Diclofenac Ion Hydration: Experimental and Theoretical Search for Anion Pairs
Abstract
:1. Introduction
2. Results
2.1. Classical MD Simulations
2.2. DFT Computations of IR/Raman Spectra in the 10–4000 cm−1 Region
2.3. IR Spectra in the Near-Infrared (NIR) Region: DFT Computations vs. Experiment
- (i)
- (ii)
- there are no statistically significant differences between HD-NaDN and HD-water in terms of spectral characteristics, indicating the absence of random impurities in any of them;
- (iii)
- IR spectra of “NaDN mixed with HD-NaDN” and “NaDN mixed with HD-water” solutions differ from each other.
Spectral Characteristic | Experimental Groups | |||
---|---|---|---|---|
NaDN Mixed with HD-NaDN | NaDN Mixed with HD-Water | HD-NaDN | HD-Water | |
Peak position, cm−1 (mean ± sd) | 6876 ± 4 | 6873 ± 6 | 6893 ± 2 | 6893 ± 2 |
p = 0.342 | p = 0.605 | |||
Area (mean ± sd) (b) | 669 ± 1 | 664 ± 4 | 662 ± 1 | 662 ± 1 |
p = 0.042 | p = 0.943 |
- The approach used in the work makes it possible to describe only the “left” branch of the experimental difference spectrum obtained at certain dilutions of aqueous solutions of sodium diclofenac (Figure 8b). This branch of the indicated experimental spectra is “bell-shaped”, with a maximum of ~6750 cm−1 and a half-width of about 500 cm−1. The calculated spectra peak at ~6250 cm−1 and IR-intense bands fill the frequency range from ~6000 to ~6500 cm−1 (Figure 7 and Figure S4).
- It can be assumed that the “right” branch of the experimental difference spectrum is due to complex (composite) transitions caused by the simultaneous excitation of OH stretching vibrations of water molecules of the hydration shell and intramolecular vibrations, for example, asymmetric vibrations of the CO2− group.
2.4. Electronic Absorption Spectra: TDDFT Computations vs. Experiment
3. Discussion
4. Materials and Methods
4.1. Preparing Aqueous NaDN Solutions of Various Concentrations
- (1)
- NaDN solutions of various concentrations were prepared from NaDN (0.0125%) stock solution. The NaDN solution of each concentration was prepared in triplicate; one absorption spectrum was recorded for each replicate.
- (2)
- Aqueous solutions of NaDN (0.63%) were prepared by mixing water solution of NaDN (1.25%) with HD of NaDN (referred to as “NaDN mixed with HD-NaDN”) or HD of water (referred to as “NaDN mixed with HD-water”). To prepare HD of NaDN, the initial NaDN solution (0.63%) was multiply serially diluted 100 times with water, with intensive shaking being performed at each step. The theoretical level of reduction in the NaDN concentration can be at least ×1024 times. To control the dilution technology, the water was subjected to the same procedure of serial centesimal dilutions resulting in HD of water. Each HD of NaDN, HD of water solutions, “NaDN mixed with HD-NaDN” and “NaDN mixed with HD-water” was prepared in six replicates; one IR spectrum was recorded for each replicate.
4.2. Spectroscopic Studies of Aqueous Solutions of Diclofenac in Various Frequency Ranges
4.3. Classical MD Simulations
4.4. DFT Computations
4.5. TDDFT Computations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Vazdar, M.; Vymětal, J.; Heyda, J.; Vondrášek, J.; Jungwirth, P. Like-Charge Guanidinium Pairing from Molecular Dynamics and Ab Initio Calculations. J. Phys. Chem. A 2011, 115, 11193–11201. [Google Scholar] [CrossRef] [PubMed]
- Vazdar, M.; Heyda, J.; Mason, P.E.; Tesei, G.; Allolio, C.; Lund, M.; Jungwirth, P. Arginine “Magic”: Guanidinium Like-Charge Ion Pairing from Aqueous Salts to Cell Penetrating Peptides. Acc. Chem. Res. 2018, 51, 1455–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebert, M.J.; Russell, D.H. Hydration of Guanidinium Ions: An Experimental Search for Like-Charged Ion Pairs. J. Phys. Chem. Lett. 2019, 10, 1349–1354. [Google Scholar] [CrossRef] [PubMed]
- Shenderovich, I. The Partner Does Matter: The Structure of Heteroaggregates of Acridine Orange in Water. Molecules 2019, 24, 2816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inagaki, T.; Aono, S.; Nakano, H.; Yamamoto, T. Like-Charge Attraction of Molecular Cations in Water: Subtle Balance between Interionic Interactions and Ionic Solvation Effect. J. Phys. Chem. B 2014, 118, 5499–5508. [Google Scholar] [CrossRef]
- Kruchinin, S.E.; Fedotova, M.V. Ion Pairing of the Neurotransmitters Acetylcholine and Glutamate in Aqueous Solutions. J. Phys. Chem. B 2021, 125, 11219–11231. [Google Scholar] [CrossRef]
- Chandler, D. Interfaces and the Driving Force of Hydrophobic Assembly. Nature 2005, 437, 640–647. [Google Scholar] [CrossRef]
- Niemann, T.; Stange, P.; Strate, A.; Ludwig, R. Like-likes-Like: Cooperative Hydrogen Bonding Overcomes Coulomb Repulsion in Cationic Clusters with Net Charges up to Q = +6E. ChemPhysChem 2018, 19, 1691–1695. [Google Scholar] [CrossRef] [Green Version]
- Heyden, M. Disassembling Solvation Free Energies into Local Contributions—Toward a Microscopic Understanding of Solvation Processes. WIREs Comput. Mol. Sci. 2019, 9, e1390. [Google Scholar] [CrossRef]
- Gaigeot, M.-P.; Sprik, M. Ab Initio Molecular Dynamics Computation of the Infrared Spectrum of Aqueous Uracil. J. Phys. Chem. B 2003, 107, 10344–10358. [Google Scholar] [CrossRef]
- Sun, J.; Bousquet, D.; Forbert, H.; Marx, D. Glycine in Aqueous Solution: Solvation Shells, Interfacial Water, and Vibrational Spectroscopy from Ab Initio Molecular Dynamics. J. Chem. Phys. 2010, 133, 114508. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Niehues, G.; Forbert, H.; Decka, D.; Schwaab, G.; Marx, D.; Havenith, M. Understanding THz Spectra of Aqueous Solutions: Glycine in Light and Heavy Water. J. Am. Chem. Soc. 2014, 136, 5031–5038. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Nandi, S.; Halder, R.; Jana, B.; Bhattacharyya, K. Structural Relaxation of Acridine Orange Dimer in Bulk Water and inside a Single Live Lung Cell. J. Chem. Phys. 2016, 144, 065101. [Google Scholar] [CrossRef] [PubMed]
- Mak, C.H. Unraveling Base Stacking Driving Forces in DNA. J. Phys. Chem. B 2016, 120, 6010–6020. [Google Scholar] [CrossRef]
- Vuai, S.A.H.; Sahini, M.G.; Onoka, I.; Kiruri, L.W.; Shadrack, D.M. Cation–π Interactions Drive Hydrophobic Self-Assembly and Aggregation of Niclosamide in Water. RSC Adv. 2021, 11, 33136–33147. [Google Scholar] [CrossRef]
- Vitalini, F.; Noé, F.; Keller, B.G. Molecular Dynamics Simulations Data of the Twenty Encoded Amino Acids in Different Force Fields. Data Br. 2016, 7, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Vener, M.V.; Odinokov, A.V.; Wehmeyer, C.; Sebastiani, D. The Structure and IR Signatures of the Arginine-Glutamate Salt Bridge. Insights from the Classical MD Simulations. J. Chem. Phys. 2015, 142, 215106. [Google Scholar] [CrossRef]
- Levina, E.O.; Lokshin, B.V.; Mai, B.D.; Vener, M.V. Spectral Features of Guanidinium-Carboxylate Salt Bridges. The Combined ATR-IR and Theoretical Studies of Aqueous Solution of Guanidinium Acetate. Chem. Phys. Lett. 2016, 659, 117–120. [Google Scholar] [CrossRef]
- Praprotnik, M.; Janežič, D.; Mavri, J. Temperature Dependence of Water Vibrational Spectrum: A Molecular Dynamics Simulation Study. J. Phys. Chem. A 2004, 108, 11056–11062. [Google Scholar] [CrossRef]
- Semrouni, D.; Sharma, A.; Dognon, J.-P.; Ohanessian, G.; Clavaguéra, C. Finite Temperature Infrared Spectra from Polarizable Molecular Dynamics Simulations. J. Chem. Theory Comput. 2014, 10, 3190–3199. [Google Scholar] [CrossRef]
- Houriez, C.; Vallet, V.; Réal, F.; Meot-Ner, M.; Masella, M. Organic Ion Association in Aqueous Phase and Ab Initio -Based Force Fields: The Case of Carboxylate/Ammonium Salts. J. Chem. Phys. 2017, 147, 161720. [Google Scholar] [CrossRef] [PubMed]
- Tunon, I.; Rinaldi, D.; Ruiz-Lopez, M.F.; Rivail, J.L. Hydroxide Ion in Liquid Water: Structure, Energetics, and Proton Transfer Using a Mixed Discrete-Continuum Ab Initio Model. J. Phys. Chem. 1995, 99, 3798–3805. [Google Scholar] [CrossRef]
- Barone, V.; Carnimeo, I.; Scalmani, G. Computational Spectroscopy of Large Systems in Solution: The DFTB/PCM and TD-DFTB/PCM Approach. J. Chem. Theory Comput. 2013, 9, 2052–2071. [Google Scholar] [CrossRef] [PubMed]
- Vener, M.V.; Shenderovich, I.G.; Rykounov, A.A. A Qualitative Study of the Effect of a Counterion and Polar Environment on the Structure and Spectroscopic Signatures of a Hydrated Hydroxyl Anion. Theor. Chem. Acc. 2013, 132, 1361. [Google Scholar] [CrossRef]
- Fedotova, M.V.; Kruchinin, S.E. 1D-RISM Study of Glycine Zwitterion Hydration and Ion-Molecular Complex Formation in Aqueous NaCl Solutions. J. Mol. Liq. 2012, 169, 1–7. [Google Scholar] [CrossRef]
- Levina, E.O.; Penkov, N.V.; Rodionova, N.N.; Tarasov, S.A.; Barykina, D.V.; Vener, M.V. Hydration of the Carboxylate Group in Anti-Inflammatory Drugs: ATR-IR and Computational Studies of Aqueous Solution of Sodium Diclofenac. ACS Omega 2018, 3, 302–313. [Google Scholar] [CrossRef]
- Lutz, O.M.D.; Messner, C.B.; Hofer, T.S.; Canaval, L.R.; Bonn, G.K.; Huck, C.W. Computational Vibrational Spectroscopy of Glycine in Aqueous Solution—Fundamental Considerations towards Feasible Methodologies. Chem. Phys. 2014, 435, 21–28. [Google Scholar] [CrossRef]
- Im, S.; Jang, S.-W.; Lee, S.; Lee, Y.; Kim, B. Arginine Zwitterion Is More Stable than the Canonical Form When Solvated by a Water Molecule. J. Phys. Chem. A 2008, 112, 9767–9770. [Google Scholar] [CrossRef]
- Chowdhry, B.Z.; Dines, T.J.; Jabeen, S.; Withnall, R. Vibrational Spectra of α-Amino Acids in the Zwitterionic State in Aqueous Solution and the Solid State: DFT Calculations and the Influence of Hydrogen Bonding. J. Phys. Chem. A 2008, 112, 10333–10347. [Google Scholar] [CrossRef]
- Hwang, T.-K.; Eom, G.-Y.; Choi, M.-S.; Jang, S.-W.; Kim, J.-Y.; Lee, S.; Lee, Y.; Kim, B. Microsolvation of Lysine by Water: Computational Study of Stabilized Zwitterion. J. Phys. Chem. B 2011, 115, 10147–10153. [Google Scholar] [CrossRef]
- Grabska, J.; Beć, K.B.; Kirchler, C.G.; Ozaki, Y.; Huck, C.W. Distinct Difference in Sensitivity of NIR vs. IR Bands of Melamine to Inter-Molecular Interactions with Impact on Analytical Spectroscopy Explained by Anharmonic Quantum Mechanical Study. Molecules 2019, 24, 1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonjo, T.; Futami, Y.; Morisawa, Y.; Wojcik, M.J.; Ozaki, Y. Hydrogen Bonding Effects on the Wavenumbers and Absorption Intensities of the OH Fundamental and the First, Second, and Third Overtones of Phenol and 2,6-Dihalogenated Phenols Studied by Visible/Near-Infrared/Infrared Spectroscopy. J. Phys. Chem. A 2011, 115, 9845–9853. [Google Scholar] [CrossRef] [PubMed]
- Sagawa, N.; Shikata, T. Dangling OH Vibrations of Water Molecules in Aqueous Solutions of Aprotic Polar Compounds Observed in the Near-Infrared Regime. J. Phys. Chem. B 2015, 119, 8087–8095. [Google Scholar] [CrossRef] [PubMed]
- Kócs, L.; Najbauer, E.E.; Bazsó, G.; Magyarfalvi, G.; Tarczay, G. Near-Infrared Laser-Induced Structural Changes of Glycine·Water Complexes in an Ar Matrix. J. Phys. Chem. A 2015, 119, 2429–2437. [Google Scholar] [CrossRef]
- Sagawa, N.; Shikata, T. Hydration Behavior of Poly(Ethylene Oxide)s in Aqueous Solution As Studied by Near-Infrared Spectroscopic Techniques. J. Phys. Chem. B 2013, 117, 10883–10888. [Google Scholar] [CrossRef]
- King, M.D.; Buchanan, W.D.; Korter, T.M. Identification and Quantification of Polymorphism in the Pharmaceutical Compound Diclofenac Acid by Terahertz Spectroscopy and Solid-State Density Functional Theory. Anal. Chem. 2011, 83, 3786–3792. [Google Scholar] [CrossRef]
- Takahashi, M. Terahertz Vibrations and Hydrogen-Bonded Networks in Crystals. Crystals 2014, 4, 74–103. [Google Scholar] [CrossRef]
- Parrott, E.P.J.; Zeitler, J.A. Terahertz Time-Domain and Low-Frequency Raman Spectroscopy of Organic Materials. Appl. Spectrosc. 2015, 69, 1–25. [Google Scholar] [CrossRef]
- Nishi, N.; Nakabayashi, T.; Kosugi, K. Raman Spectroscopic Study on Acetic Acid Clusters in Aqueous Solutions: Dominance of Acid−Acid Association Producing Microphases. J. Phys. Chem. A 1999, 103, 10851–10858. [Google Scholar] [CrossRef]
- Surov, A.O.; Vasilev, N.A.; Vener, M.V.; Parashchuk, O.D.; Churakov, A.V.; Magdysyuk, O.V.; Perlovich, G.L. Pharmaceutical Salts of Fenbendazole with Organic Counterions: Structural Analysis and Solubility Performance. Cryst. Growth Des. 2021, 21, 4516–4530. [Google Scholar] [CrossRef]
- Sakun, V.P.; Vener, M.V.; Sokolov, N.D. Proton Tunneling Assisted by the Intermolecular Vibration Excitation. Temperature Dependence of the Proton Spin-lattice Relaxation Time in Benzoic Acid Powder. J. Chem. Phys. 1996, 105, 379–387. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Zhao, H.; Song, B.; Zhang, G.; Zhang, J.; Zhu, Y.; Han, J. Molecular Recognition and Interaction between Uracil and Urea in Solid-State Studied by Terahertz Time-Domain Spectroscopy. J. Phys. Chem. A 2014, 118, 10927–10933. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Okamura, N.; Ding, X.; Shirakawa, H.; Minamide, H. Intermolecular Hydrogen Bond Stretching Vibrations Observed in Terahertz Spectra of Crystalline Vitamins. CrystEngComm 2018, 20, 1960–1969. [Google Scholar] [CrossRef]
- Falcone, R.D.; Correa, N.M.; Biasutti, M.A.; Silber, J.J. Acid−Base and Aggregation Processes of Acridine Orange Base in n-Heptane/AOT/Water Reverse Micelles. Langmuir 2002, 18, 2039–2047. [Google Scholar] [CrossRef]
- Boens, N.; Qin, W.; Baruah, M.; De Borggraeve, W.M.; Filarowski, A.; Smisdom, N.; Ameloot, M.; Crovetto, L.; Talavera, E.M.; Alvarez-Pez, J.M. Rational Design, Synthesis, and Spectroscopic and Photophysical Properties of a Visible-Light-Excitable, Ratiometric, Fluorescent Near-Neutral PH Indicator Based on BODIPY. Chem. Eur. J. 2011, 17, 10924–10934. [Google Scholar] [CrossRef]
- Bialas, D.; Zhong, C.; Würthner, F.; Spano, F.C. Essential States Model for Merocyanine Dye Stacks: Bridging Electronic and Optical Absorption Properties. J. Phys. Chem. C 2019, 123, 18654–18664. [Google Scholar] [CrossRef]
- McPhee, J.T.; Scott, E.; Levinger, N.E.; Van Orden, A. Cy3 in AOT Reverse Micelles I. Dimer Formation Revealed through Steady-State and Time-Resolved Spectroscopy. J. Phys. Chem. B 2011, 115, 9576–9584. [Google Scholar] [CrossRef]
- Williams, J.H. The Molecular Electric Quadrupole Moment and Solid-State Architecture. Acc. Chem. Res. 1993, 26, 593–598. [Google Scholar] [CrossRef]
- Krotova, A.A.; Kotov, V.Y. Unusual Stability of Anionic Associates in Mixed Solvents. Mendeleev Commun. 2016, 26, 154–156. [Google Scholar] [CrossRef]
- Sharada, D.; Saha, A.; Saha, B.K. Charge Transfer Complexes as Colour Changing and Disappearing–Reappearing Colour Materials. New J. Chem. 2019, 43, 7562–7566. [Google Scholar] [CrossRef]
- Moreira da Costa, L.; Stoyanov, S.R.; Gusarov, S.; Seidl, P.R.; de Carneiro, J.W.M.; Kovalenko, A. Computational Study of the Effect of Dispersion Interactions on the Thermochemistry of Aggregation of Fused Polycyclic Aromatic Hydrocarbons as Model Asphaltene Compounds in Solution. J. Phys. Chem. A 2014, 118, 896–908. [Google Scholar] [CrossRef] [PubMed]
- Melikova, S.M.; Voronin, A.P.; Panek, J.; Frolov, N.E.; Shishkina, A.V.; Rykounov, A.A.; Tretyakov, P.Y.; Vener, M.V. Interplay of π-Stacking and Inter-Stacking Interactions in Two-Component Crystals of Neutral Closed-Shell Aromatic Compounds: Periodic DFT Study. RSC Adv. 2020, 10, 27899–27910. [Google Scholar] [CrossRef] [PubMed]
- Sauer, J.; Dobler, J. Gas-Phase Infrared Spectrum of the Protonated Water Dimer: Molecular Dynamics Simulation and Accuracy of the Potential Energy Surface. ChemPhysChem 2005, 6, 1706–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, O.; England, A.H.; Dallinger, G.C.; Smith, J.W.; Duffey, K.C.; Cohen, R.C.; Prendergast, D.; Saykally, R.J. Cation-Cation Contact Pairing in Water: Guanidinium. J. Chem. Phys. 2013, 139, 035104. [Google Scholar] [CrossRef] [Green Version]
- Debiec, K.T.; Gronenborn, A.M.; Chong, L.T. Evaluating the Strength of Salt Bridges: A Comparison of Current Biomolecular Force Fields. J. Phys. Chem. B 2014, 118, 6561–6569. [Google Scholar] [CrossRef]
- Nelyubina, Y.V.; Antipin, M.Y.; Lyssenko, K.A. Are Halide···Halide Contacts a Feature of Rock-Salts Only? J. Phys. Chem. A 2007, 111, 1091–1095. [Google Scholar] [CrossRef]
- Wysokiński, R.; Zierkiewicz, W.; Michalczyk, M.; Scheiner, S. Crystallographic and Theoretical Evidences of Anion⋅⋅⋅Anion Interaction. ChemPhysChem 2021, 22, 818–821. [Google Scholar] [CrossRef]
- Vener, M.V.; Medvedev, A.G.; Churakov, A.V.; Prikhodchenko, P.V.; Tripol’skaya, T.A.; Lev, O. H-Bond Network in Amino Acid Cocrystals with H2O or H2O2. The DFT Study of Serine–H2O and Serine–H2O2. J. Phys. Chem. A 2011, 115, 13657–13663. [Google Scholar] [CrossRef]
- Parveen, S.; Chandra, A.K.; Zeegers-Huyskens, T. Theoretical Investigation of the Interaction between Fluorinated Dimethyl Ethers (nF = 1−5) and Water: Role of the Acidity and Basicity on the Competition between OH···O and CH···O Hydrogen Bonds. J. Phys. Chem. A 2009, 113, 6182–6191. [Google Scholar] [CrossRef]
- Chikramane, P.S.; Kalita, D.; Suresh, A.K.; Kane, S.G.; Bellare, J.R. Why Extreme Dilutions Reach Non-Zero Asymptotes: A Nanoparticulate Hypothesis Based on Froth Flotation. Langmuir 2012, 28, 15864–15875. [Google Scholar] [CrossRef]
- Konovalov, A.I.; Ryzhkina, I.S. Highly Diluted Aqueous Solutions: Formation of Nano-Sized Molecular Assemblies (Nanoassociates). Geochem. Int. 2014, 52, 1207–1226. [Google Scholar] [CrossRef]
- Rubtcova, E.V.; Solovey, A.B.; Lobyshev, V.I. Distribution of Internal Parameters of the Hydration Shell Structure of Proteins. Biophysics 2014, 59, 869–875. [Google Scholar] [CrossRef]
- Woods, K.N. New Insights into the Microscopic Interactions Associated with the Physical Mechanism of Action of Highly Diluted Biologics. Sci. Rep. 2021, 11, 13774. [Google Scholar] [CrossRef] [PubMed]
- Chirumbolo, S. Homeopathy Is Not Pharmacology. J. Intern. Med. 2013, 274, 612–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kononov, M.; Molkova, E.; Pustovoy, V.; Svetikov, V. The Use of Plasmonic Spectroscopy for Detecting Ultra-Low Concentrations of Substances. Photonics 2022, 9, 281. [Google Scholar] [CrossRef]
- Ninham, B.W.; Bolotskova, P.N.; Gudkov, S.V.; Baranova, E.N.; Kozlov, V.A.; Shkirin, A.V.; Vu, M.T.; Bunkin, N.F. Nafion Swelling in Salt Solutions in a Finite Sized Cell: Curious Phenomena Dependent on Sample Preparation Protocol. Polymers 2022, 14, 1511. [Google Scholar] [CrossRef] [PubMed]
- Gudkov, S.V.; Penkov, N.V.; Baimler, I.V.; Lyakhov, G.A.; Pustovoy, V.I.; Simakin, A.V.; Sarimov, R.M.; Scherbakov, I.A. Effect of Mechanical Shaking on the Physicochemical Properties of Aqueous Solutions. Int. J. Mol. Sci. 2020, 21, 8033. [Google Scholar] [CrossRef]
- Epstein, O. The Spatial Homeostasis Hypothesis. Symmetry 2018, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Penkov, N.V. Peculiarities of the Perturbation of Water Structure by Ions with Various Hydration in Concentrated Solutions of CaCl2, CsCl, KBr, and KI. Phys. Wave Phenom. 2019, 27, 128–134. [Google Scholar] [CrossRef]
- Penkov, N.; Penkova, N. Analysis of Emission Infrared Spectra of Protein Solutions in Low Concentrations. Front. Phys. 2020, 8, 624779. [Google Scholar] [CrossRef]
- Jeffrey, G.A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, NY, USA, 1997; ISBN 0-19-509549-9. [Google Scholar]
- Scheiner, S. Hydrogen Bonding. A Theoretical Perspective; Oxford University Press: New York, NY, USA, 1997; ISBN 0-19-509011-X. [Google Scholar]
- Iogansen, A.V. Direct Proportionality of the Hydrogen Bonding Energy and the Intensification of the Stretching ν(XH) Vibration in Infrared Spectra. Spectrochim. Acta Part A 1999, 55, 1585–1612. [Google Scholar] [CrossRef]
- Djikaev, Y.S.; Ruckenstein, E. Dependence of the number of hydrogen bonds per water molecule on its distance to a hydrophobic surface and a thereupon-based model for hydrophobic attraction. J. Chem. Phys. 2010, 133, 194105. [Google Scholar] [CrossRef] [PubMed]
- Bunkin, N.F.; Shkirin, A.V.; Ninham, B.W.; Chirikov, S.N.; Chaikov, L.L.; Penkov, N.V.; Kozlov, V.A.; Gudkov, S.V. Shaking-Induced Aggregation and Flotation in Immunoglobulin Dispersions: Differences between Water and Water–Ethanol Mixtures. ACS Omega 2020, 5, 14689–14701. [Google Scholar] [CrossRef] [PubMed]
- Sedlák, M.; Rak, D. Large-Scale Inhomogeneities in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: Supramolecular Structures or Nanobubbles? J. Phys. Chem. B 2013, 117, 2495–2504. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.A.; Pratt, L.R.; Hummer, G.; Garde, S. Molecular Realism in Default Models for Information Theories of Hydrophobic Effects. J. Phys. Chem. B 1999, 103, 3520–3523. [Google Scholar] [CrossRef] [Green Version]
- Kalikmanov, V.I. Nucleation Theory; Lection Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2012; Volume 860, ISBN 978-9048136421. [Google Scholar]
- Llinàs, A.; Burley, J.C.; Box, K.J.; Glen, R.C.; Goodman, J.M. Diclofenac Solubility: Independent Determination of the Intrinsic Solubility of Three Crystal Forms. J. Med. Chem. 2007, 50, 979–983. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://zarbi.chem.yale.edu/ligpargen/ (accessed on 7 April 2022).
- Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Lindahl, E.; Hess, B.; van der Spoel, D. GROMACS 3.0: A Package for Molecular Simulation and Trajectory Analysis. J. Mol. Model. 2001, 7, 306–317. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, K.M.; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hockney, R.; Goel, S.; Eastwood, J. Quiet High-Resolution Computer Models of a Plasma. J. Comput. Phys. 1974, 14, 148–158. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N⋅log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Merrick, J.P.; Moran, D.; Radom, L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A 2007, 111, 11683–11700. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models . Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef] [PubMed]
- Zhurko, G.A. Chemcraft—Graphical Program for Visualization of Quantum Chemistry Computations. Ivanovo, Russia. 2005. Available online: https://chemcraftprog.com (accessed on 7 April 2022).
Compound | State | Transition Nature (Contribution, %) | Wavelength, nm (eV) | f(*) |
---|---|---|---|---|
Monomer | 1 | H―L | 262 (4.73) | 0.33 |
9 | H-1―L | 196 (6.29) | 0.27 | |
10 | H-2―L+2 | 193 (6.43) | 0.32 | |
11 | H-2―L | 191 (6.50) | 0.16 | |
13 | H-4―L+4 | 189 (6.57) | 0.17 | |
14 | H-5―L+1 | 187 (6.64) | 0.47 | |
15 | H-1―L+1 | 185 (6.69) | 0.17 | |
17 | H-1―L+2 | 181 (6.83) | 0.22 | |
25 | H-5―L+2 | 168 (7.37) | 0.19 | |
Dimer | 1 | H―L+1 | 264 (4.70) | 0.14 |
2 | H-1―L | 260 (4.77) | 0.36 | |
21 | H-3―L | 199 (6.24) | 0.51 | |
22 | H-2―L+1 | 198 (6.27) | 0.12 | |
24 | H-3―L+4 | 193 (6.42) | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shishkina, A.V.; Ksenofontov, A.A.; Penkov, N.V.; Vener, M.V. Diclofenac Ion Hydration: Experimental and Theoretical Search for Anion Pairs. Molecules 2022, 27, 3350. https://doi.org/10.3390/molecules27103350
Shishkina AV, Ksenofontov AA, Penkov NV, Vener MV. Diclofenac Ion Hydration: Experimental and Theoretical Search for Anion Pairs. Molecules. 2022; 27(10):3350. https://doi.org/10.3390/molecules27103350
Chicago/Turabian StyleShishkina, Anastasia V., Alexander A. Ksenofontov, Nikita V. Penkov, and Mikhail V. Vener. 2022. "Diclofenac Ion Hydration: Experimental and Theoretical Search for Anion Pairs" Molecules 27, no. 10: 3350. https://doi.org/10.3390/molecules27103350