Wooden-Tip Electrospray Mass Spectrometry Characterization of Human Hemoglobin in Whole Blood Sample for Thalassemia Screening: A Pilot Study
Abstract
1. Introduction
2. Results
2.1. Direct Analysis of Whole Blood Samples
2.2. Signal Ratios of Main Protein Ions
3. Discussion
4. Materials and Methods
4.1. Chemicals and Materials
4.2. WT-ESI-MS Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Srivorakun, H.; Fucharoen, G.; Changtrakul, Y.; Komwilaisak, P.; Fucharoen, S. Thalassemia and hemoglobinopathies in Southeast Asian newborns: Diagnostic assessment using capillary electrophoresis system. Clin. Biochem. 2011, 44, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zou, Y.; Liu, Y. A Novel β-Thalassemia Mutation [IVS-I-6 (T>G), HBB: C.92+6T>G] in a Chinese Family. Hemoglobin 2020, 44, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Viprakasit, V.; Ekwattanakit, S. Clinical Classification, Screening and Diagnosis for Thalassemia. Hematol. Oncol. Clin. N. Am. 2018, 32, 193–211. [Google Scholar] [CrossRef] [PubMed]
- Muncie, H.L., Jr.; Campbell, J. Alpha and beta thalassemia. Am. Fam. Physician. 2009, 80, 339–344. [Google Scholar] [PubMed]
- Shah, F.T.; Sayani, F.; Trompeter, S.; Drasar, E.; Piga, A. Challenges of blood transfusions in β-thalassemia. Blood Rev. 2019, 37, 100588. [Google Scholar] [CrossRef]
- Karponi, G.; Zogas, N. Gene Therapy For Beta-Thalassemia: Updated Perspectives. Appl. Clin. Genet. 2019, 12, 167–180. [Google Scholar] [CrossRef]
- Yu, C.; Huang, S.; Wang, M.; Zhang, J.; Liu, H.; Yuan, Z.; Wang, X.; He, X.; Wang, J.; Zou, L. A novel tandem mass spectrometry method for first-line screening of mainly beta-thalassemia from dried blood spots. J. Proteom. 2017, 154, 78–84. [Google Scholar] [CrossRef]
- Liang, Q.; Gu, W.; Chen, P.; Li, Y.; Liu, Y.; Tian, M.; Zhou, Q.; Qi, H.; Zhang, Y.; He, J.; et al. A More Universal Approach to Comprehensive Analysis of Thalassemia Alleles (CATSA). J. Mol. Diagn. 2021, 23, 1195–1204. [Google Scholar] [CrossRef]
- Ryan, K.; Bain, B.J.; Worthington, D.; James, J.; Plews, D.; Mason, A.; Roper, D.; Rees, D.C.; De La Salle, B.; Streetly, A.; et al. Significant haemoglobinopathies: Guidelines for screening and diagnosis. Br. J. Haematol. 2010, 149, 35–49. [Google Scholar] [CrossRef]
- Yuan, Z.-C.; Hu, B. Mass Spectrometry-Based Human Breath Analysis: Towards COVID-19 Diagnosis and Research. J. Anal. Test. 2021, 5, 287–297. [Google Scholar] [CrossRef]
- Banerjee, S. Empowering Clinical Diagnostics with Mass Spectrometry. ACS Omega 2020, 5, 2041–2048. [Google Scholar] [CrossRef] [PubMed]
- Macklin, A.; Khan, S.; Kislinger, T. Recent advances in mass spectrometry based clinical proteomics: Applications to cancer research. Clin. Proteom. 2020, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Boemer, F.; Ketelslegers, O.; Minon, J.M.; Bours, V.; Schoos, R. Newborn screening for sickle cell disease using tandem mass spectrometry. Clin. Chem. 2008, 54, 2036–2041. [Google Scholar] [CrossRef] [PubMed]
- Traeger-Synodinos, J.; Harteveld, C.L. Advances in technologies for screening and diagnosis of hemoglobinopathies. Biomark. Med. 2014, 8, 119–131. [Google Scholar] [CrossRef]
- Cooks, R.G.; Ouyang, Z.; Takats, Z.; Wiseman, J.M. Ambient Mass Spectrometry. Science 2006, 311, 1566–1570. [Google Scholar] [CrossRef]
- Feider, C.L.; Krieger, A.; DeHoog, R.J.; Eberlin, L.S. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal. Chem. 2019, 91, 4266–4290. [Google Scholar] [CrossRef]
- Pekov, S.I.; Zhvansky, E.S.; Eliferov, V.A.; Sorokin, A.A.; Ivanov, D.G.; Nikolaev, E.N.; Popov, I.A. Determination of Brain Tissue Samples Storage Conditions for Reproducible Intraoperative Lipid Profiling. Molecules 2022, 27, 2587. [Google Scholar] [CrossRef]
- Shamraeva, M.A.; Bormotov, D.S.; Shamarina, E.V.; Bocharov, K.V.; Peregudova, O.V.; Pekov, S.I.; Nikolaev, E.N.; Popov, I.A. Spherical Sampler Probes Enhance the Robustness of Ambient Ionization Mass Spectrometry for Rapid Drugs Screening. Molecules 2022, 27, 945. [Google Scholar] [CrossRef]
- Hu, B.; Yao, Z.-P. Electrospray ionization mass spectrometry with wooden tips: A review. Anal. Chim. Acta 2022, 1209, 339136. [Google Scholar] [CrossRef]
- Shi, R.-Z.; El Gierari, E.T.M.; Faix, J.D.; Manicke, N.E. Rapid measurement of cyclosporine and sirolimus in whole blood by paper spray–tandem mass spectrometry. Clin. Chem. 2016, 62, 295–297. [Google Scholar] [CrossRef]
- Carmany, D.O.; Mach, P.M.; Rizzo, G.M.; Dhummakupt, E.S.; McBride, E.M.; Sekowski, J.W.; Benton, B.; Demond, P.S.; Busch, M.W.; Glaros, T. On-substrate enzymatic reaction to determine acetylcholinesterase activity in whole blood by paper spray mass spectrometry. J. Am. Soc. Mass Spectrom. 2018, 29, 2436–2442. [Google Scholar] [CrossRef] [PubMed]
- Frey, B.S.; Heiss, D.R.; Badu-Tawiah, A.K. Embossed Paper Platform for Whole Blood Collection, Room Temperature Storage, and Direct Analysis by Pinhole Paper Spray Mass Spectrometry. Anal. Chem. 2022, 94, 4417–4425. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; So, P.-K.; Chen, H.; Yao, Z.-P. Electrospray ionization using wooden tips. Anal. Chem. 2011, 83, 8201–8207. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; So, P.-K.; Yao, Z.-P. Analytical properties of solid-substrate electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 57–65. [Google Scholar] [CrossRef]
- Yang, B.C.; Liu, F.Y.; Guo, J.B.; Wan, L.; Wu, J.; Wang, F.; Liu, H.; Huang, O.P. Rapid assay of neopterin and biopterin in urine by wooden-tip electrospray ionization mass spectrometry. Anal. Methods 2015, 7, 2913–2916. [Google Scholar] [CrossRef]
- Hu, B.; So, P.-K.; Yang, Y.; Deng, J.; Choi, Y.-C.; Luan, T.; Yao, Z.-P. Surface-Modified Wooden-Tip Electrospray Ionization Mass Spectrometry for Enhanced Detection of Analytes in Complex Samples. Anal. Chem. 2018, 90, 1759–1766. [Google Scholar] [CrossRef]
- Deng, J.; Yu, T.; Yao, Y.; Peng, Q.; Luo, L.; Chen, B.; Wang, X.; Yang, Y.; Luan, T. Surface-coated wooden-tip electrospray ionization mass spectrometry for determination of trace fluoroquinolone and macrolide antibiotics in water. Anal. Chim. Acta. 2017, 954, 52–59. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, J.; Yao, Z.P. Field-induced wooden-tip electrospray ionization mass spectrometry for high-throughput analysis of herbal medicines. Anal. Chim. Acta 2015, 887, 127–137. [Google Scholar] [CrossRef]
- Yang, B.-C.; Wang, F.; Deng, W.; Zou, Y.; Liu, F.-Y.; Wan, X.-D.; Yang, X.; Liu, H.; Huang, O.-P. Wooden-tip electrospray ionization mass spectrometry for trace analysis of toxic and hazardous compounds in food samples. Anal. Methods 2015, 7, 5886–5890. [Google Scholar] [CrossRef]
- So, P.-K.; Ng, T.-T.; Wang, H.; Hu, B.; Yao, Z.-P. Rapid detection and quantitation of ketamine and norketamine in urine and oral fluid by wooden-tip electrospray ionization mass spectrometry. Analyst 2013, 138, 2239–2243. [Google Scholar] [CrossRef]
- Yao, Z.-P. Characterization of proteins by ambient mass spectrometry. Mass Spectrom. Rev. 2012, 31, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Yao, Y.-N.; Yuan, Z.-C.; Di, D.; Li, L.; Hu, B. Direct detection of lysozyme in viscous raw hen egg white binding to sodium dodecyl sulfonate by reactive wooden-tip electrospray ionization mass spectrometry. Anal. Sci. 2020, 36, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Yao, Z.-P. Detection of native proteins using solid-substrate electrospray ionization mass spectrometry with nonpolar solvents. Anal. Chim. Acta 2018, 1004, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Yao, Z.-P. Mobility of proteins in porous substrates under electrospray ionization conditions. Anal. Chem. 2016, 88, 5585–5589. [Google Scholar] [CrossRef]
- Giambona, A.; Passarello, C.; Renda, D.; Maggio, A. The significance of the hemoglobin A2 value in screening for hemoglobinopathies. Clin. Biochem. 2009, 42, 1786–1796. [Google Scholar] [CrossRef]
- Mosca, A.; Paleari, R.; Ivaldi, G.; Galanello, R.; Giordano, P. The role of haemoglobin A2 testing in the diagnosis of thalassaemias and related haemoglobinopathies. J. Clin. Pathol. 2009, 62, 13–17. [Google Scholar] [CrossRef]
- Huo, M.; Wu, W.-Y.; Liu, M.; Gan, Z.-B.; Mao, W.-Y.; Lin, R.-Y.; Liu, A.-Q.; He, G.-R. Analysis of Cut-off Value in Screening of Thalassemia by Capillary Hemoglobin Electrophoresis for Pregnant Women from Shenzhen region of China. J. Exp. Hematol. 2016, 24, 536–539. [Google Scholar]
- Zou, J.; Huang, S.; Xi, H.; Huang, C.; Zou, L.; Qiu, L.; Nie, X.; Zhou, J.; Zhuang, Y.; Chen, Y.; et al. Application of an optimized interpretation model in capillary hemoglobin electrophoresis for newborn thalassemia screening. Int. J. Lab. Hematol. 2022, 44, 223–228. [Google Scholar] [CrossRef]
- Mekecha, T.T.; Amunugama, R.; McLuckey, S.A. Ion trap collision-induced dissociation of human hemoglobin α-chain cations. J. Am. Soc. Mass Spectrom. 2006, 17, 923–931. [Google Scholar] [CrossRef][Green Version]
- Martin, N.J.; Griffiths, R.L.; Edwards, R.L.; Cooper, H.J. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates. J. Am. Soc. Mass Spectrom. 2015, 26, 1320–1327. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Kosma, K.; Barbetseas, J.; Karagiorga, M.; Ladis, I.; Stefanadis, C. Distribution of serum lipids and lipoproteins in patients with beta thalassaemia major; an epidemiological study in young adults from Greece. Lipids Health Dis. 2004, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Konermann, L.; Metwally, H.; Duez, Q.; Peters, I. Charging and supercharging of proteins for mass spectrometry: Recent insights into the mechanisms of electrospray ionization. Analyst 2019, 144, 6157–6171. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Yang, Y.; Fang, L.; Lin, L.; Zhou, H.; Luan, T. Coupling Solid-Phase Microextraction with Ambient Mass Spectrometry Using Surface Coated Wooden-Tip Probe for Rapid Analysis of Ultra Trace Perfluorinated Compounds in Complex Samples. Anal. Chem. 2014, 86, 11159–11166. [Google Scholar] [CrossRef]
- So, P.-K.; Yang, B.-C.; Li, W.; Wu, L.; Hu, B. Simple Fabrication of Solid-Phase Microextraction with Surface-Coated Aluminum Foil for Enhanced Detection of Analytes in Biological and Clinical Samples by Mass Spectrometry. Anal. Chem. 2019, 91, 9430–9434. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.-N.; Hu, B. Analyte-substrate interactions at functionalized tip electrospray ionization mass spectrometry: Molecular mechanisms and applications. J. Mass Spectrom. 2018, 53, 1222–1229. [Google Scholar] [CrossRef]
- Wu, L.; Yuan, Z.-C.; Yang, B.-C.; Huang, Z.; Hu, B. In vivo solid-phase microextraction swab-mass spectrometry for multidimensional analysis of human saliva. Anal. Chim. Acta 2021, 1164, 338510. [Google Scholar] [CrossRef]
- Yang, B.-c.; Wan, X.-d.; Yang, X.; Li, Y.-j.; Zhang, Z.-y.; Wan, X.-j.; Luo, Y.; Deng, W.; Wang, F.; Huang, O.-p. Rapid determination of carbendazim in complex matrices by electrospray ionization mass spectrometry with syringe filter needle. J. Mass Spectrom. 2018, 53, 234–239. [Google Scholar] [CrossRef]
- Donnelly, D.P.; Rawlins, C.M.; DeHart, C.J.; Fornelli, L.; Schachner, L.F.; Lin, Z.; Lippens, J.L.; Aluri, K.C.; Sarin, R.; Chen, B. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nat. Methods 2019, 16, 587–594. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.; Huang, T.; Zou, Y.; Xie, K.; Shen, Y.; Zhang, W.; Huang, S.; Liu, Y.; Yang, B. Wooden-Tip Electrospray Mass Spectrometry Characterization of Human Hemoglobin in Whole Blood Sample for Thalassemia Screening: A Pilot Study. Molecules 2022, 27, 3952. https://doi.org/10.3390/molecules27123952
Huang T, Huang T, Zou Y, Xie K, Shen Y, Zhang W, Huang S, Liu Y, Yang B. Wooden-Tip Electrospray Mass Spectrometry Characterization of Human Hemoglobin in Whole Blood Sample for Thalassemia Screening: A Pilot Study. Molecules. 2022; 27(12):3952. https://doi.org/10.3390/molecules27123952
Chicago/Turabian StyleHuang, Tingting, Ting Huang, Yongyi Zou, Kang Xie, Yinqin Shen, Wen Zhang, Shuhui Huang, Yanqiu Liu, and Bicheng Yang. 2022. "Wooden-Tip Electrospray Mass Spectrometry Characterization of Human Hemoglobin in Whole Blood Sample for Thalassemia Screening: A Pilot Study" Molecules 27, no. 12: 3952. https://doi.org/10.3390/molecules27123952
APA StyleHuang, T., Huang, T., Zou, Y., Xie, K., Shen, Y., Zhang, W., Huang, S., Liu, Y., & Yang, B. (2022). Wooden-Tip Electrospray Mass Spectrometry Characterization of Human Hemoglobin in Whole Blood Sample for Thalassemia Screening: A Pilot Study. Molecules, 27(12), 3952. https://doi.org/10.3390/molecules27123952