Synthesis, Mesomorphic and Computational Characterizations of Nematogenic Schiff Base Derivatives in Pure and Mixed State
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mesomorphic Characterizations
2.2. DFT Calculations
2.2.1. Geometrical Simulations and Thermal Parameters
2.2.2. Frontier Molecular Orbitals (FMOs)
2.2.3. Molecular Electrostatic Potential (MEP)
2.3. Binary Mixture
3. Experiment
Synthesis
4. Conclusions
- Independent on the terminal alkoxy chain length, all synthesized groups (An) are monomorphic exhibiting enantiotropic wide nematic thermal stability.
- The structural parameters, dipole moment and the polarizability of the present compounds are highly affected by the length of the attached terminal flexible chain as well as the N atom in the heterocyclic terminal ring.
- Binary phase diagrams constructed between different homologs showed to possess low melting temperature with wide N mesophase at the eutectic composition.
- The different extent of the physical and structural parameters are sharing together to impact the N temperature range and the thermal stability of present compounds in their pure and mixed states.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Reyes, C.G.; Sharma, A.; Lagerwall, J.P.F. Non-electronic gas sensors from electrospun mats of liquid crystal core fibres for detecting volatile organic compounds at room temperature. Liq. Cryst. 2016, 43, 1986–2001. [Google Scholar] [CrossRef]
- Setia, S.; Sidiq, S.; De, J.; Pani, I.; Pal, S.K. Applications of liquid crystals in biosensing and organic light-emitting devices: Future aspects. Liq. Cryst. 2016, 43, 2009–2050. [Google Scholar] [CrossRef]
- Gupta, R.K.; Manjuladevi, V.; Karthik, C.; Choudhary, K. Thin films of discotic liquid crystals and their applications. Liq. Cryst. 2016, 43, 2079–2091. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, K.; Xie, B.; Xiao, J.; Yip, H.L.; Yan, H.; Cao, Y. High-performance large-area organic solar cells enabled by sequential bilayer processing via nonhalogenated solvents. Adv. Energy Mater. 2019, 9, 1802832. [Google Scholar] [CrossRef]
- Wang, G.; Adil, M.A.; Zhang, J.; Wei, Z. Large-area organic solar cells: Material requirements, modular designs, and printing methods. Adv. Mater. 2019, 31, 1805089. [Google Scholar] [CrossRef]
- Hou, J.; Inganäs, O.; Friend, R.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 2018, 12, 131–142. [Google Scholar] [CrossRef]
- Imrie, C.T.; Henderson, P.A.; Yeap, G.-Y. Liquid crystal oligomers: Going beyond dimers. Liq. Cryst. 2009, 36, 755–777. [Google Scholar] [CrossRef]
- Yeap, G.-Y.; Lee, H.-C.; Mahmood, W.A.K.; Imrie, C.T.; Takeuchi, D.; Osakada, K. Synthesis, thermal and optical behaviour of non-symmetric liquid crystal dimers α-(4-benzylidene-substituted-aniline-4′-oxy)-ω-[pentyl-4-(4′-phenyl) benzoateoxy] hexane. Phase Transit. 2011, 84, 29–37. [Google Scholar] [CrossRef]
- Yeap, G.-Y.; Osman, F.; Imrie, C.T. Non-symmetric dimers: Effects of varying the mesogenic linking unit and terminal substituent. Liq. Cryst. 2015, 42, 543–554. [Google Scholar] [CrossRef]
- Nagaveni, N.G.; Roy, A.; Prasad, V. Achiral bent-core azo compounds: Effect of different types of linkage groups and their direction of linking on liquid crystalline properties. J. Mater. Chem. 2012, 22, 8948–8959. [Google Scholar] [CrossRef]
- Yang, C.J.; Jenekhe, S.A. Conjugated aromatic polyimines. Synthesis, structure, and properties of new aromatic pol-yazomethines. Macromolecules 1995, 28, 1180–1196. [Google Scholar] [CrossRef]
- Grigoras, M.; Catanescu, O.; Simionescu, C.I. Poly (azomethine) s. Rev. Roum. Chim. 2001, 46, 927–939. [Google Scholar]
- Canli, N.Y.; Günes, S.; Pivrikas, A.; Fuchsbauer, A.; Sinwel, D.; Sariciftci, N.; Yasa, Ö.; Bilgin-Eran, B. Chiral (S)-5-octyloxy-2-[{4-(2-methylbuthoxy)-phenylimino}-methyl]-phenol liquid crystalline compound as additive into polymer solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 1089–1099. [Google Scholar] [CrossRef]
- Gulbas, H.; Coskun, D.; Gursel, Y.; Bilgin-Eran, B. Synthesis, characterization and mesomorphic properties of side chain liquid crystalline oligomer having schi_ base type mesogenic group. Adv. Mater. 2014, 5, 333–338. [Google Scholar]
- Hagar, M.; Ahmed, H.A.; Aouad, M.R. Mesomorphic and DFT diversity of Schiff base derivatives bearing protruded methoxy groups. Liq. Cryst. 2020, 47, 2222–2233. [Google Scholar] [CrossRef]
- Nafee, S.S.; Ahmed, H.A.; Hagar, M. Theoretical, experimental and optical study of new thiophene-based liquid crystals and their positional isomers. Liq. Cryst. 2020, 47, 1–12. [Google Scholar] [CrossRef]
- Kelker, H.; Scheurle, B. Eine flüssig-kristalline (nematische) Phase mit besonders niedrigem Erstarrungspunkt. Angew. Chem. 1969, 81, 903–904. [Google Scholar] [CrossRef]
- Nafee, S.S.; Hagar, M.; Ahmed, H.A.; Alhaddad, O.; El-Shishtawy, R.M.; Raffah, B.M. New two rings Schiff base liquid crystals; ball mill synthesis, mesomorphic, Hammett and DFT studies. J. Mol. Liq. 2020, 299. [Google Scholar] [CrossRef]
- Zaki, A.A.; Hagar, M.; Alnoman, R.B.; Jaremko, M.; Emwas, A.-H.; Ahmed, H.A. Mesomorphic, Optical and DFT Aspects of Near to Room-Temperature Calamitic Liquid Crystal. Crystals 2020, 10, 1044. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Mansour, E.; Hagar, M. Mesomorphic study and DFT simulation of calamitic Schiff base liquid crystals with electronically different terminal groups and their binary mixtures. Liq. Cryst. 2020, 47, 2292–2304. [Google Scholar] [CrossRef]
- Chen, R.; An, Z.; Wang, W.; Chen, X.; Chen, P. Lateral substituent effects on UV stability of high-birefringence liquid crystals with the diaryl-diacetylene core: DFT/TD-DFT study. Liq. Cryst. 2017, 44, 1515–1524. [Google Scholar] [CrossRef]
- Islam, M.J.; Kumer, A.; Sarker, N.; Paul, S.; Zannat, A. The prediction and theoretical study for chemical reactivity, thermo-physical and biological activity of morpholinium nitrate and nitrite ionic liquid crystals: A DFT study. Adv. J. Chem. Sect. A 2019, 2, 316–326. [Google Scholar]
- Kirsch, P.; Bremer, M. Nematic liquid crystals for active matrix displays: Molecular design and synthesis. Angew. Chem. Int. Ed. 2000, 39, 4216–4235. [Google Scholar] [CrossRef]
- Yu, H.; Wang, K.; Szilvási, T.; Nayani, K.; Bao, N.; Twieg, R.; Mavrikakis, M.; Abbott, N. Design of Chemoresponsive Soft Matter Using Hydrogen-Bonded Liquid Crystals. Materials 2021, 14, 1055. [Google Scholar] [CrossRef] [PubMed]
- Khushaim, M.S.; Alalawy, H.H.; Naoum, M.M.; Ahmed, H.A. Experimental and computational simulations of nematogenic liquid crystals based on cinnamic acid in pure and mixed state. Liq. Cryst. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Kapernaum, N.; Hartley, C.S.; Roberts, J.C.; Lemieux, R.P.; Giesselmann, F. Molecular length distribution and the formation of smectic phases. Beilstein J. Org. Chem. 2009, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Kapernaum, N.; Hartley, C.S.; Roberts, J.C.; Schoerg, F.; Krueerke, D.; Lemieux, R.P.; Giesselmann, F. Systematic Variation of Length Ratio and the Formation of Smectic A and Smectic C Phases. ChemPhysChem 2010, 11, 2099–2107. [Google Scholar] [CrossRef]
- Dave, J.; Patel, P.; Vasanth, K. Mixed mesomorphism in binary systems forming smectic-nematic phases. Mol. Cryst. Liq. Cryst. 1969, 8, 93–100. [Google Scholar] [CrossRef]
- Dave, J.S.; Menon, M.R.; Patel, P.R. Chiral phases induced by doping nonmesogenic component into mesogenic esters. Mol. Cryst. Liq. Cryst. 2003, 392, 83–95. [Google Scholar] [CrossRef]
- Vora, R.; Gupta, R.; Patel, K. Exhibition of induced mesophases in the binary systems where one or both the components are non-mesogenic. Mol. Cryst. Liq. Cryst. 1991, 209, 251–263. [Google Scholar] [CrossRef]
- Fujimura, S.; Yamamura, Y.; Hishida, M.; Nagatomo, S.; Saito, K. Reentrant nematic phase in 4-alkyl-4′-cyanobiphenyl (nCB) binary mixtures. Liq. Cryst. 2014, 41, 927–932. [Google Scholar] [CrossRef]
- Prasad, A.; Das, M.K. Determination of elastic constants of a binary system (7CPB+ CN) showing nematic, induced smectic Ad and re-entrant nematic phases. Liq. Cryst. 2014, 41, 1261–1268. [Google Scholar] [CrossRef]
- Hogan, J.L.; Imrie, C.T.; Luckhurst, G.R. Asymmetric dimeric liquidcrystals—The preparation and properties of the al-pha-(4-cyanobiphenyl-40-oxy)-omega-(4-normal-alkylanilinebenzylidene-40- oxy)hexanes. Liq. Cryst. 1988, 3, 645–650. [Google Scholar] [CrossRef]
- Attard, G.S.; Date, R.W.; Imrie, C.T.; Luckhurst, G.R.; Roskilly, S.J.; Seddon, J.M.; Taylor, L. Nonsymmetrical dimeric liq-uid-crystals—the preparation and properties of the al-pha-(4-cyanobiphenyl-40-yloxy)-omega-(4-n-alkylanilinebenzylidene-40-oxy) alkanes. Liq. Cryst. 1994, 16, 529–581. [Google Scholar] [CrossRef]
- Imrie, C.T. Non-symmetric liquid crystal dimers: How to make molecules intercalate. Liq. Cryst. 2006, 33, 1449–1485. [Google Scholar] [CrossRef]
- Imrie, C.T.; Henderson, P.A.; Seddon, J.M. Non-symmetric liquid crystal trimers. First example triply-intercalated alternating smectic C phase. J. Mater. Chem. 2004, 14, 2486–2488. [Google Scholar] [CrossRef]
- Alhaddad, O.A.; Ahmed, H.A.; Hagar, M.; Saad, G.R.; Abu Al-Ola, K.A.; Naoum, M.M. Thermal and Photophysical Studies of Binary Mixtures of Liquid Crystal with Different Geometrical Mesogens. Crystals 2020, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Alnoman, R.B.; Hagar, M.; Ahmed, H.A.; Naoum, M.M.; Sobaih, H.A.; Almshaly, J.S.; Haddad, M.M.; Alhaisoni, R.A.; Alsobhi, T.A. Binary Liquid Crystal Mixtures Based on Schiff Base Derivatives with Oriented Lateral Substituents. Crystals 2020, 10, 319. [Google Scholar] [CrossRef]
- Al-Mutabagani, L.A.; Alshabanah, L.A.; Ahmed, H.A.; Hagar, M.; Al-Ola, K.A.A. New symmetrical U-and wavy-shaped supramolecular H-bonded systems; geometrical and mesomorphic approaches. Molecules 2020, 25, 1420. [Google Scholar] [CrossRef] [Green Version]
- Dave, J.S.; Menon, M. Azomesogens with a heterocyclic moiety. Bull. Mater. Sci. 2000, 23, 237–238. [Google Scholar] [CrossRef]
- Naoum, M.M.; Fahmi, A.A.; Ahmed, N.H.; Saad, G.R. The e_ect of lateral methyl substitution on the mesophase behaviour of aryl 4-alkoxyphenylazo benzoates. Liq. Cryst. 2015, 42, 1627–1637. [Google Scholar]
- Imrie, C.T.; Taylor, L. The preparation and properties of low molar mass liquid crystals possessing lateral alkyl chains. Liq. Cryst. 1989, 6, 1–10. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Pople, J.A. Gaussian 98, Revision a. 7, Gaussian; Gaussian, Inc.: Wallingford, CT, USA, 1998; Volume 12. [Google Scholar]
- Ahmed, H.A.; Hagar, M.; Alhaddad, O.A. New chair shaped supramolecular complexes-based aryl nicotinate derivative; mesomorphic properties and DFT molecular geometry. RSC Adv. 2019, 9, 16366–16374. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.; Pociecha, D.; Strachan, G.J.; Storey, J.M.D.; Gorecka, E.; Imrie, C.T. Molecular curvature, specific intermolecular in-teractions and the twist-bend nematic phase: The synthesis and characterisation of the 1-(4-cyanobiphenyl-4-yl)-6-(4 al-kylanilinebenzylidene-4-oxy)hexanes (CB6O.m). Soft Matter 2019, 15, 3188–3197. [Google Scholar] [CrossRef] [Green Version]
- Elshakre, M.E.; Alalawy, H.H.; Awad, M.I.; El-Anadouli, B.E. On the role of the electronic states of corrosion inhibitors: Quantum chemical-electrochemical correlation study on urea derivatives. Corros. Sci. 2017, 124, 121–130. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds An are available from the authors. |
Comp. | TCr-N | ΔHCr-N | TN-I | ΔHN-I | ΔSN-I | ΔT |
---|---|---|---|---|---|---|
A6 | 130.4 | 37.59 | 184.5 | 1.94 | 0.51 | 54.10 |
A8 | 128.6 | 43.40 | 174.2 | 1.80 | 0.48 | 45.60 |
A16 | 122.2 | 55.25 | 146.6 | 1.66 | 0.48 | 24.40 |
Comp. | ZPE, kcal/mol | Thermal Energy, kcal/mol | Enthalpy, kcal/mol | Gibb’s Free Energy, kcal/mol | Entropy, cal/molK |
---|---|---|---|---|---|
A6 | 288.066 | 305.566 | 306.158 | 247.348 | 197.254 |
A8 | 323.766 | 342.923 | 343.515 | 280.483 | 211.414 |
A16 | 466.039 | 492.042 | 492.635 | 412.108 | 270.094 |
Comp. | EHOMO, eV | ELUMO, eV | ∆E, eV | I.E, eV | E.A, eV | Dipole Moment, Debye | Polarizability, Bohr |
---|---|---|---|---|---|---|---|
A6 | −5.669 | −2.097 | 3.572 | 5.669 | 2.097 | 0.896 | 354.830 |
A8 | −5.667 | −2.096 | 3.571 | 5.667 | 2.096 | 0.911 | 379.780 |
A16 | −5.664 | −2.079 | 3.586 | 5.664 | 2.079 | 0.800 | 477.790 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mutabagani, L.A.; Alshabanah, L.A.; Ahmed, H.A.; Alalawy, H.H.; Al alwani, M.H. Synthesis, Mesomorphic and Computational Characterizations of Nematogenic Schiff Base Derivatives in Pure and Mixed State. Molecules 2021, 26, 2038. https://doi.org/10.3390/molecules26072038
Al-Mutabagani LA, Alshabanah LA, Ahmed HA, Alalawy HH, Al alwani MH. Synthesis, Mesomorphic and Computational Characterizations of Nematogenic Schiff Base Derivatives in Pure and Mixed State. Molecules. 2021; 26(7):2038. https://doi.org/10.3390/molecules26072038
Chicago/Turabian StyleAl-Mutabagani, Laila A., Latifah A. Alshabanah, Hoda A. Ahmed, Hafsa H. Alalawy, and Mayada H. Al alwani. 2021. "Synthesis, Mesomorphic and Computational Characterizations of Nematogenic Schiff Base Derivatives in Pure and Mixed State" Molecules 26, no. 7: 2038. https://doi.org/10.3390/molecules26072038
APA StyleAl-Mutabagani, L. A., Alshabanah, L. A., Ahmed, H. A., Alalawy, H. H., & Al alwani, M. H. (2021). Synthesis, Mesomorphic and Computational Characterizations of Nematogenic Schiff Base Derivatives in Pure and Mixed State. Molecules, 26(7), 2038. https://doi.org/10.3390/molecules26072038