | MW | Rt (min) | Polarity | Q1 Mass (m/z) | Q3 Mass (m/z) | CE (eV) |
---|---|---|---|---|---|---|
Adenine | 135.127 | 2.203 | (+) | 136.1 [M + H]+ | 119.1 [M + H − NH3]+ * | −16 |
64.9 [M + H − C4H4N − NH3]+ | −41 | |||||
Uridine | 244.201 | 2.967 | (+) | 245.1 [M + H]+ | 113.1 [M + H − C5H8O4]+ * | −16 |
73.0 [M + H − C5H8O4 − NH3 − 2H2O]+ | −24 | |||||
2’-Deoxyuridine | 228.202 | 3.662 | (+) | 228.9 [M + H]+ | 112.9 [M + H − C5H8O3]+ * | −10 |
73.0 [M + H − C5H8O4 − NH3 − 2H2O]+ | −20 | |||||
2’-Deoxyadenosine | 251.242 | 3.648 | (+) | 252.1 [M + H]+ | 135.9 [M + H − C5H8O3]+ * | −16 |
119.1 [M + H − C5H8O3 − NH3]+ | −41 | |||||
Guanosine | 283.241 | 3.985 | (+) | 283.9 [M + H]+ | 151.9 [M + H − C5H8O3]+ * | −12 |
134.9 [M + H − C5H8O3 − NH3]+ | −37 | |||||
Lucidenic acid A | 458.587 | 11.521 | (−) | 457.3 [M-H]− | 149.0 [M − H − C18H24O4]− * | 44 |
287.0 [M − H − C6H2O6]− | 35 | |||||
Ganoderic acid F | 570.670 | 11.363 | (+) | 571.2 [M + H]+ | 363.1 [M + H − C11H14O4]+ * | −21 |
225.0 [M + H − C17H28O8]+ | −39 | |||||
Ganoderic acid A | 516.670 | 11.306 | (−) | 515.3 [M − H]− | 285.1 [M − H − C12H20O4]− * | 45 |
300.15 [M − H − C13H23O4]− | 33 | |||||
Tenofovir (IS) | 287.22 | 3.233 | (+) | 288.0 [M + H]+ | 176.0 [M + H − CH4NO3P]+ * | −25 |
(−) | 286.0 [M − H]− | 134.0 [M + H − C4H9O3P]− * | 30 |
Compounds | Calibration Curves | R2 | Linear Range (ng/mL) | Precision (n = 6, RSD, %) | Repeatability (n = 6, RSD, %) | Stability (n = 6, RSD, %) | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|---|---|---|---|
Adenine | Y = 0.7672X + 0.02162 | 0.9953 | 15.62–1000 | 0.31 | 0.92 | 1.84 | 4.69 | 15.6 |
Uridine | Y = 1.0454X + 0.01534 | 0.9953 | 31.25–4000 | 0.58 | 1.97 | 4.01 | 9.38 | 31.2 |
2’-Deoxyuridine | Y = 0.1556X + 0.002708 | 0.9965 | 3.906–500 | 0.33 | 0.67 | 1.53 | 1.18 | 3.91 |
2’-Deoxyadenosine | Y = 7.5340X + 0.005171 | 0.994 | 0.9531–250 | 0.14 | 1.35 | 1.57 | 0.29 | 0.953 |
Guanosine | Y = 2.4068X + 0.01341 | 0.9961 | 15.62–4000 | 0.26 | 1.80 | 1.23 | 4.69 | 15.6 |
Lucidenic acid A | Y = 1.3742X + 0.02929 | 0.9964 | 31.25–2000 | 0.49 | 1.53 | 1.55 | 9.38 | 31.3 |
Ganoderic acid F | Y = 2.6908X + 0.0007365 | 0.9983 | 46.88–12,000 | 0.41 | 1.81 | 2.84 | 14.1 | 46.9 |
Ganoderic acid A | Y = 0.5558X + 0.1136 | 0.9935 | 234.4–15,000 | 0.12 | 1.78 | 2.71 | 70.4 | 235 |
Batch No. | 20210201 | 20210203 | 20210204 | 20210502 | p | |
---|---|---|---|---|---|---|
Compounds | ||||||
Adenine | 1626.54 ± 2.18 | 1595.54 ± 3.14 | 1653.64 ± 2.44 | 2029.50 ± 3.52 | <0.05 | |
Uridine | 11,127.72 ± 13.47 | 11,209.10 ± 17.34 | 11,412.36 ± 11.93 | 11,732.93 ± 34.90 | <0.05 | |
2’-Deoxyuridine | 122.35 ± 0.36 | 121.83 ± 0.16 | 129.06 ± 0.17 | 153.09 ± 0.29 | <0.05 | |
2’-Deoxyadenosine | 15.58 ± 0.060 | 10.23 ± 0.028 | 5.10 ± 0.015 | 29.40 ± 0.11 | <0.05 | |
Guanosine | 14,969.06 ± 55.49 | 14,748.64 ± 45.79 | 14,730.47 ± 6.71 | 14,820.49 ± 20.28 | 0.560 | |
Lucidenic acid A | 2780.99 ± 4.44 | 2913.85 ± 8.91 | 2947.70 ± 5.56 | 2776.88 ± 2.11 | <0.05 | |
Ganoderic acid F | 37,112.37 ± 8.54 | 36,957.62 ± 133.43 | 39,059.32 ± 87.57 | 47,380.18 ± 24.74 | <0.05 | |
Ganoderic acid A | 46,319.64 ± 10.92 | 46,224.43 ± 40.81 | 46,314.44 ± 14.88 | 46,561.25 ± 106.33 | 0.245 |
Analytes | Content of A. roxburghii (μg/g) | Content of G. lucidum (μg/g) | ||||||||
Yongan | Taiwan | Nanjing | Mingxi | Fuqing | Longyan | Sanming | Zhangzhou | Ningde | Nanping | |
Adenine | 102.2 | 9.753 | 7.917 | 4.574 | 32.84 | 1.635 | 1.795 | 2.189 | 7.207 | 13.63 |
Uridine | 319.7 | 359.5 | 372.4 | 448.4 | 213.4 | 122.9 | 255.3 | 102.2 | 53.43 | 68.69 |
2’-Deoxyuridine | 1.787 | 1.247 | 1.410 | 1.137 | 1.138 | 0.4873 | 0.4449 | N.D. | 2.553 | 4.076 |
2’-Deoxyadenosine | 51.27 | 30.96 | 61.78 | 51.01 | 89.66 | 1.134 | 5.220 | N.D. | 9.474 | 17.38 |
Guanosine | 44.68 | 146.3 | 139.4 | 114.8 | 195.7 | 59.03 | 189.7 | 39.473 | 41.91 | 50.12 |
Analytes | Water extract of G. lucidum (μg/g) | Ethanol extract of G. lucidum (μg/g) | ||||||||
Longyan | Sanming | Zhangzhou | Ningde | Nanping | Longyan | Sanming | Zhangzhou | Ningde | Nanping | |
Lucidenic acid A | N.D. | N.D. | N.D. | 50.81 | 23.78 | 0.7594 | 1.18 | N.D. | 84.05 | 35.80 |
Ganoderic acid F | 0.5310 | 0.7955 | 0.4032 | 114.1 | 228.5 | 7.61 | 6.85 | 0.6047 | 293.1 | 378.8 |
Ganoderic acid A | N.D. | N.D. | N.D. | 391.3 | 512.0 | 15.72 | 10.20 | N.D. | 625.5 | 750.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Huang, L.; Wu, Y.; Huang, L.; Xu, X.; Lin, R. Study on Quality Control of Compound Anoectochilus roxburghii (Wall.) Lindl. by Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2022, 27, 4130. https://doi.org/10.3390/molecules27134130
Zhang Q, Huang L, Wu Y, Huang L, Xu X, Lin R. Study on Quality Control of Compound Anoectochilus roxburghii (Wall.) Lindl. by Liquid Chromatography–Tandem Mass Spectrometry. Molecules. 2022; 27(13):4130. https://doi.org/10.3390/molecules27134130
Chicago/Turabian StyleZhang, Qiuhua, Lingyi Huang, Youjia Wu, Liying Huang, Xiaowen Xu, and Renyi Lin. 2022. "Study on Quality Control of Compound Anoectochilus roxburghii (Wall.) Lindl. by Liquid Chromatography–Tandem Mass Spectrometry" Molecules 27, no. 13: 4130. https://doi.org/10.3390/molecules27134130
APA StyleZhang, Q., Huang, L., Wu, Y., Huang, L., Xu, X., & Lin, R. (2022). Study on Quality Control of Compound Anoectochilus roxburghii (Wall.) Lindl. by Liquid Chromatography–Tandem Mass Spectrometry. Molecules, 27(13), 4130. https://doi.org/10.3390/molecules27134130