Quality and Metabolomics Analysis of Houttuynia cordata Based on HS-SPME/GC-MS
Abstract
:1. Introduction
2. Results and Analysis
2.1. Analysis of Nutritional Quality of Different Parts
2.2. Identification of Volatile Compounds in Houttuynia cordata
2.3. Multivariate Statistical Analysis of Metabolomics
2.3.1. Principal Component Analysis (PCA)
2.3.2. Cluster Analysis
2.3.3. Orthogonal Projections to Latent Structure-Discriminant Analysis (OPLS-DA)
2.4. Screening and Identification of Different Metabolites
2.4.1. Screening for Differential Metabolites
2.4.2. Distribution of Metabolite Components in Different Parts
2.4.3. Differential Metabolic Chemical Structure and Function Analysis of Aboveground Parts and Underground Parts
3. Discussion
3.1. Different Parts Food Value and Differential Metabolites
3.2. Pharmacological Effects of Differential Metabolites in Different Parts
4. Materials and Methods
4.1. Experimental Design
4.2. Experimental Material
4.3. Method for Determination of Nutritional Indexes
- Total flavonoid content was determined by the ultrasonic extraction method (kit provided by Congye Bio) according to the manufacturer’s instructions.
- Vitamin C was determined by the phosphomolybdic acid colorimetric method (kit provided by Shanghai Yuan Ye Biotechnology Co.) according to the manufacturer’s instructions.
- Total protein content was determined by the Komas Brilliant Blue method (kit provided by Nanjing Jiancheng Institute of Biological Engineering) according to the manufacturer’s instructions.
- Soluble sugar was determined by the anthrone colorimetric method (kit provided by Nanjing Jiancheng Institute of Biological Engineering) according to the manufacturer’s instructions.
4.4. Determination Method of Volatile Components
4.4.1. Sample Pretreatment
4.4.2. Analysis Conditions of GC-MS
HS-SPME Extraction Conditions
Chromatographic Condition
Mass Spectrometry Conditions
4.4.3. Qualitative Analysis
4.5. Data Processing and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Kharnaior, S.; Thomas, S.C. Preliminary screening of Houttuynia cordata for biological potential and chemical components using TLC and GC–MS analysis. J. Plant. Biochem. Biotechnol. 2020, 29, 539–552. [Google Scholar] [CrossRef]
- Oginuma, K.; Sato, H.; Kono, Y.; Chen, S.; Setoguchi, H. Intraspecific polyploidy of Houttuynia cordata and evolution of chromosome number in the Saururaceae. Chromosome Bot. 2007, 2, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Liu, L.; Zhou, J.; Zhang, T.; Daily, J.W.; Park, S. Bioactive Components of Houttuynia cordata Thunb and Their Potential Mechanisms Against COVID-19 Using Network Pharmacology and Molecular Docking Approaches. J. Med. Food 2022, 25, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J.; Song, J.H.; Park, K.S.; Kwon, D.H. Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur. J. Pharm. Sci. 2009, 37, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Kamiya, M.; Hayashi, T. Virucidal Effects of the Steam Distillate from Houttuynia cordata and its Components on HSV-1, Influenza Virus, and HIV. Planta Med. 1995, 61, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Park, D.; Kyung, J.; Yang, Y.-H.; Choi, E.-K.; Lee, Y.-B.; Kim, H.-K.; Hwang, B.Y.; Kim, Y.I. Anti-inflammatory effects of Houttuynia cordata supercritical extract in carrageenan-air pouch inflammation model. Lab. Anim. Res. 2012, 28, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Chiow, K.H.; Phoon, M.C.; Putti, T.; Tan, B.K.; Chow, V.T. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac. J. Trop Med. 2016, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.S.; Kim, D.H.; Lim, J.J.; Lee, J.J.; Han, D.Y.; Lee, W.M.; Jung, W.C.; Min, W.G.; Won, C.G.; Rhee, M.H. Biological and antibacterial activities of the natural herb Houttuynia cordata water extract against the intracellular bacterial pathogen salmonella within the RAW 264.7 macrophage. Biol. Pharm. Bull. 2008, 31, 2012. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, Z.; Yang, Z.; Wang, J.; Xu, Y.; Tan, R.X.; Li, E. Houttuynia cordata blocks HSV infection through inhibition of NF-κB activation. Antivir. Res. 2011, 92, 341–345. [Google Scholar] [CrossRef]
- Toda, S. Antioxidative effects of polyphenols in leaves of Houttuynia cordata on protein fragmentation by copper-hydrogen peroxide in vitro. J. Med. Food 2005, 8, 266–268. [Google Scholar] [CrossRef]
- Lu, H.M.; Liang, Y.Z.; Yi, L.Z.; Wu, X.J. Anti-inflammatory effect of Houttuynia cordata injection. J. Ethnopharmacol. 2006, 104, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-Y.; Liu, J.-F.; Chen, C.-M.; Chao, P.-Y.; Chang, T.-J. A study of the antioxidative and antimutagenic effects of Houttuynia cordata Thunb. using an oxidized frying oil-fed model. J. Nutr. Sci. Vitaminol. 2003, 49, 327–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.Y.; Yi-Kui, L.I.; Yan, W.J.; Lin, C.R.; Jin, L.; Zhang, J.Y.; Ping, H.E.; Sun, W.W.; Hao, W.; Lian-Da, L.I. Anti-inflammatory and antipyretic effect of new Houttuynia cordata injection and the mechanism. Chin. J. New Drugs 2010, 19, 775–779. [Google Scholar]
- Hu, J.; Huang, W.; Zhang, F.; Luo, X.; Xie, J. Variability of Volatile Compounds in the Medicinal Plant Dendrobium officinale from Different Regions. Molecules 2020, 25, 5046. [Google Scholar] [CrossRef]
- Nešović, M.; Gašić, U.; Tosti, T.; Horvacki, N.; Nedić, N.; Sredojević, M.; Blagojević, S.; Ignjatović, L.; Tešić, Ž. Distribution of polyphenolic and sugar compounds in different buckwheat plant parts. RSC Adv. 2021, 11, 25816–25829. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Shi, C.; Wan, J.; Deng, L.; Fang, J. Determination of Four Volatile Compounds with Anti-Inflammatory Biological Activity in Houttuynia chordata Thunb. by Gas Chromatography and Gas Chromatography–Mass Spectrometry. Anal. Lett. 2014, 47, 730–741. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, X.; Jia, Z.; Li, C.; Zhang, J. The Effects of Ecological Factors on the Main Medicinal Components of Dendrobium officinale under Different Cultivation Modes. Forests 2020, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Zheng, W.; Pang, X.; Zhang, J.; Chen, X.; Yuan, M.; Yu, K.; Guo, B.; Ma, B. Comprehensive Investigation on Ginsenosides in Different Parts of a Garden-Cultivated Ginseng Root and Rhizome. Molecules 2021, 26, 1696. [Google Scholar] [CrossRef]
- Huang, H.-H.; Lin, L.-Y.; Chiang, H.-M.; Lay, S.-J.; Wu, C.-S.; Chen, H.-C. Analysis of Volatile Compounds from Different Parts of Citrus grandis (L.) Osbeck Flowers by Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. J. Essent. Oil Bear. Plants 2017, 20, 1057–1065. [Google Scholar] [CrossRef]
- Hynniewta, S.R.; Kumar, Y. Herbal remedies among the Khasi traditional healers and village folks in Meghalaya. Indian J. Tradit. Knowl. 2008, 7, 581–586. [Google Scholar]
- Yang, Z.N.; Luo, S.Q.; Ma, J.; Wu, D.; Hong, L.; Yu, Z.W. GC-MS analyses of the volatiles of Houttuynia cordata Thunb. Pak. J. Pharm. Sci. 2016, 29, 1591–1600. [Google Scholar] [PubMed]
- Oh, S.Y. Rapid Monitoring of Pharmacological Volatiles of Night-Flowering Evening-Primrose According to Flower Opening or Closing by Fast Gas Chromatography/Surface Acoustic Wave Sensor (Electronic zNose). Phytochem. Anal. 2018, 29, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Kovačevič, M.; Kač, M. Solid-phase microextraction of hop volatiles. Potential use for determination and verification of hop varieties. J. Chromatogr. A 2001, 918, 159–167. [Google Scholar] [CrossRef]
- Verma, R.S.; Joshi, N.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Kumar, A.; Iqbal, H.; Verma, R.K.; Chanda, D.; Chauhan, A.; et al. Chemical Composition and Allelopathic, Antibacterial, Antifungal, and Antiacetylcholinesterase Activity of Fish-mint (Houttuynia cordata Thunb.) from India. Chem. Biodivers. 2017, 14, e1700189. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Guo, Z.; Zhu, Y.; Kong, M.; Zhang, R.; Lu, L.; Wu, F.; Liu, Z.; Wu, J. Houttuynia cordata Thunb. and its bioactive compound 2-undecanone significantly suppress benzo(a)pyrene-induced lung tumorigenesis by activating the Nrf2-HO-1/NQO-1 signaling pathway. J. Exp. Clin. Cancer Res. 2019, 38, 242. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, Z.; Wei, R.; Liu, W.; Huang, H. Bioactive Alkaloids from the Aerial Parts of Houttuynia cordata. J. Ethnopharmacol. 2017, 195, 166–172. [Google Scholar] [CrossRef]
- Jarić, S.; Mačukanović-Jocić, M.; Djurdjević, L.; Mitrović, M.; Kostić, O.; Karadžić, B.; Pavlović, P. An ethnobotanical survey of traditionally used plants on Suva planina mountain (south-eastern Serbia). J. Ethnopharmacol. 2015, 2015, 93–108. [Google Scholar] [CrossRef]
- Jamil, M.; Aleem, M.T.; Shaukat, A.; Khan, A.; Mohsin, M.; Rehman, T.U.; Abbas, R.Z.; Saleemi, M.K.; Khatoon, A.; Babar, W.; et al. Medicinal Plants as an Alternative to Control Poultry Parasitic Diseases. Life 2022, 12, 449. [Google Scholar] [CrossRef]
- Moraes, J.D.; Oliveira, R.D.; Costa, J.P.; Junior, A.; Sousa, D.D.; Freitas, R.M.; Allegretti, S.M.; Pinto, P.; Geary, T.G. Phytol, a Diterpene Alcohol from Chlorophyll, as a Drug against Neglected Tropical Disease Schistosomiasis Mansoni. PLoS Negl. Trop. Dis. 2014, 8, e2617. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Yang, C.; Lin, S.; Zhao, G.; Zhang, T.; Guo, S.; Jiang, K.; Wu, H.; Qiu, C.; Guo, M.; et al. Sodium houttuyfonate inhibits LPS-induced mastitis in mice via the NF-κB signalling pathway. Mol. Med. Rep. 2019, 19, 2279–2286. [Google Scholar] [CrossRef] [Green Version]
- Krayni, H.; Fakhfakh, N.; Kossentini, M.; Zouari, S. Fruits of Ruta chalepensis L. (Rutaceae) as a Source of 2-undecanone. J. Essent. Oil Bear. Plants 2018, 21, 789–795. [Google Scholar] [CrossRef]
- Yeon, S. An Effective Quality Control of Pharmacologically Active Volatiles of Houttuynia cordata Thunb by Fast Gas Chromatography-Surface Acoustic Wave Sensor. Molecules 2015, 20, 10298–10312. [Google Scholar]
- Chen, J.; Wang, W.; Shi, C.; Fang, J. A Comparative Study of Sodium Houttuyfonate and 2-Undecanone for Their In Vitro and In Vivo Anti-Inflammatory Activities and Stabilities. Int. J. Mol. Sci. 2014, 15, 22978–22994. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, J.; Wang, S.; Jiang, L.; Sun, X.; Liu, X.; Yao, X.; Zhang, C.; Wang, N.; Yang, G. 2-Undecanone Protects against Fine Particle-Induced Kidney Inflammation via Inducing Mitophagy. J. Agric. Food Chem. 2021, 69, 5206–5215. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Yang, H.; Yoon, M.; Gadhe, C.G.; Pae, A.N.; Cho, S.; Lee, C.J. 3-Carene, a Phytoncide from Pine Tree Has a Sleep-enhancing Effect by Targeting the GABA-benzodiazepine Receptors. Exp. Neurobiol 2019, 28, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Omoruyi, B.E.; Muchenje, V. Phytomedical assessment of two Cymbopogon species found in Nkonkobe Municipality: Toxicological effect on human Chang liver cell line. BMC Complementary Altern. Med. 2017, 17, 287. [Google Scholar] [CrossRef] [Green Version]
- Kimps, N.W.; Bissinger, B.W.; Apperson, C.S.; Sonenshine, D.E.; Roe, R.M. First report of the repellency of 2-tridecanone against ticks. Med. Vet. Entomol. 2011, 25, 202–208. [Google Scholar] [CrossRef]
- Oliveira, H.B.M.; das Neves Selis, N.; Brito, T.L.S.; Sampaio, B.A.; de Souza Bittencourt, R.; Oliveira, C.N.T.; Júnior, M.N.S.; Almeida, C.F.; Almeida, P.P.; Campos, G.B.; et al. Citral modulates human monocyte responses to Staphylococcus aureus infection. Sci. Rep. 2021, 11, 22029. [Google Scholar] [CrossRef]
- Somolinos, M.; García, D.; Condón, S.; Mackey, B.; Pagán, R. Inactivation of Escherichia coli by citral. J. Appl. Microbiol. 2010, 108, 1928–1939. [Google Scholar] [CrossRef]
- Meyer, E.F.; Gens, T.H. Thermodynamics of solution using gas-liquid chromatography: A comparison of eicosane, eicosanyl nitrile, 10-nonadecanone, and, 2-nonadecanone as solvents. J. Chem. Thermodyn. 1977, 9, 535–542. [Google Scholar] [CrossRef]
- Song, H.; Xia, L. Aroma extract dilution analysis of a beef flavouring prepared from flavour precursors and enzymatically hydrolysed beef. Flavour Fragr. J. 2010, 23, 185–193. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Behiry, S.I.; Ali, H.M.; EL-Hefny, M.; Salem, M.Z.M.; Ashmawy, N.A. Phytochemical Compounds of Branches from P. halepensis Oily Liquid Extract and S. terebinthifolius Essential Oil and Their Potential Antifungal Activity. Processes 2020, 8, 330. [Google Scholar] [CrossRef] [Green Version]
- Uzun, Y.; Dalar, A.; Konczak, I. Sempervivum davisii: Phytochemical composition, antioxidant and lipase-inhibitory activities. Pharm. Biol. 2017, 55, 532–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Jiang, X.; Xiao, N.; Feng, Q.; Liu, J.; Shi, W. Characterization of the effect of different sugar on volatile flavor compounds of dried fish floss using e-nose combined with HS-SPME/GC-MS. J. Food Processing Preserv. 2022, e16567. [Google Scholar] [CrossRef]
- Mahdavi Fikejvar, E.; Rezadoost, H.; Zakizadeh, H.; Mozaffarian, V. A comparative study on the essential oil composition and antibacterial activities of different organs of wild growing Paeonia daurica subsp. tomentosa from Iran. Nat. Prod. Res. 2019, 33, 3153–3156. [Google Scholar] [CrossRef]
- Raaijmakers, H.; Zwanenburg, B.; Chittenden, G.J.F. Some Aspects of the Reaction of Methyl 4,6-O-benzylidene-α-D-glucopyranoside 2,3-Carbonate with 1-Dodecanol: Novel Non-Ionic Surfactants. J. Carbohydr. Chem. 1993, 12, 1117–1125. [Google Scholar] [CrossRef]
- Tocco, G.; Eloh, K.; Onnis, V.; Sasanelli, N.; Caboni, P. Haloacetophenones as newly potent nematicides against Meloidogyne incognita. Ind. Crops Prod. 2017, 110, 94–102. [Google Scholar] [CrossRef]
- Nagella, P.; Ahmad, A.; Kim, S.J.; Chung, I.M. Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharmacol. Immunotoxicol. 2012, 34, 205–209. [Google Scholar] [CrossRef]
- Menzel, C.M. Tuberization in Potato at High Temperatures: Promotion by Disbudding. Ann. Bot. 1981, 47, 727–733. [Google Scholar] [CrossRef]
- Forlani, G.; Occhipinti, A.; Bossi, S.; Bertea, C.M.; Varese, C.; Maffei, M.E. Magnaporthe oryzae cell wall hydrolysate induces ROS and fungistatic VOCs in rice cell cultures. J. Plant. Physiol. 2011, 168, 2041–2047. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Sun, H.-L.; Chen, S.-Y.; Zeng, L.; Wang, T.-T. Anti-fungal activity, mechanism studies on α-Phellandrene and Nonanal against Penicillium cyclopium. Bot. Stud. 2017, 58, 13. [Google Scholar] [CrossRef] [Green Version]
- Zavala-Sánchez, M.A.; Pérez-Gutiérrez, S.; Prez-González, C.; Sánchez-Saldivar, D.; Arias-García, L. Antidiarrhoeal Activity of Nonanal, an Aldehyde Isolated from Artemisia ludoviciana. Pharm. Biol. 2002, 40, 263–268. [Google Scholar] [CrossRef]
- Han, Y.; Shen, H.; Zhao, M.; Sun, W. Flavour binding mechanism between a typical meat flavour compound (nonanal) and porcine myofibrillar proteins with consideration of conformational changes. Int. J. Food Sci. Technol. 2018, 53, 1954–1961. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; Boo, K.H.; Park, E.; Drakakaki, G.; Zakharov, F. PDC1, a pyruvate/α-ketoacid decarboxylase, is involved in acetaldehyde, propanal and pentanal biosynthesis in melon (Cucumis melo L.) fruit. Plant. J. 2019, 98, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Shibamoto, T. Variation of Major Volatile Constituents in Various Green Teas from Southeast Asia. J. Agric. Food Chem. 2001, 49, 1394–1396. [Google Scholar] [CrossRef]
- Sánchez-Lira, N.M.V.; Morales-Miranda, A.; García de la Mora, G.; León Contreras, J.C.; González-Sánchez, I.; Valencia, N.; Cerbón, M.; Morimoto, S. Orcinol derivative compound with antioxidant properties protects Langerhans islets against streptozotocin damage. J. Pharm. Pharmacol. 2017, 69, 305–313. [Google Scholar] [CrossRef]
- Yang, L.; Ji, W.; Zhong, H.; Wang, L.; Zhu, X.; Zhu, J. Anti-tumor effect of volatile oil from Houttuynia cordata Thunb. on HepG2 cells and HepG2 tumor-bearing mice. RSC Adv. 2019, 9, 31517–31526. [Google Scholar] [CrossRef] [Green Version]
Group Name | All Sig Diff | Down-Regulated | Up-Regulated |
---|---|---|---|
Root vs. Stem | 69 | 38 | 31 |
Root vs. Leaf | 71 | 42 | 29 |
Stem vs. Leaf | 44 | 18 | 26 |
No. | Time (min) | Metabolite Name | Quant Mass | Ionic Strength | ||
---|---|---|---|---|---|---|
Root | Stem | Leaf | ||||
1 | 4.253 | Pentanal | 44.02 | 0.12 | 0.71 | 1.64 |
2 | 5.166 | 3-carene | 93.05 | 76.35 | 5.88 | 0.38 |
3 | 5.689 | Methane, trimethoxy- | 75.02 | 1.33 | 0.08 | 0.08 |
4 | 6.905 | Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-methylene-, (1s)- | 69.10 | 288.24 | 1.06 | 0.05 |
5 | 7.126 | Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl)- | 77.02 | 40.74 | 2.27 | 0.16 |
6 | 7.662 | 2-[2-(5-norbornenyl)oxy]-tetrahydropyran | 85.04 | 0.01 | 0.98 | 1.82 |
7 | 7.672 | 2-pentenal, (e)- | 83.02 | 0.01 | 0.30 | 0.75 |
8 | 8.186 | beta-myrcene | 93.06 | 0.04 | 603.16 | 229.14 |
9 | 8.422 | Bicyclo[2.2.1]heptane, 7,7-dimethyl-2-methylene- | 91.06 | 145.11 | 0.60 | 0.15 |
10 | 8.614 | 3-methylcyclopentyl acetate | 72.04 | 0.56 | 0.05 | 0.05 |
11 | 9.08 | 1-penten-3-ol | 57.03 | 0.14 | 0.90 | 1.86 |
12 | 9.274 | Ethanone, 1-cyclopropyl-2-(4-pyridinyl)- | 93.04 | 227.95 | 9.18 | 0.93 |
13 | 10.532 | gamma-terpinene | 93.05 | 53.25 | 5.49 | 0.34 |
14 | 11.667 | Cyclohexene, 1-methyl-4-(1-methylethylidene)- | 121.07 | 33.93 | 3.11 | 0.18 |
15 | 11.977 | 2-carene | 121.07 | 1.88 | 0.26 | 0.02 |
16 | 14.853 | Nonanal | 57.06 | 3.52 | 129.90 | 320.80 |
17 | 15.889 | Benzene, 1-methyl-3-(1-methylethenyl)- | 132.06 | 18.40 | 4.25 | 0.59 |
18 | 16.583 | Bicyclo[3.1.1]heptane, 2,6,6-trimethyl-, [1s-(1.alpha,2.beta,5alpha)]- | 55.02 | 1.81 | 0.21 | 0.06 |
19 | 17.489 | 3a,7-methano-3ah-cyclopentacyclooctene, 1,4,5,6,7,8,9,9a-octahydro-1,1,7-trimethyl-, [3ar-(3aalpha,7alpha.,9abeta)]- | 161.10 | 0.53 | 0.03 | 0.01 |
20 | 18.03 | Benzoic acid, 2-formyl-4,6-dimethoxy-, 8,8-dimethoxyoct-2-yl ester | 192.96 | 3.87 | 0.02 | 0.06 |
21 | 18.71 | Bicyclo[3.1.1]heptan-3-one, 2,6,6-trimethyl-, (1.alpha,2beta,5alpha)- | 83.06 | 1.57 | 0.06 | 0.09 |
22 | 19.274 | Orcinol | 124.02 | 0.03 | 0.71 | 9.52 |
23 | 20.171 | 2-undecanone | 58.06 | 459.57 | 14.02 | 0.01 |
24 | 20.244 | 10-nonadecanone | 71.06 | 315.64 | 2.09 | 2.10 |
25 | 22.021 | Acetic acid, decyl ester | 43.03 | 1.60 | 48.58 | 67.01 |
26 | 22.325 | alpha-terpinyl acetate | 121.07 | 18.47 | 2.79 | 0.26 |
27 | 22.909 | Naphthalene, 1,2,3,5,6,7,8,8a-octahydro-1,8a-dimethyl-7-(1-methylethenyl)-, [1r-(1alpha,7beta,8aalpha)]- | 119.06 | 12.29 | 2.28 | 0.17 |
28 | 23.141 | Citral | 82.04 | 1.91 | 0.34 | 0.12 |
29 | 23.603 | 2-undecenal | 70.05 | 0.01 | 1.71 | 1.27 |
30 | 23.892 | 1-decanol | 70.06 | 1.98 | 98.73 | 77.85 |
31 | 24.845 | 2-tridecanone | 58.04 | 109.27 | 15.60 | 1.40 |
32 | 24.972 | Tridecanal | 57.04 | 0.20 | 42.09 | 42.94 |
33 | 25.695 | alpha-ionone | 121.04 | 0.06 | 0.35 | 12.69 |
34 | 25.879 | 2-dodecenal, (e)- | 70.03 | 0.87 | 11.21 | 5.76 |
35 | 27.509 | Cis-z-alpha-bisabolene epoxide | 43.06 | 198.36 | 2.14 | 22.52 |
36 | 27.527 | 3-buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)- | 177.10 | 0.20 | 9.81 | 84.23 |
37 | 28.129 | 1-dodecanol | 55.04 | 0.41 | 20.48 | 18.07 |
38 | 28.766 | 4-(2,6,6-trimethylcyclohexa-1,3-dienyl) but-3-en-2-one | 175.07 | 0.02 | 0.10 | 0.76 |
39 | 29.667 | 2,6-octadien-1-ol, 2,7-dimethyl- | 69.05 | 16.52 | 0.26 | 0.07 |
40 | 30.442 | Bicyclo [4.4.0] dec-5-ene-1-acetic acid | 134.05 | 11.95 | 0.12 | 0.17 |
41 | 31.778 | 3-ethyl-2-pentadecanone | 86.01 | 13.54 | 0.12 | 0.22 |
42 | 35.029 | Pentadecanoic acid, 3-methylbutyl ester | 70.03 | 13.70 | 1.83 | 0.24 |
43 | 36.15 | Cycloisolongifolene, 8,9-dehydro- | 202.15 | 2.33 | 0.08 | 0.05 |
44 | 39.889 | 2-((2r,4ar,8as)-4a-methyl-8-methylenedecahydronaphthalen-2-yl) prop-2-en-1-ol | 95.09 | 0.66 | 0.08 | 0.07 |
45 | 41.506 | Cyclohexyl propylphosphonofluoridate | 126.99 | 0.09 | 0.99 | 1.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, S.; Zha, L.; Peng, Y.; Luo, W.; Chen, K.; Li, X.; Huang, D.; Yin, D. Quality and Metabolomics Analysis of Houttuynia cordata Based on HS-SPME/GC-MS. Molecules 2022, 27, 3921. https://doi.org/10.3390/molecules27123921
Qi S, Zha L, Peng Y, Luo W, Chen K, Li X, Huang D, Yin D. Quality and Metabolomics Analysis of Houttuynia cordata Based on HS-SPME/GC-MS. Molecules. 2022; 27(12):3921. https://doi.org/10.3390/molecules27123921
Chicago/Turabian StyleQi, Shuai, Lingyan Zha, Yongzheng Peng, Wei Luo, Kelin Chen, Xin Li, Danfeng Huang, and Dongmei Yin. 2022. "Quality and Metabolomics Analysis of Houttuynia cordata Based on HS-SPME/GC-MS" Molecules 27, no. 12: 3921. https://doi.org/10.3390/molecules27123921
APA StyleQi, S., Zha, L., Peng, Y., Luo, W., Chen, K., Li, X., Huang, D., & Yin, D. (2022). Quality and Metabolomics Analysis of Houttuynia cordata Based on HS-SPME/GC-MS. Molecules, 27(12), 3921. https://doi.org/10.3390/molecules27123921