Comparison of Two Immunoassay Screening Methods and a LC-MS/MS in Detecting Traditional and Designer Benzodiazepines in Urine
Abstract
:1. Introduction
2. Results and Discussion
3. Study Drawbacks
4. Materials and Methods
4.1. Reagents
4.2. Instrumentation
- R1 Reagent (Antibody/Substrate Reagent): contains antibodies to benzodiazepine derivative (etizolam) in buffer solution and the enzyme substrate.
- R2 Reagent (Enzyme Reagent): contains benzodiazepine derivative (etizolam) labeled with recombinant glucose-6-phosphate dehydrogenase (rG6PDH).
- Calibrators and Quality Controls: benzodiazepine derivative (etizolam) in human urine matrix.
4.3. Validation of the ARKTM Immunoassay
4.3.1. Calibration and Quality Control
4.3.2. System Check
4.3.3. Performance Characterization
Precision
Spike Recovery
4.4. Sample Analysis Protocol
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2021: Trends and Developments. Available online: https://www.emcdda.europa.eu/publications/edr/trends-developments/2021_en (accessed on 10 December 2021).
- United Nations Office on Drugs and Crime. Available online: https://www.unodc.org/documents/scientific/Global_SMART_Update_2017_Vol_18.pdf (accessed on 10 December 2021).
- European Monitoring Centre for Drugs and Drug Addiction. New benzodiazepines in Europe—A review. Available online: https://www.emcdda.europa.eu/system/files/publications/13759/TD0221596ENN_002.pdf (accessed on 10 December 2021).
- Sofalvi, S.; Lavins, E.S.; Kaspar, C.K.; Michel, H.M.; Mitchell-Mata, C.L.; Huestis, A.M.; Apollonio, L.G. Development and Validation of an LC–MS-MS Method for the Detection of 40 Benzodiazepines and Three Z-Drugs in Blood and Urine by Solid-Phase Extraction. J. Anal. Toxicol. 2020, 44, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Bertol, E.; Di Milia, M.G.; Fioravanti, A.; Mari, F.; Palumbo, D.; Pascali, J.P.; Vaiano, F. Proactive drugs in DFSA cases: Toxicological findings in an eight-years study. Forensic Sci. Int. 2018, 291, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, C.T.; Helland, A.; Spigset, O.; Espnes, K.A.; Ormstad, K.; Schei, B. Ethanol and drug findings in women consulting a Sexual Assault Center—Associations with clinical characteristics and suspicions of drug-facilitated sexual assault. J. Forensic Leg. Med. 2013, 20, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Bosman, I.J.; Verschraagen, M.; Lusthof, K.J. Toxicological Findings in Cases of Sexual Assault in The Netherlands. J. Forensic Sci. 2011, 56, 1562–1568. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Pérez-Cárceles, M.; Osuna, E.; Legaz, I. Drug-facilitated sexual assault and other crimes: A systematic review by countries. J. Forensic Leg. Med. 2021, 79, 102151. [Google Scholar] [CrossRef] [PubMed]
- Scott-Ham, M.; Burton, F.C. Toxicological findings in cases of alleged drug-facilitated sexual assault in the United Kingdom over a 3-year period. J. Clin. Forensic Med. 2005, 12, 175–186. [Google Scholar] [CrossRef]
- Price, J.W. Benzodiazepines and Workplace Safety: An Examination of Postaccident Urine Drug Tests. J. Addict. Med. 2014, 8, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Sparve, E.; Sparring, S.; Bergström, M. Detection of Drugs in Oral Fluid Samples Using a Commercially Available Collection Device: Agreement with Urine Testing and Evaluation of A and B Samples Obtained from Employees at Different Workplace Settings with Uncontrolled Sampling Procedures. J. Anal. Toxicol. 2021, 44, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Kwon, N.J.; Han, E. A review of drug abuse in recently reported cases of driving under the influence of drugs (DUID) in Asia, USA, and Europe. Forensic Sci. Int. 2019, 302, 109854. [Google Scholar] [CrossRef]
- Agius, R.; Dufaux, B.; Kahl, H.-G.; Nadulski, T. Is urine an alternative to cosmetically treated hair for the detection of drugs and alcohol? Drug Test. Anal. 2014, 6, 120–122. [Google Scholar] [CrossRef] [Green Version]
- Vindenes, V.; Lund, H.; Andresen, W.; Gjerde, H.; Ikdahl, S.; Christophersen, A.; Øiestad, E. Detection of drugs of abuse in simultaneously collected oral fluid, urine and blood from Norwegian drug drivers. Forensic Sci. Int. 2012, 219, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewski, C.; Kirk, M.; Bingham, E.; Saltzman, B.; Cook, R.; Kulig, K. Urine Toxicology Screens in Drivers Suspected of Driving While Impaired from Drugs. J. Toxicol. Clin. Toxicol. 1996, 34, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Raymon, L.P.; Steele, B.W.; Walls, H.C. Benzodiazepines in Miami-Dade County, Florida driving under the influence (DUI) cases (1995-1998) with emphasis on Rohypnol: GC-MS confirmation, patterns of use, psychomotor impairment, and results of Florida legislation. J. Anal. Toxicol. 1999, 23, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Kolbe, V.; Rentsch, D.; Boy, D.; Schmidt, B.; Kegler, R.; Büttner, A. The adulterated XANAX pill: A fatal intoxication with etizolam and caffeine. Int. J. Leg. Med. 2020, 134, 1727–1731. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.; Goodin, J.C.; Caplan, Y.H. A fentanyl fatality involving midazolam. Forensic Sci. Int. 1990, 45, 247–251. [Google Scholar] [CrossRef]
- Jenkins, A.J.; Levine, B.; Locke, J.L.; Smialek, J.E. A Fatality Due To Alprazolam Intoxication. J. Anal. Toxicol. 1997, 21, 218–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergstrand, M.P.; Helander, A.; Hansson, T.; Beck, O. Detectability of designer benzodiazepines in CEDIA, EMIT II Plus, HEIA, and KIMS II immunochemical screening assays. Drug Test. Anal. 2016, 9, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Klette, K.L.; Wiegand, R.F.; Horn, C.K.; Stout, P.R.; Magluilo, J., Jr. Urine Benzodiazepine Screening Using Roche Online Kims Immunoassay with Beta-Glucuronidase Hydrolysis and Confirmation by Gas Chromatography—Mass Spectrometry. J. Anal. Toxicol. 2005, 29, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Behnke, G.; Tiscione, N.; Rakus, J.; Richards-Waugh, L. Validation of the Neogen ELISA Benzodiazepine Kit using Clonazepam as the Target Molecule for Blood and Urine. J. Anal. Toxicol. 2019, 43, 399–405. [Google Scholar] [CrossRef]
- Bertol, E.; Vaiano, F.; Furlanetto, S.; Mari, F. Cross-Reactivities and Structure-Reactivity Relationships of Six Benzodi-azepines to EMIT (®) Immunoassay. J. Pharm. Biomed. Anal. 2013, 84, 168–172. [Google Scholar] [CrossRef]
- Darragh, A.; Snyder, M.L.; Ptolemy, A.S.; Melanson, S. KIMS, CEDIA, and HS-CEDIA immunoassays are inadequately sensitive for detection of benzodiazepines in urine from patients treated for chronic pain. Pain Physician 2014, 17, 359–366. [Google Scholar] [PubMed]
- DeRienz, R.T.; Holler, J.M.; Manos, M.E.; Jemionek, J.; Past, M.R. Evaluation of Four Immunoassay Screening Kits for the Detection of Benzodiazepines in Urine. J. Anal. Toxicol. 2008, 32, 433–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundström, M.; Pelander, A.; Ojanperä, I. Comparison between Drug Screening by Immunoassay and Ultra-High Per-formance Liquid Chromatography/High-Resolution Time-of-Flight Mass Spectrometry in Post-Mortem Urine. Drug Test Anal. 2015, 7, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Dinis-Oliveira, R.J. Metabolic profile of oxazepam and related benzodiazepines: Clinical and forensic aspects. Drug Metab. Rev. 2017, 49, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Scientific Working Group for Forensic Toxicology (Swgtox). Standard Practices for Method Validation in Forensic Toxicology. J. Anal. Toxicol. 2013, 37, 452–474. [Google Scholar] [CrossRef] [PubMed]
Molecule | Urine | No. Positive Cases | Min-Max (ng/mL) | Mean (ng/mL) | Median (ng/mL) |
---|---|---|---|---|---|
Oxazepam | AH * | 45 | 42.4–25,300.0 | 4734.6 | 2620.0 |
NH * | 24 | 54.7–3260.0 | 357.1 | 169.5 | |
Nordazepam | AH * | 38 | 33.4–13,000.0 | 1820.6 | 669.0 |
NH * | 34 | 14.5–2080.0 | 335.0 | 105.0 | |
Desalkylflurazepam | AH * | 35 | 10.0–435.0 | 102.1 | 61.6 |
NH * | 15 | 12.1–125.0 | 65.1 | 57.1 | |
Diazepam | AH * | 26 | 10.0–315.0 | 86.3 | 72.2 |
NH * | 25 | 10.0–566.0 | 109.8 | 56.5 | |
Alprazolam | AH * | 21 | 12.6–1850.0 | 527.9 | 349.0 |
NH * | 17 | 14.7–480.0 | 143.1 | 105.0 | |
Delorazepam | AH * | 21 | 10.6–282.0 | 96.3 | 91.2 |
NH * | 12 | 22.0–239.0 | 110.1 | 83.5 | |
Lorazepam | AH * | 19 | 28.2–20,500.0 | 2235.6 | 1100.0 |
NH * | 6 | 11.1–1030.0 | 381.1 | 116.2 | |
2-hydroxyethylflurazepam | AH * | 14 | 94.7–127,000.0 | 27,561.9 | 7715.0 |
NH * | 10 | 66.8–6110.0 | 2211.3 | 1540.0 | |
7-aminoclonazepam | AH * | 13 | 11.9–198.0 | 75.9 | 72.5 |
NH * | 8 | 15.6–135.0 | 77.9 | 81.9 | |
Flurazepam | AH * | 11 | 12.3–1130.0 | 261.9 | 116.0 |
NH * | 14 | 11.7–1070.0 | 222.8 | 125.0 | |
α-hydroxyalprazolam | AH * | 6 | 69.8–582.0 | 217.9 | 127.5 |
NH * | 0 | - | - | - | |
Lormetazepam | AH * | 4 | 67.2–482.0 | 310.6 | 346.5 |
NH * | 0 | - | - | - | |
Bromazepam | AH * | 3 | 137.0–2650.0 | 1261.7 | 998.0 |
NH * | 3 | 129.0–3010.0 | 1290.0 | 731.0 | |
7-aminoflunitrazepam | AH * | 3 | 10.2–13.5 | 12.2 | 12.9 |
NH * | 0 | - | - | - | |
Triazolam | AH * | 2 | 21.6–791.0 | - | - |
NH * | 2 | 27.7–332.0 | - | - | |
Flubromazepam | AH * | 1 | 330.0 | - | - |
NH * | 1 | 194.0 | - | - |
Cut-Off (ng/mL) | Urine | EMIT® II PLUS Benzodiazepine Assay | ARK™ HS Benzodiazepine II Assay | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TN * (N | FP * (N) | TP * (N) | FN * (N) | SE * | SP * | TN * (N) | FP * (N) | TP * (N) | FN * (N) | SE * | SP * | ||
50 | NH * | 401 | 0 | 89 | 11 | 0.89 | 1.00 | 396 | 5 | 98 | 2 | 0.98 | 0.99 |
AH * | 398 | 3 | 94 | 6 | 0.94 | 0.99 | 396 | 5 | 100 | 0 | 1.00 | 0.99 | |
100 | NH * | 401 | 0 | 74 | 26 | 0.74 | 1.00 | 396 | 5 | 97 | 3 | 0.97 | 0.99 |
AH * | 398 | 3 | 88 | 12 | 0.88 | 0.99 | 396 | 5 | 98 | 2 | 0.98 | 0.99 | |
200 | NH * | 401 | 0 | 64 | 36 | 0.64 | 1.00 | 396 | 5 | 91 | 9 | 0.91 | 0.99 |
AH * | 399 | 2 | 79 | 21 | 0.79 | 0.99 | 396 | 5 | 92 | 8 | 0.92 | 0.99 |
Molecule | % Cross-Reactivity EMIT® II PLUS Benzodiazepine Assay (Calibrated with Lormetazepam) | % Cross-Reactivity ARK™ HS Benzodiazepine II Assay (Developed on Etizolam) |
---|---|---|
Bentazepam | 40 | 15 |
Clonazolam | 100 | 40 |
Diclazepam | >1000 | >1000 |
Etizolam | 60 | 100 |
Flualprazolam | 300 | 650 |
Flubromazolam | 300 | 400 |
Phenazepam | 200 | >1000 |
Substance | LOD (ng/mL) | LOQ (ng/mL) | Substance | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|---|
α-hydroxyalprazolam | 2.5 | 8.5 | Flualprazolam | 0.3 | 1.0 |
2-hydroxyethylflurazepam | 3.7 | 12.3 | Flubromazepam | 1.1 | 3.8 |
7-aminoclonazepam | 0.6 | 1.9 | Flubromazolam | 0.4 | 1.2 |
7-aminoflunitrazepam | 0.8 | 2.6 | Flurazepam | 0.4 | 1.4 |
Alprazolam | 0.8 | 2.7 | Lorazepam | 3.0 | 9.9 |
Bentazepam | 5.0 | 16.7 | Lormetazepam | 0.1 | 0.3 |
Bromazepam | 4.0 | 13.3 | Midazolam | 0.7 | 2.4 |
Clonazolam | 0.5 | 1.6 | Nordiazepam | 0.2 | 0.7 |
Delorazepam | 0.6 | 2.0 | Oxazepam | 0.5 | 1.7 |
Desalkylflurazepam | 0.4 | 1.4 | Phenazepam | 1.0 | 3.3 |
Diazepam | 0.3 | 0.9 | Temazepam | 1.0 | 3.6 |
Diclazepam | 0.3 | 0.9 | Triazolam | 1.1 | 3.8 |
Etizolam | 0.2 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, B.; Freni, F.; Vignali, C.; Stramesi, C.; Collo, G.; Carelli, C.; Moretti, M.; Galatone, D.; Morini, L. Comparison of Two Immunoassay Screening Methods and a LC-MS/MS in Detecting Traditional and Designer Benzodiazepines in Urine. Molecules 2022, 27, 112. https://doi.org/10.3390/molecules27010112
Rossi B, Freni F, Vignali C, Stramesi C, Collo G, Carelli C, Moretti M, Galatone D, Morini L. Comparison of Two Immunoassay Screening Methods and a LC-MS/MS in Detecting Traditional and Designer Benzodiazepines in Urine. Molecules. 2022; 27(1):112. https://doi.org/10.3390/molecules27010112
Chicago/Turabian StyleRossi, Brian, Francesca Freni, Claudia Vignali, Cristiana Stramesi, Giancarlo Collo, Claudia Carelli, Matteo Moretti, Dario Galatone, and Luca Morini. 2022. "Comparison of Two Immunoassay Screening Methods and a LC-MS/MS in Detecting Traditional and Designer Benzodiazepines in Urine" Molecules 27, no. 1: 112. https://doi.org/10.3390/molecules27010112
APA StyleRossi, B., Freni, F., Vignali, C., Stramesi, C., Collo, G., Carelli, C., Moretti, M., Galatone, D., & Morini, L. (2022). Comparison of Two Immunoassay Screening Methods and a LC-MS/MS in Detecting Traditional and Designer Benzodiazepines in Urine. Molecules, 27(1), 112. https://doi.org/10.3390/molecules27010112