The Role of Side Chains in the Fine-Tuning of the Metal-Binding Ability of Multihistidine Peptides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. HPLC
2.3. Potentiometry
2.4. Spectroscopic Methods
2.5. Cyclic Voltammetry
3. Results and Discussion
3.1. The Acid-Base Properties of the Peptides
3.2. Cu(II) Complexes
3.2.1. Two-Histidine-Containing Tetrapeptides
3.2.2. Three-Histidine-Containing Pentapeptides
3.2.3. Three-Histidine-Containing Hexapeptides
3.2.4. Four-Histidine-Containing Heptapeptides
3.2.5. Electrochemical Properties of the Copper(II) Complexes
3.3. Ni(II) Complexes
3.4. Zn(II) Complexes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
pK1(Asp) | pK2(Asp) | pK1(His) | pK2(His) | pK3(His) | pK4(His) | pK(Lys) | |
---|---|---|---|---|---|---|---|
Ac-HVH-NH2 [6] | – | – | 5.88 | 6.82 | – | – | – |
Ac-SarHAH-NH2 | – | – | 6.01(1) | 6.76(1) | – | – | – |
Ac-HAAH-NH2 [13] | – | – | 6.00 | 6.74 | – | – | – |
Ac-HADH-NH2 | 3.48(6) | – | 6.14(3) | 7.02(2) | – | – | – |
Ac-HDAH-NH2 | 3.55(3) | – | 6.20(1) | 7.01(1) | – | – | – |
Ac-HAHVH-NH2 [8] | – | 5.67 | 6.24 | 6.83 | – | – | |
Ac-HVHAH-NH2 [8] | – | 5.75 | 6.31 | 6.94 | – | – | |
Ac-HFHAH-NH2 | – | – | 5.78(2) | 6.29(2) | 7.03(2) | – | – |
Ac-HAHFH-NH2 | – | – | 5.70(1) | 6.33(1) | 6.95(1) | – | – |
Ac-HAHKH-NH2 | – | – | 5.67(2) | 6.26(2) | 6.81(2) | – | 10.18(1) |
Ac-HKHAH-NH2 | – | – | 5.65(6) | 6.27(1) | 6.84(9) | – | 10.28(1) |
Ac-HAHDH-NH2 | 3.43(1) | – | 5.93(1) | 6.49(1) | 7.18(3) | – | – |
Ac-HDHAH-NH2 | 3.42(1) | – | 5.89(7) | 6.47(4) | 7.14(6) | – | – |
Ac-HAAHVH-NH2 [13] | – | – | 5.69 | 6.31 | 6.81 | – | – |
Ac-HAAHGH-NH2 [13] | – | – | 5.80 | 6.36 | 7.00 | – | – |
Ac-HGFHVH-NH2 | – | – | 5.75(1) | 6.34(1) | 6.96(1) | – | – |
Ac-HADHAH-NH2 | 2.83(3) | – | 5.90(2) | 6.48(8) | 7.11(1) | – | – |
Ac-S3H4-NH2 * [9] | – | – | 5.51 | 6.15 | 6.45 | 7.19 | – |
Ac-HFHAHFH-NH2 | – | – | 5.46(2) | 6.15(2) | 6.43(3) | 6.80(3) | – |
Ac-HDHAHDH-NH2 | 2.96(2) | 3.72(1) | 5.75(1) | 6.38(1) | 6.66(1) | 7.17(1) | – |
[CuL]2+ | [CuLH−2] | [CuLH−3]− | ||||
---|---|---|---|---|---|---|
UV | CD | UV | CD | UV | CD | |
Ac-HVH-NH2 [6] | 690 (35) | − | 530 (126) | 585 (−0.82) 480 (+1.15) 340 (−2.20) | 530 (126) | 560 (−0.60) 470 (+0.30) 335 (−0.90) |
Ac-SarHAH-NH2 | 680 (44) | 621 (+0.07) 325 (−0.07) 234 (−2.29) | 560 (118) | 646 (+0.27) 550 (−0.59) 482 (+0.39) 337 (−2.34) 246 (+6.75) sh | 525 (126) | 635 (+0.91) 491 (−1.38) 362 (−0.14) 320 (+0.91) 294 (−0.14) 259 (+5.67) 241 (+2.83) |
Ac-HAAH-NH2 [13] | 720 (38) | − | 610 (87) | 625 (−0.15) 535 (+0.63) 335 (−0.92) | 510 (115) | 615 (+1.06) 490 (−1.61) 355 (−0.17) 315 (+1.33) |
Ac-HADH-NH2 | 679 (40) | − | 610 (87) | 646 (+0.30) sh 483 (−0.22) 374 (+0.05) sh 307 (−0.25) 252 (+5.86) | 516 (125) | 628 (+0.92) 497 (−1.34) 320 (−0.88) 295 (−0.67) 260 (+6.76) |
Ac-HDAH-NH2 | 673 (63) | 251 (0.31) 229 (−1.62) | 606 (131) | 605 (−0.24) 521 (+0.43) 334 (−0.54) 243 (+5.06) | 517 (158) | 609 (+1.21) 487 (−1.74) 318 (+1.74) 288 (−0.26) 257 (+7.65) |
Ac-HAHVH-NH2 [8] | 655 (69) | − | 550 (131) | 670 (+0.15) 560 (−0.79) 480 (+0.60) 340 (−2.88) | 530 (121) | 640 (+0.75) 500 (−0.81) 350 (−0.45) |
Ac-HVHAH-NH2 [8] | 655 (65) | − | 560 (123) | 680 (+0.06) 560 (−0.61) 480 (+0.56) 340 (−2.12) | 520 (116) | 630 (+0.97) 490 (−1.38) 360 (−0.17) 320 (+0.95) |
Ac-HFHAH-NH2 | 611 (64) sh | 655 (+0.08) 561 (−0.10) 494 (+0.14) 342 (−0.52) 253 (+1.83) sh | 538 (99) | 648 (+0.34) 552 (−0.55) 486 (+0.44) 343 (−2.32) 245 (+7.45) | 527 (112) | 626 (+0.59) 487 (−0.96) 354 (−0.38) 311 (+1.01) 256 (+6.12) |
Ac-HAHFH-NH2 | 619 (60) sh | 561 (−0.20) 487 (+0.07) 343 (−0.29) 249 (+1.88) sh | 539 (95) | 644 (+0.34) 551 (−0.63) 489 (+0.53) 340 (−2.20) | 530 (113) | 653 (+0.71) 532 (−0.89) 387 (+0.12) 338 (−0.59) 280 (+2.94) 258 (+0.72) |
Ac-HKHAH-NH2 | – | 569 (−0.35) 490 (+0.34) 338 (−1.44) 247 (+5.42) sh | 530 (98) | 658 (+0.22) 547 (−0.38) 342 (−1.35) 253 (+5.82) | 519 (102) | 659 (+0.47) 499 (−0.73) 352 (−0.80) 259 (+5.61) |
Ac-HAHDH-NH2 | 640 (71) | 255 (+0.43) sh 228 (−4.09) | 576 (91) | 614 (+0.51) 539 (−0.05) 489 (+0.14) 336 (−1.37) 246 (+5.82) sh | 503 (116) | 627 (+0.72) 492 (−0.69) 351 (−0.22) 315 (+0.25) 259 (+4.28) sh |
Ac-HDHAH-NH2 | 631 (73) | 696 (+0.10) 498 (+0.03) 376 (+0.09) 265 (+0.94) 229 (−5.59) | 560 (91) | 609 (+0.74) 537 (+0.13) 493 (+0.24) 334 (−1.61) 247 (+7.20) sh | 547 (103) | 641 (+0.84) 499 (−0.92) 358 (+0.17) 313 (+0.80) 257 (+6.20) sh |
Ac-HAAHVH-NH2 [13] | 640 (63) | − | 530 (118) | 580(−0.78) 485(+1.03) 345(−2.74) | 515 (115) | 495 (−1.25) 360 (−0.17) 315 (+0.91) |
Ac-HAAHGH-NH2 [13] | 626 (71) | 591 (−0.29) 325 (+0.30) 245 (+2.80) | 565 (117) | 756 (−0.13) 586 (+0.48) 505 (+0.17) sh 349 (+1.57) 300 (−1.30) 263 (+0.54) | 524 (116) 561 sh | 605 (+1.31) 482 (−1.16) 321 (+1.86) 288 (−0.48) 253 (+5.93) |
Ac-HGFHVH-NH2 | 605 (57) | 623 (−0.07) 529 (+0.05) 233 (−3.74) | 529 (100) | 676 (+0.07) 578 (−0.30) 484 (+0.44) 341 (−0.97) 248 (+4.06) | 518 (120) | 677 (+0.21) 586 (−0.33) 506 (+0.54) 309 (−1.72) 264 (+1.31) w |
Ac-HADHAH-NH2 | 615 (85) | 620 (−0.09) 517 (+0.09) 262 (+0.29) 231 (−9.07) | 575 (108) | 645 (+0.22) 553 (−0.32) 489 (+0.36) 337 (−2.13) 248 (+6.08) sh | 532 (132) | 636 (+1.04) 496 (−1.33) 319 (+1.13) 294 (−0.19) 258 (+7.50) |
Ac-S3H4-NH2 * [9] | 585 (68) | − | − | − | − | − |
Ac-HFHAHFH-NH2 | 614 (81) | − | 529 (146) | 644 (+0.57) 540 (−0.69) 342 (−1.36) | ||
Ac-HDHAHDH-NH2 | 605 (60) | 664 (+0.05) 372 (+0.05) 255 (+1.04) | 570 (72) | 609 (+0.85) 533 (+0.17) 494 (+0.18) 334 (−1.19) 251 (+5.88) sh | 538 (103) | 623 (+1.00) 491 (−0.71) 347 (−0.26) 317 (+0.11) 256 (+6.15) 240 (+4.82) |
Ligand | Complex | pH | Ik (μA) | Ia (μA) | Ek (V) | Ea (V) | ΔE (V) | Ia/Ik | E1/2 (V) | E°’ (V) |
---|---|---|---|---|---|---|---|---|---|---|
Ac-SarHAH-NH2 | [CuL] | 4.80 | −5.90 | 4.45 | 0.053 | 0.234 | 0.181 | 0.75 | 0.144 | 0.353 |
[CuL2] | 6.00 | −3.51 | 3.28 | −0.057 | 0.232 | 0.289 | 0.94 | 0.088 | 0.297 | |
[CuLH−2] | 8.70 | −0.36 | 0.39 | −0.081 | 0.149 | 0.230 | 1.09 | 0.034 | 0.243 | |
Ac-HADH-NH2 | [CuL] | 5.41 | −1.49 | 1.36 | 0.052 | 0.297 | 0.245 | 0.91 | 0.175 | 0.384 |
[CuLH−2] | 8.35 | −0.63 | 0.67 | −0.123 | 0.276 | 0.399 | 1.07 | 0.077 | 0.286 | |
Ac-HDAH-NH2 | [CuL] | 5.41 | −2.05 | 1.31 | 0.079 | 0.271 | 0.192 | 0.64 | 0.175 | 0.384 |
[CuLH−1] | 6.90 | −1.37 | 1.00 | 0.064 | 0.259 | 0.191 | 0.73 | 0.162 | 0.371 | |
[CuLH−2] | 8.33 | −0.30 | 0.38 | −0.078 | 0.235 | 0.313 | 1.29 | 0.079 | 0.288 | |
Ac-HAHDH-NH2 | [CuL] | 5.82 | −1.23 | 1.01 | −0.099 | 0.268 | 0.367 | 0.82 | 0.047 | 0.294 |
[CuLH−1] | 7.20 | −1.22 | 1.17 | −0.142 | 0.186 | 0.328 | 0.96 | 0.022 | 0.231 | |
Ac-HADHAH-NH2 | CuLH | 4.69 | −2.12 | 1.54 | 0.023 | 0.212 | 0.189 | 0.73 | 0.118 | 0.327 |
[CuL] | 6.51 | −1.33 | 0.85 | −0.090 | 0.199 | 0.289 | 0.64 | 0.055 | 0.264 | |
[CuLH−2] | 8.40 | −0.45 | 0.19 | −0.108 | 0.151 | 0.259 | 0.42 | 0.022 | 0.231 | |
Ac-HDHAHDH-NH2 | [CuL] | 8.67 | −2.53 | 1.738 | −0.390 | 0.209 | 0.599 | 0.69 | −0.091 | 0.119 |
[NiL] | [NiH−2L] | [NiH−3L] | ||||
---|---|---|---|---|---|---|
UV | CD | UV | CD | UV | CD | |
Ac-HGH-NHMe [10] | 635 (12) | − | 470 (166) | − | 445 (208) 485 (176) sh | 499 (+3.69) 422 (−2.85) 278 (+4.44) |
Ac-SarHAH-NH2 | 645 (5) sh 386 (10) | 481 (−0.02) 420 (+0.02) 259 (+0.09) 233 (−0.93) | 410 (22) sh | 512 (+0.22) 407 (−0.75) 295 (−0.41) 260 (+4.21) 237 (+1.00) | 429 (150) sh | 539 (+0.14) 419 (−3.06) 261 (+12.87) 232 (−5.50) |
Ac-HAAH-NH2 | 631 (31) 449 (40) 372 (46) | 231 (−1.44) | 435 (165) | 505 (+1.22) 419 (−2.68) 260 (+5.53) 244 (+3.08) 231 (+6.84) | 433 (235) | 505 (+0.93) 419 (−2.68) 261 (+6.94) 241 (+2.10) 233 (+2.76) sh |
Ac-HADH-NH2 | 641 (11) 384 (26) | 230 (−1.66) | − | − | 440 (120) | 513 (+0.79) 420 (−2.46) 262 (+6.83) 241 (+2.55) 234 (+2.87) |
Ac-HDAH-NH2 | 647 (4) 388 (11) | 230 (−1.45) | 435 (80) sh | 500 (+3.66) 420 (−1.10) 264 (+1.45) 221 (−8.11) | 437 (135) sh | 504 (+0.95) 420 (−3.05) 262 (+5.31) 243 (+2.38) 235 (+3.45) |
Ac-HAHVH-NH2 [10] | 615 (25) 365 (61) | − | 450 (121) | 505 (+1.24) 425 (+0.40) 295 (−3.82) 255 (+11.5) | 440 (196) | 535 (+0.41) 425 (−2.19) 260 (+7.83) |
Ac-HFHAH-NH2 | 626 (6) 383 (15) | 348 (−0.03) 254 (+0.08) sh | 447 (107) | 510 (+0.50) 421 (−0.84) 258 (+3.33) | 436 (124) sh | 520 (+0.32) 418 (−2.10) 259 (+7.88) |
Ac-HAHFH-NH2 | 639 (26) 382 (55) | 561 (−0.20) 487 (+0.07) 343 (−0.29) 249 (+1.88) sh | 479 (126) | 530 (+0.77) 476 (+0.22) 442 (+0.46) 297 (−1.50) 231 (+1.24) sh | 456 (29) | 540 (+0.54) 426 (−2.84) 261 (−7.67) 245 (+6.52) 239 (+8.70) sh |
Ac-HAHKH-NH2 | − | − | 436 (100) sh | 522 (+0.35) 420 (−1.85) 298 (−0.60) 262 (+11.79) 236 (+3.43) | 435 (142) sh | 527 (+0.40) 422 (−3.52) 263 (+14.67) 235 (+3.01) |
Ac-HKHAH-NH2 | − | − | 433 (137) sh | 521 (+0.34) 420 (−2.79) 262 (+14.61) 235 (+1.49) | 431 (171) sh | 517 (+0.81) 419 (−4.38) 262 (+18.46) 225 (−4.02) |
Ac-HAHDH-NH2 | 634 (10) 383 (27) | 257 (+0.09) sh 232 (−1.20) 215 (+2.65) | 445 (89) | 508 (+0.38) sh 291 (−0.60) 257 (+2.88) 239 (+2.09) 221 (+4.41) 213 (−5.14) | 442 (129) | 507 (+0.38) 423 (−1.07) 259 (+3.31) 224 (+2.59) 216 (+6.63) sh |
Ac-HDHAH-NH2 | 627 (8) 386 (20) | 275 (+0.30) w 233 (−1.70) 212 (+3.94) | 439 (77) sh | 520 (+0.17) 421 (+0.90) 262 (+6.80) 233 (−1.30) | 434 (132) sh | 546 (+0.10) 421 (−1.91) 263 (+9.66) 236 (+1.97) 219 (+9.52) |
Ac-HAAHVH-NH2 | 631 380 | 487 (−0.04) 418 (+0.02) 261 (+0.08) sh 230 (−3.46) | 441 sh | 526 (+0.19) 417 (−3.84) 308 (−0.06) 259 (+1.38) 233 (+0.15) 226(+2.82) | 441 sh | 511 (+0.74) 419 (−1.66) 260 (+3.53) 244 (+2.42) 231 (+4.02) |
Ac-HAAHGH-NH2 | 630 (14) 380 (38) | 513 (+0.05) 416 (−0.09) 259 (+0.20) sh 234 (−1.16) 216 (+9.08) sh | − | − | 440 (220) sh | 501 (+3.42) 421 (−4.29) 277 (5.78) 230 (13.35) sh |
Ac-HGFHVH-NH2 | 618 (5) 379 (11) | 233 (−1.60) | − | − | 483 (46) 435 (52) | 499 (−3.41) 421 (+5.05) 269 (−5.57) 245 (+0.79) |
Ac-HADHAH-NH2 | 630 (9) 380 (21) | 231 (−2.93) | 438 (97) sh | 551 (+0.04) 421 (−0.73) sh 300 (−0.33) 263 (+4.99) 235 (−0.94) 221 (+8.01) | 433 (147) sh | 509 (+1.15) 420 (−3.78) 260 (+14.23) 230 (−1.98) 221 (+10.73) |
Ac-HDHAHDH-NH2 | 620 (20) 380 (39) | 482 (−0.06) 418 (+0.03) 261 (+0.09) sh 228 (−6.48) | − | − | 445 (136) sh | 512 (+1.03) 426 (−2.27) 260 (+7.23) 250 (+6.98) 225 (+11.94) sh |
His (1),(4) Hα | His (1),(4) Hβ | Asp Hα | Asp Hβ | Ala Hα | Ala Hβ | His (1),(4) Hδ | His (1),(4) Hε | |
---|---|---|---|---|---|---|---|---|
Ac-HADH-NH2, pH~6 | – | – | 4.59 | 2.62 | 4.30 | 1.30 | 8.11 | 7.12 |
Zn(II)-Ac-HADH-NH2, pH~6 | 4.59 | 3.11 | 4.68 | 2.70 | 4.38 | 1.36 | 7.90 | 7.02 |
Ac-HADH-NH2, pH~8.2 | 4.56 | 3.11 | 4.56 | 2.64 | 4.30 | 1.30 | 7.68 | 6.95 |
Zn(II)-Ac-HADH-NH2, pH~8.2 | 3.94 | 3.04 | 4.56 | 2.67 | 4.10 | 1.33 | 7.84 | 7.01 |
Ac-HADH-NH2, pH~10.8 | 4.55 | 3.09 | 4.55 | 2.62 | 4.30 | 1.34 | 7.68 | 6.94 |
Zn(II)-Ac-HADH-NH2, pH~10.8 | 3.91 | 3.05 | 3.53 | 2.63 | 4.28 | 1.36 | 7.69 | 6.97 |
References
- Steinman, H.M.; Naik, V.R.; Abernathy, J.L.; Hill, R.L. Bovine erythrocyte superoxide dismutase. Complete amino acid sequence. J. Biol. Chem. 1974, 249, 7326–7338. [Google Scholar] [CrossRef]
- Richardson, J.S.; Thomas, K.A.; Rubin, B.H.; Richardson, D.C. Crystal structure of bovine Cu,Zn superoxide dismutase at 3 angstrom resolution: Chain tracing and metal ligands. Proc. Nat. Acad. Sci. USA 1975, 72, 1349–1353. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tainer, J.A.; Getzoff, E.D.; Richardson, J.S.; Richardson, D.C. Structure and mechanism of copper, zinc superoxide dismutase. Nature 1983, 306, 284–287. [Google Scholar] [CrossRef]
- Holm, R.H.; Kennepohl, P.; Solomon, E.I. Structural and functional aspects of metal sites in biology. Chem. Rev. 1996, 96, 2239–2314. [Google Scholar] [CrossRef]
- Remelli, M.; Luczkowski, M.; Bonna, A.M.; Mackiewicz, Z.; Conato, C.; Kozlowski, H. Cu(II) ion coordination to SPARC: A model study on short peptide fragments. New J. Chem. 2003, 27, 245–250. [Google Scholar] [CrossRef]
- Bóka, B.; Myari, A.; Sóvágó, I.; Hadjiliadis, N. Copper(II) and zinc(II) complexes of the peptides Ac-HisValHis-NH2 and Ac-HisValGlyAsp-NH2 related to the active site of the enzyme CuZnSOD. J. Inorg. Biochem. 2004, 98, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Sanna, D.; Micera, G.; Kállay, C.; Rigó, V.; Sóvágó, I. Copper(II) complexes of N-terminal protected tri- and tetrapeptides containing histidine residues. Dalton Trans. 2004, 17, 2702–2707. [Google Scholar] [CrossRef] [PubMed]
- Kállay, C.; Várnagy, K.; Malandrinos, G.; Hadjiliadis, N.; Sanna, D.; Sóvágó, I. Copper(II) complexes of terminally protected pentapeptides containing three histidyl residues in alternating positions, Ac-His-Xaa-His-Yaa-His-NH2. Dalton Trans. 2006, 38, 4545–4552. [Google Scholar] [CrossRef]
- Kállay, C.; Várnagy, K.; Malandrinos, G.; Hadjiliadis, N.; Sanna, D.; Sóvágó, I. Thermodynamic and structural characterization of the macrochelates formed in the reactions of copper(II) and zinc(II) ions with peptides of histidine. Inorg. Chim. Acta 2009, 362, 935–945. [Google Scholar] [CrossRef]
- Timári, S.; Kállay, C.; Ősz, K.; Sóvágó, I.; Várnagy, K. Transition metal complexes of short multihistidine peptides. Dalton Trans. 2009, 11, 1962–1971. [Google Scholar] [CrossRef]
- Rajković, S.; Kállay, C.; Serényi, R.; Malandrinos, G.; Hadjiliadis, N.; Sanna, D.; Sóvágó, I. Complex formation processes of terminally protected peptides containing two or three histidyl residues. Characterization of the mixed metal complexes of peptides. Dalton Trans. 2008, 37, 5059–5071. [Google Scholar] [CrossRef] [PubMed]
- Brasun, J.; Czapor, H.; Matera-Witkiewicz, A.; Kotynia, A.; Sochacka, A.; Cebrat, M. The unusual coordination abilities of the peptides with βXaaHisGlyHis sequence. The influence of structural modification of the peptide chain on the copper(II) binding. Dalton Trans. 2010, 39, 6518–6523. [Google Scholar] [CrossRef] [PubMed]
- Csire, G.; Timári, S.; Asztalos, J.; Király, J.M.; Kiss, M.; Várnagy, K. Coordination, redox properties and SOD activity of Cu(II) complexes of multihistidine peptides. J. Inorg. Biochem. 2017, 177, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Sóvágó, I.; Kállay, C.; Várnagy, K. Peptides as complexing agents: Factors influencing the structure and thermodynamic stability of peptide complexes. Coord. Chem. Rev. 2012, 256, 2225–2233. [Google Scholar] [CrossRef]
- Sóvágó, I.; Várnagy, K.; Lihi, N.; Grenács, Á. Coordinating properties of peptides containing histidyl residues. Coord. Chem. Rev. 2016, 327–328, 43–54. [Google Scholar] [CrossRef]
- Bellotti, D.; Tocchio, C.; Guerrini, R.; Rowińska-Żyrek, M.; Remelli, M. Thermodynamic and spectroscopic study of Cu(II) and Zn(II) complexes with the (148–156) peptide fragment of C4YJH2, a putative metal transporter of Candida albicans. Metallomics 2019, 11, 1988. [Google Scholar] [CrossRef]
- Grenács, Á.; Kaluha, A.; Kállay, C.; Jószai, V.; Sanna, D.; Sóvágó, I. Binary and ternary mixed metal complexes of terminally free peptides containing two different histidyl binding sites. J. Inorg. Biochem. 2013, 128, 17–25. [Google Scholar] [CrossRef][Green Version]
- Raics, M.; Sanna, D.; Sóvágó, I.; Kállay, C. Copper(II), nickel(II) and zinc(II) complexes of hexapeptides containing separate aspartyl and histidyl residues. Inorg. Chim. Acta 2015, 426, 99–106. [Google Scholar] [CrossRef][Green Version]
- Csire, G.; Nagy, L.; Várnagy, K.; Kállay, C. Copper(II) interaction with the Human Prion 103-112 fragment—Coordination and oxidation. J. Inorg. Biochem. 2017, 170, 195–201. [Google Scholar] [CrossRef][Green Version]
- Zékány, L.; Nagypál, I. Computational Methods for the Determination of Formation Constants; Leggett, D.J., Ed.; Plenum Press: New York, NY, USA, 1985; pp. 291–353. [Google Scholar]
- Gans, P.; Sabatini, A.; Vacca, A. SUPERQUAD: An improved general program for computation of formation constants from potentiometric data. J. Chem. Soc. Dalton Trans. 1985, 6, 1195–1200. [Google Scholar] [CrossRef]
- Ősz, K.; Lente, G.; Kállay, C. New protonation microequilibrium treatment in the case of some amino acid and peptide derivatives containing a bis(imidazolyl)methyl group. J. Phys. Chem. B 2005, 109, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Puigdomenech, I. Hydra/Medusa Chemical Equilibrium Database and Plotting Software, KTH Royal Institute of Technology. 2004. Available online: https://www.kth.se/che/medusa/ (accessed on 17 May 2022).
- Farkas, E.; Buglyó, P.; Enyedy, É.A.; Santos, M.A. Factors affecting the metal ion-hydroxamate interactions II: Effect of the length of the connecting chain on the Fe(III), Mo(VI) and V(V) complexation of some new desferrioxamine B (DFB) model dihydroxamic acids. Inorg. Chim. Acta 2004, 357, 2451–2461. [Google Scholar] [CrossRef]
- Kiss, T.; Szűcs, Z. Studies on transition-metal–peptide complexes. Part 12. Copper(II) complexes of dipeptides containing phenylalanine and tyrosine. J. Chem. Soc. Dalton Trans. 1986, 11, 2443–2447. [Google Scholar] [CrossRef]
- Billo, E. Copper(II) chromosomes and the rule of average environment. J. Inorg. Nucl. Chem. Lett. 1974, 10, 613–617. [Google Scholar] [CrossRef]
- Timári, S.; Cerea, R.; Várnagy, K. Characterization of CuZnSOD model complexes from a redox point of view: Redox properties of copper(II) complexes of imidazole containing ligands. J. Inorg. Biochem. 2011, 105, 1009–1017. [Google Scholar] [CrossRef]
- Miyoshi, K.; Tanaka, H.; Kimura, E.; Tsuboyama, S.; Murata, S.; Shimizu, H.; Ishizu, K. Electrochemical and spectroscopic studies on copperI(I) complexes of macrocyclic ligands as models for square-pyramidal metal active sites of copper(II) complexes of bleomycin and glutathione. Inorg. Chim. Acta 1983, 78, 23–30. [Google Scholar] [CrossRef]
- Rorabacher, D.B. Electron transfer by copper centers. Chem. Rev. 2004, 104, 651–697. [Google Scholar] [CrossRef]
- Takehara, K.; Ide, Y. Electrochemistry of copper(II)-peptide complexes containing histidine residues. Inorg. Chim. Acta 1991, 183, 195–202. [Google Scholar] [CrossRef]
- Takehara, K.; Ide, Y. Electrochemistry of Cu(II)-peptide complexes containing histidine residues II. Anomalous current fluctuation in the reduction process of Cu(II)-GGH. Inorg. Chim. Acta 1991, 186, 73–78. [Google Scholar] [CrossRef]
- Bonomo, R.P.; Impellizzeri, G.; Pappalardo, G.; Rizzarelli, E.; Tabbì, G. Copper(II) binding modes in the prion octapeptide PHGGGWGQ: A spectroscopic and voltammetric study. Chem. A Eur. J. 2000, 6, 4195–4202. [Google Scholar] [CrossRef]
- Hureau, C.; Charlet, L.; Dorlet, P.; Gonnet, F.; Spadini, L.; Anxolabéhère-Mallart, E.; Girerd, J.J. A spectroscopic and voltammetric study of the pH-dependent Cu(II) coordination to the peptide GGGTH: Relevance to the fifth Cu(II) site in the prion protein. J. Biol. Inorg. Chem. 2006, 11, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Klewpatinond, M.; Viles, J.H. Empirical rules for rationalising visible circular dichroism of Cu2+ and Ni2+ histidine complexes: Applications to the prion protein. FEBS Lett. 2007, 581, 1430–1434. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kállay, C.; Ősz, K.; Dávid, A.; Valastyán, Z.; Malandrinos, G.; Hadjiliadis, N.; Sóvágó, I. Zinc(II) binding ability of tri-, tetra- and penta-peptides containing two or three histidyl residues. Dalton Trans. 2007, 36, 4040–4047. [Google Scholar] [CrossRef] [PubMed]
- Grasso, G.; Magri, A.; Bellia, F.; Pietropaolo, A.; La Mendola, D.; Rizzarelli, E. The copper(II) and zinc(II) coordination mode of HExxH and HxxEH motif in small peptides: The role of carboxylate location and hydrogen bonding network. J. Inorg. Biochem. 2014, 130, 92–102. [Google Scholar] [CrossRef] [PubMed]
Ac-SarHAH-NH2 | Ac-HADH-NH2 | Ac-HDAH-NH2 | Ac-HFHAH-NH2 | Ac-HAHFH-NH2 | Ac-HKHAH-NH2 | Ac-HAHDH-NH2 | Ac-HDHAH-NH2 | Ac-HGFHVH-NH2 | Ac-HADHAH-NH2 | Ac-HFHAHFH-NH2 | Ac-HDHAHDH-NH2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[CuL2] | 10.96(5) | – | – | – | – | – | – | – | – | – | – | – |
[CuH3L] | – | – | – | – | – | – | – | – | – | – | – | 25.10(3) |
[CuH2L] | – | – | – | – | – | 23.24(3) | 18.28(8) | 17.57(6) | – | – | 19.39(2) | – |
[CuHL] | – | – | – | 12.79(3) | 13.25(1) | 18.22(3) | 13.66(6) | 13.49(2) | 13.28(4) | 13.64(2) | 14.79(2) | 16.54(2) |
[CuL] | 6.45(2) | 6.70(4) | 6.50(4) | 7.57(4) | 8.08(1) | 11.70(6) | 8.89(4) | 8.38(2) | 8.49(1) | 8.65(2) | 9.94(2) | 10.95(5) |
[CuH−1L] | – | −0.07(1) | −0.25(8) | 1.76(4) | 2.04(1) | 4.67(5) | 1.98(7) | 1.49(3) | 1.07(4) | – | 3.36 (5) | – |
[CuH−2L] | −6.21(2) | −8.07(9) | −7.37(6) | −5.77(7) | −4.63(1) | −5.02(8) | −5.23(6) | −6.08(3) | −6.80(6) | −6.20(4) | −4.00(7) | −4.36(6) |
[CuH−3L] | −15.45(4) | −16.40(9) | −16.56(9) | −16.85(8) | −15.59(1) | −15.35(7) | −15.47(7) | −16.9(1) | −15.89(6) | −15.70(6) | −14.74(2) | −14.61(8) |
[Cu2L] | – | – | – | – | – | – | – | – | – | – | 12.70(4) | – |
[Cu2H−1L] | – | – | – | – | – | 8.6(1) | – | – | – | – | – | – |
[Cu2H−2L] | – | – | – | – | −0.44(1) | – | – | – | – | −1.02(6) | 2.37(2) | 3.26(3) |
[Cu2H−3L] | – | – | – | – | – | −3.99(7) | – | −8.09 | – | −7.54(4) | – | – |
[Cu2H−4L] | – | – | – | −13.24(5) | −11.79(1) | – | – | −17.7(3) | – | −14.64(5) | −9.62(3) | −12.16(5) |
[Cu2H−5L] | – | – | – | −23.58(9) | −22.39(1) | −24.8(1) | – | −29.8(3) | – | −23.64(8) | −20.22(5) | −22.59(8) |
[Cu2H−6L] | – | – | – | – | – | – | – | – | – | −34.54(7) | −31.41(3) | −33.84(6) |
[Cu3H−5L] | – | – | – | – | – | – | – | – | – | – | – | −14.6(1) |
[Cu3H−6L] | – | – | – | – | – | – | – | – | – | – | −18.85(3) | −23.7(5) |
[Cu3H−7L] | – | – | – | – | – | – | – | – | – | – | −28.68(4) | −32.9(2) |
lgK(Cu(II) + NIm) | lgK(Cu(II) + 2NIm) | lgK(Cu(II) + 3NIm) | lgK(Cu(II) + 4NIm) | pK(Amide)1 | pK(Amide)2 | pK(Amide)3 | |
---|---|---|---|---|---|---|---|
Ac-HVH-NH2 [6] | – | 6.63 | – | 11.58 | 6.25 (av.) | 10.34 | |
Ac-SarHAH-NH2 | – | 6.45 | – | 10.96 | 6.33 (av.) | 9.24 | |
Ac-HAAH-NH2 [2] | – | 6.08 | – | – | 7.01 | 7.12 | 8.34 |
Ac-HADH-NH2 | – | 6.70 | – | – | 6.77 | 8.00 | 8.33 |
Ac-HDAH-NH2 | – | 6.50 | – | – | 6.75 | 7.12 | 9.19 |
Ac-HAHVH-NH2 [8] | – | 6.25 | 8.08 | – | 6.81 | 7.12 | 9.96 |
Ac-HVHAH-NH2 [8] | – | 6.39 | 8.42 | – | 6.59 | 7.40 | 9.53 |
Ac-HFHAH-NH2 | – | 5.76 | 7.57 | – | 5.81 | 7.53 | 11.08 |
Ac-HAHFH-NH2 | – | 6.30 | 8.08 | – | 6.04 | 6.67 | 10.96 |
Ac-HKHAH-NH2 | – | 6.12 | 7.94 | – | 6.52 | 7.03 | 9.69 |
Ac-HAHDH-NH2 | 4.61 | 6.48 | 8.89 | – | 6.91 | 7.21 | 10.24 |
Ac-HDHAH-NH2 | 3.96 | 6.35 | 8.38 | – | 6.89 | 7.57 | 10.81 |
Ac-HAAHVH-NH2 [13] | – | 6.22 | 8.17 | – | 7.04 | 7.97 | 9.40 |
Ac-HAAHGH-NH2 [13] | – | 6.02 | 8.55 | – | 7.02 | 7.43 | 9.05 |
Ac-HGFHVH-NH2 | – | 6.32 | 8.49 | – | 7.42 | 7.87 | 9.80 |
Ac-HADHAH-NH2 | – | 6.53 | 8.65 | – | 7.42 (av.) | 9.50 | |
Ac-S3H4-NH2 * [9] | – | 5.89 | 7.41 | 9.29 | – | – | – |
Ac-HFHAHFH-NH2 | – | 6.16 | 7.99 | 9.94 | 6.58 | 7.36 | 10.74 |
Ac-HDHAHDH-NH2 | 4.89 | – | 9.37 | 10.95 | 7.65 (av.) | 10.25 |
Ac-HGFHVH-NH2 | Ac-HADHAH-NH2 | Ac-HAAHVH-NH2 [11] | |
---|---|---|---|
[CuH−2L] | 50:50 | 60:40 | 10:90 |
[CuH−3L] | 60:40 | 75:25 | 80:20 |
Coordination Mode | 2 × NIm | 3 × NIm | 4 × NIm | [NIm,N−,NIm] | [NIm,N−,N−,NIm] |
---|---|---|---|---|---|
[CuL] | [CuL2] | ||||
Ac-SarHAH-NH2 | 0.353 V | – | 0.297 V | – | 0.243 V |
Ac-HVVH-NH2 [27] | 0.389 V | – | 0.339 V | – | 0.235 V * |
Ac-HAAH-NH2 [13] | 0.397 V | – | 0.323 V | – | 0.267 V * |
Ac-HADH-NH2 | 0.384 V | – | – | – | 0.286 V |
Ac-HDAH-NH2 | 0.384 V | – | – | 0.371 V | 0.288 V |
[CuHL] | [CuL] | [CuH−1L] | [CuH−2L] | ||
Ac-HVHAH-NH2 [27] | – | 0.253 | – | – | 0.181 V * |
Ac-HAHPH-NH2 [27] | – | 0.244 V | – | – | 0.165 V * |
Ac-HAAHGH-NH2 [13] | 0.334 V | 0.276 V | – | 0.214 V | 0.201 V |
Ac-HAAHVH-NH2 [13] | 0.329 V | 0.264 V | – | 0.202 V | 0.177 V * |
Ac-HAHDH-NH2 | – | 0.294 V | – | 0.231 V | – |
Ac-HADHAH-NH2 | 0.327 V | 0.264 V | – | – | 0.231 V |
Ac-HDHAHDH-NH2 | – | 0.119 V | – | – | – |
lgβ [MpLqHr] | Ac-SarHAH-NH2 | Ac-HAAH-NH2 | Ac-HADH-NH2 | Ac-HDAH-NH2 |
---|---|---|---|---|
[NiL] | 4.23(4) | 3.90(2) | 4.33(4) | 4.11(3) |
[NiH−1L] | – | – | −4.50(7) | – |
[NiH−2L] | −13.06(5) | −13.56(3) | – | −13.71(3) |
[NiH−3L] | −21.92(4) | −22.48(2) | −22.95(5) | −22.74(3) |
lgK(Ni(II) + 2NIm) | 4.23 | 3.90 | 4.33 | 4.11 |
pK(amide)1 | – | 8.73 | 8.83 | – |
pK(amide)1,2 | 8.65 | – | – | 8.91 |
pK(amide)2,3 | – | 8.92 | 9.27 | – |
pK(amide)3 | 8.86 | – | – | 9.03 |
lgβ [MpLqHr] | Ac-HFHAH-NH2 | Ac-HAHFH-NH2 | Ac-HKHAH-NH2 | Ac-HAHKH-NH2 | Ac-HDHAH-NH2 | Ac-HAHDH-NH2 | Ac-HAAHGH-NH2 | Ac-HAAHVH-NH2 | Ac-HGFHVH-NH2 | Ac-HADHAH-NH2 | Ac-HDHAHDH-NH2 |
---|---|---|---|---|---|---|---|---|---|---|---|
[NiH2L] | – | – | 20.99(3) | 20.90(3) | – | – | – | 18.22(6) | |||
[NiHL] | 10.16(4) | 11.00(5) | 15.20(2) | 15.21(2) | 11.57(8) | 11.59(3) | 10.70(7) | 10.55(4) | 11.07(3) | 11.19(4) | 12.05(9) |
[NiL] | 4.52(1) | 5.48(3) | – | – | 5.67(5) | 5.55(3) | 4.79(4) | 4.57(3) | 5.14(2) | 5.15(2) | 6.30(4) |
[NiL2] | – | – | – | – | 9.77(7) | 9.37(5) | – | – | 8.97(4) | – | – |
[NiH−1L] | – | – | −1.79(3) | −2.10(3) | – | – | – | – | −3.19(4) | – | −2.23(7) |
[NiH−2L] | −12.33(1) | −11.15(4) | −11.29(5) | −11.83(5) | −11.83(6) | −11.79(3) | −12.26(5) | −12.91(4) | – | −12.56(3) | – |
[NiH−3L] | −22.09(2) | −20.71(8) | −21.45(5) | −21.76(3) | −21.30(6) | −21.89(4) | −21.21(6) | −22.62(5) | −20.21(2) | −22.29(3) | −21.51(7) |
lgK(Ni(II) + 2NIm) | 3.13 | 4.05 | 3.87 | 3.91 | 4.43 | 4.41 | 3.70 | 3.74 | 4.11 | 4.08 | 4.39 |
lgK(Ni(II) + 3NIm) | 4.52 | 5.48 | 4.92 | 5.03 | 5.67 | 5.55 | 4.79 | 4.57 | 5.14 | 5.15 | 4.88 |
lgK(Ni(II) + 4NIm) | – | – | – | – | – | – | – | – | – | 6.27 | |
pK(amide)1 | – | – | – | – | – | – | – | – | 8.33 | – | 8.53 |
pK(amide)1,2 | 8.42 | 8.32 | 8.50 | 8.70 | 8.75 | 8.67 | 8.52 | 8.74 | – | 8.85 | – |
pK(amide)2,3 | – | – | – | – | – | – | – | – | 8.51 | – | 9.64 |
pK(amide)3 | 9.76 | 9.56 | 9.50 | 9.73 | 9.47 | 10.10 | 8.95 | 9.71 | – | 9.73 | – |
lgβ [MpLqHr] | Ac-HADH-NH2 | Ac-HDAH-NH2 | Ac-HAHDH-NH2 | Ac-HDHAH-NH2 | Ac-HADHAH-NH2 |
---|---|---|---|---|---|
[ZnHL] | – | – | – | 10.84(8) | 10.91(5) |
[ZnL] | 4.41(7) | 4.01(3) | 5.14(5) | 5.38(3) | 5.63(1) |
[ZnH−1L] | −3.13(12) | −3.49(5) | – | – | −2.40(6) |
[ZnH−2L] | −11.69(12) | – | – | – | −11.23(6) |
lgK(Zn(II) + 2NIm) | 4.41 | 4.01 | – | 3.70 | 3.80 |
lgK(Zn(II) + 3NIm) | – | – | 5.14 | 5.38 | 5.63 |
lgK(ZnL/ZnH−1L) | 7.54 | 7.50 | – | – | 8.03 |
lgK(ZnH−1L/ZnH−2L) | 8.56 | – | – | – | 8.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Székely, E.; Csire, G.; Balogh, B.D.; Erdei, J.Z.; Király, J.M.; Kocsi, J.; Pinkóczy, J.; Várnagy, K. The Role of Side Chains in the Fine-Tuning of the Metal-Binding Ability of Multihistidine Peptides. Molecules 2022, 27, 3435. https://doi.org/10.3390/molecules27113435
Székely E, Csire G, Balogh BD, Erdei JZ, Király JM, Kocsi J, Pinkóczy J, Várnagy K. The Role of Side Chains in the Fine-Tuning of the Metal-Binding Ability of Multihistidine Peptides. Molecules. 2022; 27(11):3435. https://doi.org/10.3390/molecules27113435
Chicago/Turabian StyleSzékely, Enikő, Gizella Csire, Bettina Diána Balogh, Judit Zsuzsa Erdei, Judit Mária Király, Judit Kocsi, Júlia Pinkóczy, and Katalin Várnagy. 2022. "The Role of Side Chains in the Fine-Tuning of the Metal-Binding Ability of Multihistidine Peptides" Molecules 27, no. 11: 3435. https://doi.org/10.3390/molecules27113435