Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part II—Lessons Learned on Mycotoxins †
Abstract
:1. Introduction
2. Methodology
3. Mycotoxins
3.1. Aflatoxins
Biomarker | Matrix | Sample | Incidence (%) | Range | Average ± SD | Reference |
---|---|---|---|---|---|---|
AFM1 | Urine | Swine farm workers | 4/25 (16%) | (n.d.–5400) | 4900 | [42] |
AFM1 | Breastmilk | Breastfeeding mothers | 22/67 (32.8%) | (n.d.–10.6) | 7.4 ± 1.9 | [28] |
AFB1 | Blood serum | Waste management workers Control group | 41/41 (100%) 0/30 | (2500–25,900) n.d. | 9900 ± 5400 n.d. | [38] |
AFB1 | Blood serum | Poultry slaughterhouse workers Control group | 14/30 (47%) 0/30 | (1060–4030) n.d. | 1730 n.d. | [43] |
AFB1 | Blood serum | Poultry farm workers Control group | 18/31 (59%) 0/30 | (n.d.–4230) n.d. | 2000 ± 980 n.d. | [41] |
3.2. Ochratoxins
Biomarker | Matrix | Sample | Incidence (%) | Range | Average ± SD | Reference |
---|---|---|---|---|---|---|
OTA | Urine | Children (2–13 years old) | 79/85 (92.94%) | (n.d.–52) | 20 ± 13 | [60] |
OTA | Urine | Swine farm workers Control group | 20/25 (80%) 13/19 (68%) | (n.d.–100) <LOQ | 100 <LOQ | [42] |
OTA | Urine | Fresh dough company workers Control group | 10/21 (48%) 13/19 (68%) | <LOQ <LOQ | <LOQ <LOQ | [64] |
OTA | Blood serum | Waste management workers Control group | 42/42 (100%) | (441–6047) | 1007 | [55] |
R-OTA | Blood serum | Waste management workers Control group | 34/42 (81%) | (n.d.–627) | 334 | |
OTA | Urine | All participants | 408/472 (86.4%) | (n.d.–122) | 19 ± 14 | [56] |
Porto | 90/111 (81.1%) | (n.d.–62) | 17 ± 10 | |||
Coimbra | 77/94 (81.9%) | (n.d.–69) | 16 ± 11 | |||
Lisboa | 127/150 (85.3%) | (n.d.–94) | 19 ± 14 | |||
Alentejo | 113/117 (96.6%) | (n.d.–122) | 23 ± 16 | |||
OTA | Blood serum | General adult population (Coimbra) | 104/104 (100%): | (190–960) | 420 ± 180 | [54] |
OTA | Urine | General adult population | 13/30 (43.3%) | (n.d.–208) | 19 ± 41 | [58] |
OTA | Blood serum | Hemodialyzed patients from: -Coimbra Aveiro | 50/50 (100%) 45/45 (100%) | 120–1520 150–1030 | 500 ± 290 490 ± 220 | [53] |
OTA | Urine | General adult population | 42/60 (70%) | (n.d.–105) | 38 | [57] |
OTA | Urine | General adult population | 27% | 7–610 | [59] |
3.3. Fumonisins
3.4. Others
4. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neira, M.; Prüss-Ustün, A. Preventing disease through healthy environments: A global assessment of the environmental burden of disease. Toxicol. Lett. 2016, 259, S1. [Google Scholar] [CrossRef]
- Angerer, J.; Ewers, U.; Wilhelm, M. Human biomonitoring: State of the art. Int. J. Hyg. Environ. Health 2007, 210, 201–228. [Google Scholar] [CrossRef] [PubMed]
- Louro, H.; Heinälä, M.; Bessems, J.; Buekers, J.; Vermeire, T.; Woutersen, M.; van Engelen, J.; Borges, T.; Rousselle, C.; Ougier, E.; et al. Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. Int. J. Hyg. Environ. Health 2019, 222, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Berman, T.; Goldsmith, R.; Levine, H.; Grotto, I. Human biomonitoring in Israel: Recent results and lessons learned. Int. J. Hyg. Environ. Health 2017, 220, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Reynders, H.; Colles, A.; Morrens, B.; Mampaey, M.; Coertjens, D.; Koppen, G.; Schoeters, G.; Loots, I.; Chovanova, H.; Winderickx, W.; et al. The added value of a surveillance human biomonitoring program: The case of FLEHS in Flanders (Belgium). Int. J. Hyg. Environ. Health 2017, 220, 46–54. [Google Scholar] [CrossRef]
- Ganzleben, C.; Antignac, J.P.; Barouki, R.; Castaño, A.; Fiddicke, U.; Klánová, J.; Lebret, E.; Olea, N.; Sarigiannis, D.; Schoeters, G.R.; et al. Human biomonitoring as a tool to support chemicals regulation in the European Union. Int. J. Hyg. Environ. Health 2017, 220, 94–97. [Google Scholar] [CrossRef]
- World Health Organization. WHO Human Biomonitoring: Facts and Figures; World Health Organization: Geneva, Switzerland, 2015; pp. 1–88. [Google Scholar]
- Choi, J.; Aarøe Mørck, T.; Polcher, A.; Knudsen, L.E.; Joas, A. Review of the state of the art of human biomonitoring for chemical substances and its application to human exposure assessment for food safety. EFSA Support. Publ. 2017, 12, 724E. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Slezakova, K.; Delerue-Matos, C.; do Carmo Pereira, M.; Morais, S. Assessment of exposure to polycyclic aromatic hydrocarbons in preschool children: Levels and impact of preschool indoor air on excretion of main urinary monohydroxyl metabolites. J. Hazard. Mater. 2017, 322, 357–369. [Google Scholar] [CrossRef]
- Oliveira, M.; Slezakova, K.; José, M.; Fernandes, A.; Paulo, J.; Delerue-matos, C.; Pereira, C.; Morais, S. Polycyclic aromatic hydrocarbons at fire stations: Firefighters’ exposure monitoring and biomonitoring, and assessment of the contribution to total internal dose. J. Hazard. Mater. 2017, 323, 184–194. [Google Scholar] [CrossRef]
- Bocato, M.Z.; Bianchi Ximenez, J.P.; Hoffmann, C.; Barbosa, F. An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies. J. Toxicol. Environ. Health Part B 2019, 22, 131–156. [Google Scholar] [CrossRef]
- Ougier, E.; Lecoq, P.; Rousselle, C.; Ormsby, J.-N. Second List of HBM4EU Priority Substances and Chemical Substance Group Leaders for 2019–2021; Deliverable Report D 4.5. WP4-Prioritisation and Input to the Annual Work; ANSES: Maisons-Alfort, France, 2018. [Google Scholar]
- Escrivá, L.; Font, G.; Manyes, L.; Berrada, H. Studies on the presence of mycotoxins in biological samples: An overview. Toxins 2017, 9, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, S.C.; Pena, A.L.; de Matos Lino, C. Foreword. In Mycotoxins and Their Implications in Food Safety; Future Science Ltd.: London, UK, 2014; ISBN 9781909453227. [Google Scholar]
- Al-Jaal, B.A.; Jaganjac, M.; Barcaru, A.; Horvatovich, P.; Latiff, A. Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol biomarkers in human biological fluids: A systematic literature review, 2001–2018. Food Chem. Toxicol. 2019, 129, 211–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, V.L.; Fernandes, J.O.; Cunha, S.C. Micotoxinas em Portugal: Ocorrência e Toxicidade. Acta Farm. Port. 2012, 1, 61–73. [Google Scholar]
- Duarte, S.C.; Pena, A.; Lino, C.M. Ochratoxin a in Portugal: A review to assess human exposure. Toxins 2010, 2, 1225–1249. [Google Scholar] [CrossRef] [PubMed]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.A.F.; Corassin, C.H. Aflatoxins. In Mycotoxins and Their Implications in Food Safety; Duarte, S., Pena, A., Lino, C., Eds.; Future Science: London, UK, 2014; pp. 6–19. ISBN 978-1-909453-22-7. [Google Scholar]
- Ghiasain, S.A.; Maghsood, A.H. Infants’ exposure to aflatoxin M1 from Mother’s breast milk in Iran. Iran. J. Public Health 2012, 41, 119. [Google Scholar]
- Ishikawa, A.T.; Takabayashi-Yamashita, C.R.; Ono, E.Y.S.; Bagatin, A.K.; Rigobello, F.F.; Kawamura, O.; Hirooka, E.Y.; Itano, E.N. Exposure assessment of infants to aflatoxin M1 through consumption of breast milk and infant powdered milk in Brazil. Toxins 2016, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; Nebbia, C.S.; et al. Risk assessment of aflatoxins in food. EFSA J. 2020, 18, e06040. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Chemical agents and related occupations. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 9. [Google Scholar]
- European Food Safety Authority (EFSA). Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to Aflatoxin B1 as undesirable substance in animal feed. EFSA J. 2004, 2, 39. [Google Scholar] [CrossRef]
- Giovati, L.; Magliani, W.; Ciociola, T.; Santinoli, C.; Conti, S.; Polonelli, L. AFM1 in milk: Physical, biological, and prophylactic methods to mitigate contamination. Toxins 2015, 7, 4330–4349. [Google Scholar] [CrossRef] [PubMed]
- Cantú-Cornelio, F.; Aguilar-Toalá, J.E.; de León-Rodríguez, C.I.; Esparza-Romero, J.; Vallejo-Cordoba, B.; González-Córdova, A.F.; García, H.S.; Hernández-Mendoza, A. Occurrence and factors associated with the presence of aflatoxin M1 in breast milk samples of nursing mothers in central Mexico. Food Control 2016, 62, 16–22. [Google Scholar] [CrossRef]
- Bogalho, F.; Duarte, S.; Cardoso, M.; Almeida, A.; Cabeças, R.; Lino, C.; Pena, A. Exposure assessment of Portuguese infants to Aflatoxin M1 in breast milk and maternal social-demographical and food consumption determinants. Food Control 2018, 90, 140–145. [Google Scholar] [CrossRef]
- Jafari, T.; Fallah, A.A.; Kheiri, S.; Fadaei, A.; Amini, S.A. Aflatoxin M1 in human breast milk in Shahrekord, Iran and association with dietary factors. Food Addit. Contam. Part B 2017, 10, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Atasever, M.; Yildirim, Y.; Atasever, M.; Tastekin, A. Assessment of aflatoxin M1 in maternal breast milk in Eastern Turkey. Food Chem. Toxicol. 2014, 66, 147–149. [Google Scholar] [CrossRef]
- Kunter, İ.; Hürer, N.; Gülcan, H.O.; Öztürk, B.; Doğan, İ.; Şahin, G. Assessment of Aflatoxin M1 and Heavy Metal Levels in Mothers Breast Milk in Famagusta, Cyprus. Biol. Trace Elem. Res. 2017, 66, 147–149. [Google Scholar] [CrossRef]
- Elaridi, J.; Bassil, M.; Kharma, J.A.; Daou, F.; Hassan, H.F. Analysis of aflatoxin M1 in breast milk and its association with nutritional and socioeconomic status of lactating mothers in Lebanon. J. Food Prot. 2017, 80, 1737–1741. [Google Scholar] [CrossRef]
- Omar, S.S. Incidence of aflatoxin M1 in human and animal milk in jordan. J. Toxicol. Environ. Health Part A 2012, 75, 1404–1409. [Google Scholar] [CrossRef]
- El-Tras, W.F.; El-Kady, N.N.; Tayel, A.A. Infants exposure to aflatoxin M 1 as a novel foodborne zoonosis. Food Chem. Toxicol. 2011, 49, 2816–2819. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuff. Off. J. Eur. Union 2006, 364, 364. [Google Scholar]
- Kuiper-Goodman, T. Uncertainties in the risk assessment of three mycotoxins: Aflatoxin, ochratoxin, and zearalenone. Can. J. Physiol. Pharmacol. 1990, 68, 1017–1024. [Google Scholar] [CrossRef]
- EFSA Opinion of the scientific panel on contaminants in the food chain [CONTAM] related to the potential increase of consumer health risk by a possible increase of the existing maximum levels for aflatoxins in almonds, hazelnuts and pistachios and derived prod. EFSA J. 2007, 5, 446. [CrossRef]
- Viegas, S.; Veiga, L.; Figueiredo, P.; Almeida, A.; Carolino, E.; Viegas, C. Assessment of workers’ exposure to aflatoxin B1 in a Portuguese waste industry. Ann. Occup. Hyg. 2015, 59, 173–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, S.; Veiga, L.; Figueredo, P.; Almeida, A.; Carolino, E.; Sabino, R.; Veríssimo, C.; Viegas, C. Occupational exposure to aflatoxin B1 in swine production and possible contamination sources. J. Toxicol. Environ. Health Part A 2013, 76, 944–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, S.; Veiga, L.; Figueredo, P.; Almeida, A.; Carolino, E.; Sabino, R.; Veríssimo, C.; Viegas, C. Occupational exposure to aflatoxin B1: The case of poultry and swine production. World Mycotoxin. J. 2013, 6, 309–315. [Google Scholar] [CrossRef]
- Viegas, S.; Veiga, L.; Malta-Vacas, J.; Sabino, R.; Figueredo, P.; Almeida, A.; Viegas, C.; Carolino, E. Occupational exposure to aflatoxin (AFB1) in poultry production. J. Toxicol. Environ. Health Part A 2012, 75, 1330–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, S.; Assunção, R.; Martins, C.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Ribeiro, E.; Viegas, C. Occupational exposure to mycotoxins in swine production: Environmental and biological monitoring approaches. Toxins 2019, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Viegas, S.; Veiga, L.; Almeida, A.; Dos Santos, M.; Carolino, E.; Viegas, C. Occupational Exposure to Aflatoxin B1 in a Portuguese Poultry Slaughterhouse. Ann. Occup. Hyg. 2015, 60, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Duarte, S.C.; Simões Pena, A.L.; de Matos Lino, C. Ochratoxin A. In Mycotoxins and their implications in food safety; Future Science Ltd.: London, UK, 2014; ISBN 9781909453227. [Google Scholar]
- International Agency for Research on Cancer-IARC Volume 56. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization: Geneva, Switzerland, 1993.
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Malir, J.; Toman, J. Ochratoxin A: 50 years of research. Toxins 2016, 8, 191. [Google Scholar] [CrossRef] [Green Version]
- Krogh, P.; Hald, B.; Plestina, R.; Ceovic, S. Balkan (endemic) nephropathy and foodborn ochratoxin A: Preliminary results of a survey of foodstuffs. Acta Pathol. Microbiol. Scand. Sect. B Microbiol. 1977, 85B, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Wafa, E.W.; Yahya, R.S.; Sobh, M.A.; Eraky, I.; El-Baz, M.; El-Gayar, H.A.M.; Betbeder, A.M.; Creppy, E.E. Human ochratoxicosis and nephropathy in Egypt: A preliminary study. Hum. Exp. Toxicol. 1998, 17, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Maaroufi, K.; Achour, A.; Betbeder, A.M.; Hammami, M.; Ellouz, F.; Creppy, E.E.; Bacha, H. Foodstuffs and human blood contamination by the mycotoxin ochratoxin A: Correlation with chronic interstitial nephropathy in Tunisia. Arch. Toxicol. 1995, 69, 552–558. [Google Scholar] [CrossRef]
- Grosso, F.; Saïd, S.; Mabrouk, I.; Fremy, J.M.; Castegnaro, M.; Jemmali, M.; Dragacci, S. New data on the occurrence of ochratoxin A in human sera from patients affected or not by renal diseases in Tunisia. Food Chem. Toxicol. 2003, 41, 1133–1140. [Google Scholar] [CrossRef]
- Ringot, D.; Chango, A.; Schneider, Y.J.; Larondelle, Y. Toxicokinetics and toxicodynamics of ochratoxin A., an update. Chem. Biol. Interact. 2006, 159, 18–46. [Google Scholar] [CrossRef]
- Duarte, S.C.; Pena, A.; Lino, C.M. Human ochratoxin A biomarkers-from exposure to effect. Crit. Rev. Toxicol. 2011, 41, 187–212. [Google Scholar] [CrossRef]
- Dinis, A.M.P.; Lino, C.M.; Pena, A.S. Ochratoxin A in nephropathic patients from two cities of central zone in Portugal. J. Pharm. Biomed. Anal. 2007, 44, 553–557. [Google Scholar] [CrossRef] [Green Version]
- Lino, C.M.; Baeta, M.L.; Henri, M.; Dinis, A.M.P.; Pena, A.S.; Silveira, M.I.N. Levels of ochratoxin A in serum from urban and rural Portuguese populations and estimation of exposure degree. Food Chem. Toxicol. 2008, 46, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Viegas, S.; Osteresch, B.; Almeida, A.; Cramer, B.; Humpf, H.U.; Viegas, C. Enniatin B and ochratoxin A in the blood serum of workers from the waste management setting. Mycotoxin Res. 2018, 34, 85–90. [Google Scholar] [CrossRef]
- Duarte, S.C.; Lino, C.M.; Pena, A. Ochratoxin a in food and urine: A nationwide Portuguese two-year study. World Mycotoxin J. 2015, 8, 121–132. [Google Scholar] [CrossRef]
- Pena, A.; Seifrtová, M.; Lino, C.; Silveira, I.; Solich, P. Estimation of ochratoxin A in portuguese population: New data on the occurrence in human urine by high performance liquid chromatography with fluorescence detection. Food Chem. Toxicol. 2006, 44, 1449–1454. [Google Scholar] [CrossRef] [Green Version]
- Manique, R.; Pena, A.; Lino, C.M.; Moltó, J.C.; Mañes, J. Ochratoxin A in the morning and afternoon portions of urine from Coimbra and Valencian populations. Toxicon 2008, 51, 1281–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, C.; Vidal, A.; De Boevre, M.; De Saeger, S.; Nunes, C.; Torres, D.; Goios, A.; Lopes, C.; Assunção, R.; Alvito, P. Exposure assessment of Portuguese population to multiple mycotoxins: The human biomonitoring approach. Int. J. Hyg. Environ. Health 2019, 222, 913–925. [Google Scholar] [CrossRef]
- Silva, L.J.G.; Macedo, L.; Pereira, A.M.P.T.; Duarte, S.; Lino, C.M.; Pena, A. Ochratoxin A and Portuguese children: Urine biomonitoring, intake estimation and risk assessment. Food Chem. Toxicol. 2020, 135, 110883. [Google Scholar] [CrossRef] [PubMed]
- Njumbe Ediage, E.; Diana Di Mavungu, J.; Song, S.; Wu, A.; Van Peteghem, C.; De Saeger, S. A direct assessment of mycotoxin biomarkers in human urine samples by liquid chromatography tandem mass spectrometry. Anal. Chim. Acta 2012, 741, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonsyn-Ellis, F.E. Seasonal variation in exposure frequency and concentration levels of aflatoxins and ochratoxins in urine samples of boys and girls. Mycopathologia 2000, 152, 35–40. [Google Scholar] [CrossRef]
- Heyndrickx, E.; Sioen, I.; Huybrechts, B.; Callebaut, A.; De Henauw, S.; Saeger, S. De Human biomonitoring of multiple mycotoxins in the Belgian population: Results of the BIOMYCO study. Environ. Int. 2015, 84, 82–89. [Google Scholar] [CrossRef]
- Viegas, S.; Assunção, R.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Martins, C.; Alvito, P.; Almeida, A.; et al. Exposure assessment to mycotoxins in a Portuguese fresh bread dough company by using a multi-biomarker approach. Toxins 2018, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- Lerda, D.; Biaggi Bistoni, M.; Peralta, N.; Ychari, S.; Vazquez, M.; Bosio, G. Fumonisins in foods from Cordoba (Argentina), presence and genotoxicity. Food Chem. Toxicol. 2005, 43, 691–698. [Google Scholar] [CrossRef]
- Seo, J.-A.; Lee, Y.-W. Natural Occurrence of the C Series of Fumonisins in Moldy Corn. Appl. Environ. Microbiol. 1999, 65, 1331–1334. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.; Norred, W.P.; Bacon, C.W.; Riley, R.T.; Merrill, A.H. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J. Biol. Chem. 1991, 266, 14486–14490. [Google Scholar] [CrossRef]
- Sydenham, E.W.; Thiel, P.G.; Shephard, G.S.; Koch, K.R.; Hutton, T. Preparation and Isolation of the Partially Hydrolyzed Moiety of Fumonisin B1. J. Agric. Food Chem. 1995, 43, 2400–2405. [Google Scholar] [CrossRef]
- Kim, E.K.; Scott, P.M.; Lau, B.P.Y. Hidden fumonisin in corn flakes. Food Addit. Contam. 2003, 20, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Stack, M.E. Analysis of Fumonisin Bi and Its Hydrolysis Product in Tortillas. J. AOAC Int. 1998, 81, 737–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks To Humans. Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene; IARC: Lyon, France, 2002; Volume 82, ISBN 92-832-1282-7. [Google Scholar]
- Shephard, G.S.; Van Der Westhuizen, L.; Sewram, V. Biomarkers of exposure to fumonisin mycotoxins: A review. Food Addit. Contam. 2007, 24, 1196–1201. [Google Scholar] [CrossRef]
- Shetty, P.H.; Bhat, R. V Sensitive method for the detection of fumonisin B1 in human urine. J. Chromatogr. B Biomed. Sci. Appl. 1998, 705, 171–173. [Google Scholar] [CrossRef]
- Van der Westhuizen, L.; Shephard, G.S.; Burger, H.M.; Rheeder, J.P.; Gelderblom, W.C.A.; Wild, C.P.; Gong, Y.Y. Fumonisin B1 as a Urinary Biomarker of Exposure in a Maize Intervention Study Among South African Subsistence Farmers. Cancer Epidemiol. Biomark. Prev. 2011, 20, 483–489. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.; Tang, L.; Wang, J.-S. Validation of fumonisin biomarkers in F344 rats. Toxicol. Appl. Pharmacol. 2007, 225, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.Y.; Torres-Sanchez, L.; Lopez-Carrillo, L.; Peng, J.H.; Sutcliffe, A.E.; White, K.L.; Humpf, H.-U.; Turner, P.C.; Wild, C.P. Association between Tortilla Consumption and Human Urinary Fumonisin B1 Levels in a Mexican Population. Cancer Epidemiol. Biomark. Prev. 2008, 17, 688–694. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.J.G.; Pena, A.; Lino, C.M.; Fernández, M.F.; Mañes, J. Fumonisins determination in urine by LC-MS-MS. Anal. Bioanal. Chem. 2010, 396, 809–816. [Google Scholar] [CrossRef]
- Chelule, P.K.; Gqaleni, N.; Chuturgoon, A.A.; Dutton, M.F. The determination of fumonisin B 1 in human faeces: A short term marker for assessment of exposure. Biomarkers 2000, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Cai, Q.; Tang, L.; Wang, S.; Hu, X.; Su, J.; Sun, G.; Wang, J.-S. Evaluation of fumonisin biomarkers in a cross-sectional study with two high-risk populations in China. Food Addit. Contam. Part A 2010, 27, 1161–1169. [Google Scholar] [CrossRef]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of Multi-Mycotoxin Exposure in Southern Italy by Urinary Multi-Biomarker Determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Wallin, S.; Gambacorta, L.; Kotova, N.; Warensjö Lemming, E.; Nälsén, C.; Solfrizzo, M.; Olsen, M. Biomonitoring of concurrent mycotoxin exposure among adults in Sweden through urinary multi-biomarker analysis. Food Chem. Toxicol. 2015, 83, 133–139. [Google Scholar] [CrossRef]
- Silva, L.J.G.; Lino, C.M.; Pena, A.; Moltó, J.C. Occurrence of fumonisins B 1 and B 2 in Portuguese maize and maize-based foods intended for human consumption. Food Addit. Contam. 2007, 24, 381–390. [Google Scholar] [CrossRef]
- Castegnaro, M.; Garren, L.; Gaucher, I.; Wild, C.P. Development of a new method for the analysis of sphinganine and sphingosine in urine and tissues. Nat. Toxins 1996, 4, 284–290. [Google Scholar] [CrossRef]
- Van der Westhuizen, L.; Brown, N.L.; Marasas, W.F.; Swanevelder, S.; Shephard, G.S. Sphinganine/Sphingosine ratio in plasma and urine as a possible biomarker for fumonisin exposure in humans in rural areas of Africa. Food Chem. Toxicol. 1999, 37, 1153–1158. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, X. Determination of sphinganine, sphingosine and Sa/So ratio in urine of humans exposed to dietary fumonisin B 1. Food Addit. Contam. 2001, 18, 263–269. [Google Scholar] [CrossRef]
- Ribar, S.; Mesarić, M.; Bauman, M. High-performance liquid chromatographic determination of sphinganine and sphingosine in serum and urine of subjects from an endemic nephropathy area in Croatia. J. Chromatogr. B Biomed. Sci. Appl. 2001, 754, 511–519. [Google Scholar] [CrossRef]
- Turner, P.C.; Hopton, R.P.; Lecluse, Y.; White, K.L.M.; Fisher, J.; Lebailly, P. Determinants of urinary deoxynivalenol and de-epoxy deoxynivalenol in male farmers from normandy, France. J. Agric. Food Chem. 2010, 58, 5206–5212. [Google Scholar] [CrossRef]
- Turner, P.C.; Hopton, R.P.; White, K.L.M.; Fisher, J.; Cade, J.E.; Wild, C.P. Assessment of deoxynivalenol metabolite profiles in UK adults. Food Chem. Toxicol. 2011, 49, 132–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, S.C.; Fernandes, J.O. Development and validation of a gas chromatography-mass spectrometry method for determination of deoxynivalenol and its metabolites in human urine. Food Chem. Toxicol. 2012, 50, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, N.M.C.; Silva, L.J.G.; Pena, A.; Lino, C.M. Occurrence and risk assessment of zearalenone through broa consumption, typical maize bread from Portugal. Food Control 2015, 57, 147–151. [Google Scholar] [CrossRef]
- Silva, L.; Pereira, A.; Duarte, S.; Pena, A.; Lino, C. Reviewing the analytical methodologies to determine the occurrence of citrinin and its major metabolite, dihydrocitrinone, in human biological fluids. Molecules 2020, 25, 2906. [Google Scholar] [CrossRef]
- Martins, C.; Torres, D.; Lopes, C.; Correia, D.; Goios, A.; Assunção, R.; Alvito, P.; Vidal, A.; de Boevre, M.; de Saeger, S.; et al. Food consumption data as a tool to estimate exposure to mycoestrogens. Toxins 2020, 12, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Černá, M.; Puklová, V.; Hanzlíková, L.; Sochorová, L.; Kubínová, R. 25 years of HBM in the Czech Republic. Int. J. Hyg. Environ. Health 2017, 220, 3–5. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pena, A.; Duarte, S.; Pereira, A.M.P.T.; Silva, L.J.G.; Laranjeiro, C.S.M.; Oliveira, M.; Lino, C.; Morais, S. Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part II—Lessons Learned on Mycotoxins. Molecules 2022, 27, 130. https://doi.org/10.3390/molecules27010130
Pena A, Duarte S, Pereira AMPT, Silva LJG, Laranjeiro CSM, Oliveira M, Lino C, Morais S. Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part II—Lessons Learned on Mycotoxins. Molecules. 2022; 27(1):130. https://doi.org/10.3390/molecules27010130
Chicago/Turabian StylePena, Angelina, Sofia Duarte, André M. P. T. Pereira, Liliana J. G. Silva, Célia S. M. Laranjeiro, Marta Oliveira, Celeste Lino, and Simone Morais. 2022. "Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part II—Lessons Learned on Mycotoxins" Molecules 27, no. 1: 130. https://doi.org/10.3390/molecules27010130
APA StylePena, A., Duarte, S., Pereira, A. M. P. T., Silva, L. J. G., Laranjeiro, C. S. M., Oliveira, M., Lino, C., & Morais, S. (2022). Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part II—Lessons Learned on Mycotoxins. Molecules, 27(1), 130. https://doi.org/10.3390/molecules27010130