“For Asia Market Only”: A Green Tattoo Ink between Safety and Regulations
Abstract
1. Introduction
2. Materials and Methods
Extraction Procedures
3. Results and Discussion
3.1. IR and Raman
3.2. Elemental Content by XRF
3.3. GC-Mass Spectrometry
3.4. Analysis of the Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piccinini, P.; Pakalin, S.; Contor, L.; Bianchi, I.; Senaldi, C. “Safety of Tattoos and Permanent Make-Up: Final Report.” EUR 27947 EN; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar] [CrossRef]
- Weiβ, K.T.; Schreiver, I.; Siewert, K.; Luch, A.; Haslböck, B.; Berneburg, M.; Bäumler, W. Tattos—more than just colored skin? Searching for tattoo allergens. J. Dtsch. Dermatol. Ges. 2021, 19, 657–669. [Google Scholar]
- Alsing, K.K.; Johannesen, H.H.; Hansen, R.H.; Serup, J. Tattoo complications and magnetic resonance imaging: A comprehensive review of the literature. Acta Radiol. 2020, 61, 1695–1700. [Google Scholar] [CrossRef] [PubMed]
- Fraser, T.R.; Ross, K.E.; Alexander, U.; Lenehan, C.E. Current knowledge of the degradation products of tattoo pigments by sunlight, laser irradiation and metabolism: A systematic review. J. Expos. Sci. Environ. Epidemiol. 2022, 32, 343–355. [Google Scholar] [CrossRef]
- Karregat, J.J.P.; Rustemeyer, T.; van der Bent, S.A.S.; Spiekstra, S.W.; Thon, M.; Rivas, D.F.; Gibbs, S. Assessment of cytotoxicity and sensitization potential of intradermally injected tattoo inks in reconstructed human skin. Contact Dermat. 2021, 85, 324–339. [Google Scholar] [CrossRef] [PubMed]
- Donia, D.T.; Scibetta, E.V.; Tagliatesta, P.; Carbone, M. Chemistry through Tattoo Inks: A Multilevel Approach to a Practice on the Rise for Eliciting Interest in Chemical Education. J. Chem. Educ. 2021, 98, 1309–1320. [Google Scholar] [CrossRef]
- MacFarlane, M. Tattoos in East Asia: Conforming to Individualism; University of Puget Sound, Sound Ideas: Takoma, WA, USA, 2019; Available online: https://soundideas.pugetsound.edu/summer_research/343/ (accessed on 18 May 2022).
- White, K. Changing Views of Tattoos in Japan. Marshall Digital Scholar, 29 February 2019. Available online: https://mds.marshall.edu/colaconf/2019/day2/15/ (accessed on 18 May 2022).
- McCallum, D. Historical and Cultural Dimensions of the Tattoo in Japan. In Marks of Civilization: Artistic Transformations of the Human Body; Rubin, A., Ed.; Los Angeles Museum of Cultural History, University of California: Los Angeles, CA, USA, 1988. [Google Scholar]
- Bratt, M. A History of Japanese Body Suit Tattooing; KIT Publishers: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Yamada, M. Westernization and cultural resistance in tattooing practices in contemporary Japan. Int. J. Cult. Stud. 2009, 12, 319–338. [Google Scholar] [CrossRef]
- Theobald, U. Mo 墨, Penal Tattooing. An Encyclopaedia on Chinese History, Literature and Art. 2016. Available online: https://www.chinaknowledge.de/History/Terms/penal_mo.html (accessed on 18 May 2022).
- Reed, C.E. Tattoo in Early China. J. Am. Orient. Soc. 2000, 120, 360–376. [Google Scholar] [CrossRef]
- Park, J. Sign of social change on the bodies of youth: Tattoos in Korea. Vis. Commun. 2016, 15, 71–92. [Google Scholar] [CrossRef][Green Version]
- Kim, S.Y. A study on adult women’s cosmetic tattoo experiences and comparison of health concern and health practise between the cosmetic tattooed and non-cosmetic tattooed groups. J. Korean Acad. Community Health Nurs. 2017, 28, 69–77. [Google Scholar] [CrossRef]
- Kluger, N.; Seité, S.; Taineb, C. The prevalence of tattooing and motivations in five major countries over the world. J. Eur. Acad. Dermatol. 2019, 33, e484–e486. [Google Scholar] [CrossRef]
- Tizzard, D. Morality, Legality and Tattoos. 2020. Available online: https://www.koreatimes.co.kr/www/opinion/2020/11/197_298485.html (accessed on 18 May 2022).
- Private Email Exchange with the Corresponding Author, Assisted by the Experts of Chinese Language. Available online: https://www.cnas.org.cn/english/suspendingcanceling/index.shtml or http://www.ccaa.org.cn/ (accessed on 18 May 2022).
- Bauer, E.M.; De Caro, T.; Tagliatesta, P.; Carbone, M. Unraveling the real pigment composition of tattoo inks: The case of bi-components phthalocyanine based greens. Dyes Pigment. 2019, 167, 225–235. [Google Scholar] [CrossRef]
- National Regulations on Tattoo Ink and Permanent Make-Up Formulations in Spain Informaciόn Sobre Productos Para Maquillaje Permanente (Micropigmentaciόn) y Tatuaje. Available online: https://www.aemps.gob.es/informa/notasInformativas/cosmeticosHigiene/2008/NI-prodAutorizados-tatuaje_julio-2008.htm (accessed on 18 May 2022).
- National Regulations on Tattoo Ink and Permanent Make-Up Formulations in France—Arrêté du 6 Mars 2013 Fixant la Liste des Substances qui ne Peuvent pas Entrer dans la Composition des Produits de Tatouage. Available online: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000027167179&dateTexte=20200415 (accessed on 18 May 2022).
- National Regulations on Tattoo Ink and Permanent Make-Up Formulations in Sweden—Förordning (2012:503) om Tatueringsfärger. Available online: https://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/forordning-2012503-omtatueringsfarger_sfs-2012-503 (accessed on 18 May 2022).
- National Regulations on Tattoo Ink and Permanent Make-Up Formulations in The Netherlands—Besluit van 24 April 2013, Houdende Wijziging van He Warenwetbesluit Tatoeagekleurstoffen in Verband Met Het Intrekken van Richtlijn 76/768/EEG. Available online: https://zoek.officielebekendmakingen.nl/stb-2013-177.html (accessed on 18 May 2022).
- Manso, M.; Pessanha, S.; Guerra, M.; Reinholz, U.; Afonso, C.; Radtke, M.; Lourenço, H.; Carvalho, M.L.; Buzanich, A.G. Assessment of toxic metals and hazardous substances in tattoo inks using Sy-XRF, AAS, and Raman spectroscopy. Biol. Trace Elem. Res. 2019, 187, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Bocca, B.; Senofonte, O.; Petrucci, F. Hexavalent chromium in tattoo inks: Dermal exposure and systemic risk. Contact Dermat. 2018, 79, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.-H.; Shin, H.-S. Identification and quantification of phthalates, PAHs, amines, phenols, and metals in tattoo. Bull. Korean Chem. Soc. 2015, 36, 2039–2050. [Google Scholar] [CrossRef]
- Schreiver, I.; Hutzler, C.; Luch, A. A Two-Step Pyrolysis-Gas Chromatography Method with Mass Spectrometric Detection for Identification of Tattoo Ink Ingredients and Counterfeit Products. Available online: https://www.jove.com/it/t/59689/a-two-step-pyrolysis-gas-chromatography-method-with-mass (accessed on 18 May 2022).
- Schreiver, I.; Hutzler, C.; Andree, S.; Laux, P.; Luch, A. Identification and hazard prediction of tattoo pigments by means of pyrolysis—gas chromatography/mass spectrometry. Arch. Toxicol. 2016, 90, 1639–1650. [Google Scholar] [CrossRef] [PubMed]
- Battistini, B.; Petrucci, F.; De Angelis, I.; Failla, C.M.; Bocca, B. Quantitative analysis of metals and metal-based nano- and submicron-particles in tattoo inks. Chemosphere 2020, 245, 125667. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Josefsson, L.; Meschnark, S.; Lind, M.-L.; Emmer, Å.; Goessler, W.; Hedberg, Y.S. Analytical survey of tattoo inks—A chemical and legal perspective with focus on sensitizing substances. Contact Dermat. 2021, 85, 340–353. [Google Scholar] [CrossRef]
- Ali, A.; Al-Easawi, N. Determination of heavy metals in tattoo inks form the local market in Baghdad City. Plant Arch. 2020, 20, 1289–1292. [Google Scholar]
- Eghbali, K.; Mousavi, Z.; Ziarati, P. Determination of Heavy Metals in Tattoo Ink. Biosci. Biotechnol. Res. Asia 2014, 11, 941–946. [Google Scholar] [CrossRef]
- Karbowska, B.; Rębiś, T.; Zembrzuska, J.; Nadolska, K. Thallium in color tattoo inks: Risk associated with tattooing. Med. Pr. 2020, 71, 405–411. [Google Scholar] [CrossRef]
- Donia, D.T.; Carbone, M. Fate of the nanoparticles in environmental cycles. Int. J. Environ. Sci. Technol. 2019, 16, 583–600. [Google Scholar] [CrossRef]
- Resolution ResAP(2008)1 on Requirements and Criteria for the Safety of Tattoos Permanent Make-Up. Available online: https://search.coe.int/cm/Pages/result_details.aspx?ObjectID=09000016805d3dc4 (accessed on 18 May 2022).
- Resolution Amendment ResAP(2008)1 Commission Regulation (EU) 2020/2081 of December 14th, 2020 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32020R2081&qid=1620664323883 (accessed on 18 May 2022).
- Lim, H.-H.; Shin, H.-S. Sensitive Determination of Volatile Organic Compounds and Aldehydes in Tattoo Inks. J. Chromatogr. Sci. 2017, 55, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Bauer, E.M.; Scibetta, E.V.; Cecchetti, D.; Piccirillo, S.; Antonaroli, S.; Sennato, S.; Cerasa, M.; Tagliatesta, P.; Carbone, M. Treatments of a phthalocyanine-based green ink for tattoo removal purposes: Generation of toxic fragments and potentially harmful morphologies. Arch. Toxicol. 2020, 94, 2359–2375. [Google Scholar] [CrossRef] [PubMed]
- Schulte, F.; Brzezinka, K.W.; Lutzenberger, K.; Stege, H.; Panne, U. Raman spectroscopy of synthetic organic pigments used in 20th century works of art. J. Raman Spectrosc. 2008, 39, 1455–1463. [Google Scholar] [CrossRef]
- Anghelone, M.; Jembrih-Simbürger, D.; Pintus, V.; Schreiner, M. Photostability and influence of phthalocyanine pigments on the photodegradation of acrylic paints under accelerated solar radiation. Polym. Degrad. Stabil. 2017, 146, 13–23. [Google Scholar] [CrossRef]
- Bosi, A.; Ciccola, A.; Serafini, I.; Guiso, M.; Ripanti, F.; Postorino, P.; Curini, R.; Bianco, A. Street art graffiti: Discovering their composition and alteration by FTIR and micro-Raman spectroscopy. Spectrochim. Acta Part A 2020, 225, 117474. [Google Scholar] [CrossRef]
- Ledson, L.D.; Twigg, M.V. Acid-base behaviour of phthalocyanine. Inorg. Chim. Acta 1975, 13, 43–46. [Google Scholar] [CrossRef]
- Wöhrle, D.; Hündorf, U. Polymeric phthalocyanines and their precursors, 6. Synthesis and analytical characterization of some octasubstituted phthalocyanines. Makromolekul. Chem. 1985, 186, 2177–2187. [Google Scholar] [CrossRef]
- Seelan, S.; Agashe, M.S.; Srinivas, D.; Sivasanker, S. Effect of peripheral substitution on spectral and catalytic properties of copper phthalocyanine complexes. J. Mol. Catal. A Chem. 2001, 168, 61–68. [Google Scholar] [CrossRef]
- Gebel, T. Arsenic and antimony: Comparative approach on mechanistic toxicology. Chem. Biol. Interact. 1997, 107, 131–144. [Google Scholar] [CrossRef]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar]
- Das, K.K.; Reddy, R.C.; Bagoji, I.B.; Das, S.; Bagali, S.; Mullur, L.; Khodnapur, J.P.; Biradar, M.S. Primary concept of nickel toxicity—An overview. J. Basic Clin. Physiol. Pharmacol. 2018, 30, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.D.; Kargacin, B.; Klein, C.B.; Costa, M. Mechanisms of chromium carcinogenicity and toxicity. Crit. Rev. Toxicol. 2008, 23, 255–281. [Google Scholar] [CrossRef] [PubMed]
- Cecchetti, D.; Bauer, E.M.; Guerriero, E.; Sennato, S.; Tagliatesta, P.; Tagliaferri, M.; Cerri, L.; Carbone, M. Comparative treatments of a green tattoo ink with Ruby, Nd:YAG nano- and picosecond lasers in normal and array mode. Sci. Rep. 2022, 12, 3571. [Google Scholar] [CrossRef]
- Anastas, P.; Hammond, D. Chapter 4—Case Studied—Green Chemistry in Practice. In Inherent Safety at Chemical Sites, Reducing Vulnerability to Accidents and Terrorism Through Green Chemistry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 23–118. [Google Scholar]
- Moyer, E. 1,4-Dioxane: Regulatory Developments, Uses, Properties, Assessment, and Remediation. 2008. Available online: https://www.lspa.org/assets/documents/lspa-doc-1-4-dioxane-summary.pdf (accessed on 18 May 2022).
- McCarthy, J. 1,4-Dioxane Essentially Banned in Cosmetics, Personal Care, and Cleaning Products in New York State. 2019. Available online: https://delltech.com/blog/1-4-dioxane-essentially-banned-in-cosmetics-personal-care-and-cleaning-products-in-new-york-state/ (accessed on 18 May 2022).
- Kano, H.; Umeda, Y.; Kasai, T.; Sasaki, T.; Matsumoto, M.; Yamazaki, K.; Nagano, K.; Arito, H.; Fukushima, S. Carcinogenicity studies of 1,4-dioxane administered in drinking-water to rats and mice for 2 years. Food Chem. Toxicol. 2009, 47, 2776–2784. [Google Scholar] [CrossRef]
- Schut, D.M. Derivatization of Dyes/PIGMENTS with Crown Ethers and Inkjet Printing Fluids Containing the Same (Patent United States n. US 2002/0144626 A1) Hewlett-Packard Company Intellectual Property Administration. 2002. Available online: https://patentimages.storage.googleapis.com/79/45/d0/70afcc05cffca7/US20020144626A1.pdf (accessed on 18 May 2022).
- Herbst, W.; Hunger, K. Industrial Organic Pigments: Production, Properties, Applications; John Wiley & Sons: Weinheim, Germany, 2004. [Google Scholar]
- Bauer, E.M.; Cecchetti, D.; Nisticò, S.; Germinario, G.; Sennato, S.; Gontrani, L.; Tagliatesta, P.; Carbone, M. Laser vs. thermal treatments of green pigment PG36: Coincidence and toxicity of process. Arch. Toxicol. 2021, 95, 2367–2383. [Google Scholar] [CrossRef]
- Kamrin, M.A. Phthalate risks, phthalate regulation, and public health: A review. J. Toxicol. Environ. Health B 2009, 12, 157–174. [Google Scholar] [CrossRef]
Metal | EGC | AGC | [29] * | [24] | [26] | [32] * | [31] * | [30] | EU limits * |
---|---|---|---|---|---|---|---|---|---|
Chromium | <0.1 | <0.1 | 0.22 | <DL | 6.1 ± 7.7 | 170 | AA | 0.5 | |
Cobalt | <0.1 | <0.1 | ND | 1.7 ± 4.6 | OA | 0.5 | |||
Nickel | 12.0 | 11.7 | 0.14 | <DL | 5 ± 8.7 | 6.8 | 3/59 | 5 | |
Copper | 38610 | 33440 | 3882 | 4400 ± 200 | 1840 ± 5040 | 63 | 1 | 250 | |
Zinc | 9.9 | <0.1 | 0.98 | 8.7 ± 23.6 | 5.23 | <RC | 2000 | ||
Arsenic | 2.4 | 2.3 | ND | 2.7 ± 6 | OA | 0.5 | |||
Selenium | <0.1 | <0.1 | 1.66 | 2 | |||||
Cadmium | 0.5 | 0.7 | 0.06 | <DL | 0.6 ± 1.9 | 0.83 | 1.617 | <RC | 0.5 |
Antimony | 1.9 | 2.6 | ND | 1.6 ± 4.5 | <RC | 0.5 | |||
Barium | 19.3 | 12.2 | 18.1 | 9.8 ± 18.8 | 500 | ||||
Mercury | <0.2 | <0.2 | 0.06 | <DL | 0.0027 ± 0.0034 | AF | 0.5 | ||
Lead | <0.8 | <0.8 | 0.17 | 0.80 ± 0.04 | 1.6 ± 5.2 | 6.3 | 2.27 | AF | 0.7 |
RT min | Compound | Hazards | EGC | AGC |
---|---|---|---|---|
Extraction in H20 | ||||
3.87 | Octamethylcyclotetrasiloxane (D4) | H361f(2) | ||
4.90 | 2-methyl-1-propanol | H302(4) H332(4) H350(1B) | ||
Extraction in Acetone | ||||
2.09 | 1,4-dioxane | H319(2) H335(3)H351(2) | ||
3.37 | Styrene | H315(2) H319 (2) H332(4) H372(1) H361d (2) | ||
3.83 | Octamethylcyclotetrasiloxane (D4) | H361f (2) | ||
8.40 | 3,3,5-trimethyl-2-cyclohexen-1-one | H302(4) H312(4) H319(2) H335(3) H351(2) | ||
9.56 | Naphthalene | H302(4)H351 (2) | ||
11.67 | 1-methylnaphthalene | H302(4) H319(2) H335(3) H336/ H373(2) | ||
11.80 | 1,3-dioxolane | H319(2) H360(1B) | ||
19.17 | Pentachloro aniline | H301(3) H311(3) H331(3) 373(2) | ||
19.27 | 12-crown-4 | H330(1) | ||
21.27 | 4,5,6,7-tetrachloro-1,3-isobenzofuranedione | H317(1) H318(1) H334(1) H350(1A) H373(2) | ||
Extraction in CH2Cl2 | ||||
3.90 | Octamethylcyclotetrasiloxane (D4) | H361f(2) | ||
18.65 | Dibutyl phthalate | H360 DF (1B) | ||
19.22 | Pentachloro aniline | H301(3) H311(3) H331(3) H373(2) | ||
24.87 | Diisoocyl phthalate | H360 DF (1B) |
RT Min | Compound | Hazards | EGC | AGC | EGC/AGC Ratio |
---|---|---|---|---|---|
3.07 | Tetrachloroethene | H315(2) H319(2) H317(1)H336(3) H351(2) | |||
3.55 | 1,1,2,2-tetrachloroethane | H330(2) H310(1) | |||
4.14 | Pentachloroethane | H351(2) H372(1) | 14.86 | ||
5.88 | Hexachloroethane | H319(2)H351(2) | 0.93 | ||
8.29 | 4-ethyl benzaldehyde | NDAS | |||
9.01 | 1-isocyanato-2-methoxy benzene | NA | |||
9.06 | 1,3-di-tert-butyl benzene | NDAS | |||
9.29 | Terbuthylazine | H302(4) H373(2) | |||
9.43 | 1,4-dichloro-2-ethenyl benzene | NA | |||
10.32 | 3,4,6-trichloro-2-methyl phenol | NA | 1.55 | ||
10.33 | 1-(dichloromethyl)-3-methyl benzene * | NA | |||
10.57 | 2-chloro-4-(chloromethyl)-1-methylbenzene | NA | |||
10.70 | 1,2-dichloro-4-(1-chloroethyl) benzene | NA | |||
11.86 | Tetradecamethyl cycloheptasiloxane (D7) | H319(2) | |||
11.93 | 1,3,5-trichloro-2,4,6-trimethyl benzene | H315(2) H319(2) H335(3) | |||
12.40 | 3,4-dichlorophenyl thiocyanate | NA | |||
12.87 | 2,6-di-t-butyl-1,4-benzoquinone | H315(2) H319(2) H335(3) | |||
13.19 | 3-chlorobenzamide | H302(4) H312(4) H315(2) H319(2)H332(4) H335(3) | |||
13.21 | 2,5-di-t-butylphenol | H315(2)H319(2) H335(3) | |||
13.44 | 3,3-dimethyl-1-(3H)-isobenzofuranone | H315(2)H319(2) H335(3) | |||
13.46 | Hexamethyl benzene | NDAS | |||
13.93 | Hexadecamethyl cyclooctasiloxane (D8) | H319(1) | |||
14.03 | Pentachlorobenzene | H302(4) | 0.57 | ||
14.04 | 3,4-dichloro benzamine | H301(3) H311(3) H317(1)H318(1)H331(3) | |||
14.65 | Diethyl phthalate | NDAS | 2.33 | ||
15.81 | 2,3-diphenyl-2-butene | NA | |||
15.99 | 2,4-dichloro-1,1′-biphenyl | H373(2) | |||
16.48 | Hexachlorobenzene | H350(1B) H372(1) | 0.13 | ||
16.78 | 2,6-dibromo-4-chloroaniline | H315(2) H319(2) H335(3) | |||
17.04 | 1,4-dimethyl anthracene | NA | |||
17.53 | Anthracene D10 | Internal standard | |||
17.63 | Butyl tridecyl phthalate | NA | |||
17.65 | Pentachlorobenzonitrile | H315(2)H319(2) H335(3) | |||
17.80 | 1,1-(4,4′-diethyl)diphenylethane | NA | |||
18.01 | 4,5-dichlorophthalimide | H315(2)H319(2) H335(3) | |||
18.11 | Pentachloroaniline | H301(3) H311(3)H331(3) H373(2) | 0.12 | ||
18.24 | 7,9-Di-tert-butyl-1-oxaspiro[4,5]deca-6,9-diene-2,8-dione | H315(2) H319(2A) H335(3) | 0.56 | ||
18.28 | Trichlorobenzenamide | NA | 6.00 | ||
18.63 | 2,3,4,5-tetrachloro aniline | H302(4) H315(2) H317(1) H318(1) H335(3) | |||
18.68 | Butyl 2-pentyl phthalate | NA | 1.60 | ||
18.71 | 2,3,4,5,6-pentachloro-N-(dichloromethylene)-benzenamine | NA | |||
18.96 | Pentachlorophenol | H301(3) H311(3) H315(2)H319(2)H330(2) H335(3) H351(2) | 0.77 | ||
19.93 | Tetrachlorobenzamide | NA | 1.46 | ||
22.04 | Pentachlorobenzamide | H302(4) H312(4) H315(2) H319(2) H332(4) H335(3) | 1.05 | ||
22.61 | 3,4,5,6-tetrachloro phthalimide | H315(2)H319(2) H335(3) | 0.46 | ||
23.79 | Diisoctyl phthalate | H360(1B) | |||
27.75 | Perylene D12 | Internal standard |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer, E.M.; Cecchetti, D.; Guerriero, E.; Quaranta, S.; Ripanti, F.; Postorino, P.; Tagliatesta, P.; Carbone, M. “For Asia Market Only”: A Green Tattoo Ink between Safety and Regulations. Molecules 2022, 27, 3491. https://doi.org/10.3390/molecules27113491
Bauer EM, Cecchetti D, Guerriero E, Quaranta S, Ripanti F, Postorino P, Tagliatesta P, Carbone M. “For Asia Market Only”: A Green Tattoo Ink between Safety and Regulations. Molecules. 2022; 27(11):3491. https://doi.org/10.3390/molecules27113491
Chicago/Turabian StyleBauer, Elvira M., Daniele Cecchetti, Ettore Guerriero, Simone Quaranta, Francesca Ripanti, Paolo Postorino, Pietro Tagliatesta, and Marilena Carbone. 2022. "“For Asia Market Only”: A Green Tattoo Ink between Safety and Regulations" Molecules 27, no. 11: 3491. https://doi.org/10.3390/molecules27113491
APA StyleBauer, E. M., Cecchetti, D., Guerriero, E., Quaranta, S., Ripanti, F., Postorino, P., Tagliatesta, P., & Carbone, M. (2022). “For Asia Market Only”: A Green Tattoo Ink between Safety and Regulations. Molecules, 27(11), 3491. https://doi.org/10.3390/molecules27113491