Changes in Amino Acid Profiles and Bioactive Compounds of Thai Silk Cocoons as Affected by Water Extraction
Abstract
1. Introduction
2. Results and Discussion
2.1. The Effect of Extraction Time on the Amino-Acid Contents of Silk-Protein Extracts (SPE)
2.2. The Effect of Extraction Time on Protein Content
2.3. The Effect of Extraction Time on Amino-Acid Contributions to Taste
2.4. The Effect of Extraction Time on Total Phenolic Content and Total Flavonoid Content
2.5. The Effects on DPPH Radical-Scavenging Activity, ABTS+• and FRAP Assay
2.6. The Effect of Inhibitory Activities against the Enzymes α-Amylase and α-Glucosidase
2.7. The Effect of Anti-AGEs Formation Activity
2.8. Correlations
3. Materials and Methods
3.1. Silk Cocoons
3.2. Chemicals and Reagents
3.3. Extraction with Distilled Water
3.4. Protein Determination
3.5. Amino-Acid Content by LCMS/MS
3.6. Total Phenolic Content (TPC)
3.7. Total Flavonoid Content (TFC)
3.8. DPPH Radical Scavenging Activity
3.9. Antioxidant Activity by ABTS Assay
3.10. Ferric Reducing/Antioxidant Power Assay (FRAP)
3.11. Inhibitory Activity against the Enzyme α-Amylase
3.12. Inhibitory Activity against the Enzyme α-Glucosidase
3.13. Evaluation of Anti-AGEs Formation Activity
3.14. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kato, N.; Sato, S.; Yamanaka, A.; Yamada, H.; Fuwa, N.; Nomura, M. Silk Protein, Sericin, Inhibits Lipid Peroxidation and Tyrosinase Activity. Biosci. Biotechnol. Biochem. 1998, 62, 145–147. [Google Scholar] [CrossRef]
- Koh, L.-D.; Cheng, Y.; Teng, C.-P.; Khin, Y.-W.; Loh, X.-J.; Tee, S.-Y.; Low, M.; Ye, E.; Yu, H.-D.; Zhang, Y.-W.; et al. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 2015, 46, 86–110. [Google Scholar] [CrossRef]
- Perteghella, S.; Crivelli, B.; Catenacci, L.; Sorrenti, M.; Bruni, G.; Necchi, V.; Vigani, B.; Sorlini, M.; Torre, M.L.; Chlapanidas, T. Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles. Int. J. Pharm. 2017, 520, 86–97. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Liu, H. Corn silk extract inhibit the formation of Nε-carboxymethyllysine by scavenging glyoxal/methyl glyoxal in a casein glucose-fatty acid model system. Food Chem. 2020, 309, 125708. [Google Scholar] [CrossRef] [PubMed]
- Aramwit, P.; Damrongsakkul, S.; Kanokpanont, S.; Srichana, T. Properties and antityrosinase activity of sericin from various extraction methods. Biotechnol. Appl. Biochem. 2010, 55, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Tamura, Y.; Nakajima, K.-I.; Nagayasu, K.-I.; Takabayashi, C. Flavonoid 5-glucosides from the cocoon shell of the silkworm, Bombyx mori. Phytochemistry 2002, 59, 275–278. [Google Scholar] [CrossRef]
- Napavichayanun, S.; Lutz, O.; Fischnaller, M.; Jakschitz, T.; Bonn, G.; Aramwit, P. Identification and quantification and antioxidant activity of flavonoids in different strains of silk cocoon, Bombyx mori. Arch. Biochem. Biophys. 2017, 631, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Takechi, T.; Maekawa, Z.-I.; Sugimura, Y. Use of Sericin as an Ingredient of Salad Dressing. Food Sci. Technol. Res. 2011, 17, 493–497. [Google Scholar] [CrossRef]
- Rangi, A.; Jajpura, L. The Biopolymer Sericin: Extraction and Applications. J. Text. Sci. Eng. 2015, 5, 1–5. [Google Scholar]
- Zhaorigetu, S.; Sasaki, M.; Watanabe, H.; Kato, N. Supplemental Silk Protein, Sericin, Suppresses Colon Tumorigenesis in 1,2-Dimethylhydrazine-Treated Mice by Reducing Oxidative Stress and Cell Proliferation. Biosci. Biotechnol. Biochem. 2001, 65, 2181–2186. [Google Scholar] [CrossRef]
- Sen, K.; Babu, K.M. Studies on Indian silk. II. Structure–property correlations. J. Appl. Polym. Sci. 2004, 92, 1098–1115. [Google Scholar] [CrossRef]
- Cao, T.-T.; Zhang, Y.-Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater. Sci. Eng. C 2016, 61, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Lamboni, L.; Gauthier, M.; Yang, G.; Wang, Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol. Adv. 2015, 33, 1855–1867. [Google Scholar] [CrossRef]
- Zayas, J.F. Functionality of Proteins in Food; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997; pp. 6–75. [Google Scholar]
- Dyson, H.J.; Wright, P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 2005, 6, 197–208. [Google Scholar] [CrossRef]
- Fuke, S.; Shimizu, T. Sensory and preference aspects of umami. Trends Food Sci. Technol. 1993, 4, 246–251. [Google Scholar] [CrossRef]
- Tabunoki, H.; Higurashi, S.; Ninagi, O.; Fujii, H.; BannoMasashi, Y.; Kitajima, K.; Miura, N.; AtsumiKozo, S.; Hideaki, T.; Sato, M. A carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. FEBS Lett. 2004, 567, 175–178. [Google Scholar] [CrossRef]
- Butkhup, L.; Jeenphakdee, M.; Jorjong, S.; Samappito, S.; Samappito, W.; Butimal, J. Phenolic composition and antioxidant activity of Thai and Eri silk sericins. Food Sci. Biotechnol. 2012, 21, 389–398. [Google Scholar] [CrossRef]
- Kurioka, A.; Yamazaki, M. Purification and Identification of Flavonoids from the Yellow Green Cocoon Shell (Sasamayu) of the Silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 2002, 66, 1396–1399. [Google Scholar] [CrossRef]
- Andallu, B.; Shankaran, M.; Ullagaddi, R.; Iyer, S. In Vitro free radical scavenging and in vivo antioxidant potential of mulberry (Morus indica L.) leaves. J. Herb. Med. 2014, 4, 10–17. [Google Scholar] [CrossRef]
- Butsat, S.; Siriamornpun, S. Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chem. 2010, 119, 606–613. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Prommuak, C.; De-Eknamkul, W.; Shotipruk, A. Extraction of flavonoids and carotenoids from Thai silk waste and antioxidant activity of extracts. Sep. Purif. Technol. 2008, 62, 444–448. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. α-Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness 2014, 3, 136–174. [Google Scholar] [CrossRef]
- Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia 2001, 44, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Ardestani, A.; Yazdanparast, R. Cyperus rotundus suppresses AGE formation and protein oxidation in a model of fructose-mediated protein glycoxidation. Int. J. Biol. Macromol. 2007, 41, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-Y.; Gao, H.-Y.; Sun, L.; Huang, J.; Xu, X.-M.; Wu, L.-J. Constituents with α-glucosidase and advanced glycation end-product formation inhibitory activities from Salvia miltiorrhiza Bge. J. Nat. Med. 2010, 65, 37–42. [Google Scholar] [CrossRef]
- Benzie, I.F.; Stezo, Y.T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef]
- Kubola, J.; Siriamornpun, S. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem. 2008, 110, 881–890. [Google Scholar] [CrossRef]
- Kumar, S.; Sandhir, R.; Ojha, S. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Res. Notes 2014, 7, 1–9. [Google Scholar] [CrossRef]
- Kaewseejan, N.; Sutthikhum, V.; Siriamornpun, S. Potential of Gynura procumbens leaves as source of flavonoid-enriched fractions with enhanced antioxidant capacity. J. Funct. Foods 2015, 12, 120–128. [Google Scholar] [CrossRef]
- Van Quan, N.; Xuan, T.D.; Tran, H.-D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.; Andriana, Y.; Tuyen, P.T. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Canarium tramdenum Bark. Molecules 2019, 24, 605. [Google Scholar] [CrossRef]
- Sangwong, G.; Sumida, M.; Sutthikhum, V. Antioxidant activity of chemically and enzymatically modified sericin extracted from cocoons of Bombyx mori. Biocatal. Agric. Biotechnol. 2016, 5, 155–161. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Chumroenphat, T.; Somboonwatthanakul, I.; Saensouk, S.; Siriamornpun, S. The Diversity of Biologically Active Compounds in the Rhizomes of Recently Discovered Zingiberaceae Plants Native to North Eastern Thailand. Pharmacogn. J. 2019, 11, 1014–1022. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Xiao, Z.; Storms, R.; Tsang, A. A quantitative starch–iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 2006, 351, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-J.; Zhao, J.-L. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomed. Pharmacother. 2019, 110, 510–517. [Google Scholar] [CrossRef]
- Vinson, J.A.; Howard, T.B. Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem. 1996, 7, 659–663. [Google Scholar] [CrossRef]
Parameters | Extraction Time (h) | ||||||
---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | |||
Amino acid content (µg/g DW) | Essential amino acids | Phenylalanine | 0.63 ± 0.36 e | 1.01 ± 0.57 d | 1.63 ± 0.64 c | 2.44 ± 0.45 a | 2.16 ± 0.23 b |
Valine | 0.86 ± 0.48 e | 2.19 ± 0.11 d | 2.69 ± 0.51 c | 3.22 ± 0.92 a | 2.95 ± 0.55 bc | ||
Tryptophan | 1.07 ± 0.57 e | 1.81 ± 0.29 d | 2.01 ± 0.09 c | 2.79 ± 0.19 a | 2.37 ± 0.13 b | ||
Threonine | 1.86 ± 0.62 e | 10.38 ± 0.19 d | 26.92 ± 0.19 c | 29.30 ± 0.46 a | 28.61 ± 0.23 b | ||
Isoleucine | 0.96 ± 0.46 e | 1.95 ± 0.84 d | 2.89 ± 0.94 c | 3.91 ± 1.21 a | 3.24 ± 0.56 b | ||
Methionine | 0.78 ± 0.54 e | 1.48 ± 0.26 d | 1.98 ± 0.26 c | 2.79 ± 0.65 a | 2.21 ± 0.54 b | ||
Histidine | 0.04 ± 0.61 d | 7.35 ± 0.17 c | 8.92 ± 0.19 b | 10.29 ± 0.14 a | 8.93 ± 0.26 b | ||
Arginine | 0.97 ± 0.52 d | 1.57 ± 0.30 c | 1.71 ± 0.33 b | 2.64 ± 0.24 a | 1.69 ± 0.13 b | ||
Lysine | 1.53 ± 0.41 d | 2.44 ± 0.41 c | 4.64 ± 0.16 b | 5.32 ± 0.31 a | 4.88 ± 0.52 b | ||
Leucine | 1.02 ± 0.26 d | 1.98 ± 0.65 c | 2.31 ± 0.65 b | 2.59 ± 0.95 a | 2.20 ± 0.15 b | ||
Total essential amino acids | 9.72 ± 0.49 e | 32.16 ± 0.66 d | 56.50 ± 0.53 c | 65.29 ± 0.86 a | 59.84 ± 0.48 b | ||
Non-essential amino acids | Glycine | 2.76 ± 0.38 e | 11.73 ± 0.38 d | 21.32 ± 0.72 c | 34.11 ± 0.48 a | 30.23 ± 0.52 b | |
Glutamic acid | 1.93 ± 0.52 e | 8.67 ± 0.85 d | 10.37 ± 0.53 c | 20.67 ± 0.51 a | 18.18 ± 0.87 b | ||
Aspartic acid | 1.57 ± 0.48 e | 16.44 ± 0.51 d | 22.17 ± 0.93 c | 25.64 ± 0.23 a | 24.25 ± 0.10 b | ||
Glutamine | 0.74 ± 0.63 d | 1.87 ± 0.19 c | 3.07 ± 0.19 b | 3.79 ± 0.46 a | 3.01 ± 0.23 b | ||
Serine | 2.01 ± 0.74 d | 10.04 ± 0.71 c | 15.19 ± 0.69 c | 21.60 ± 0.65 a | 18.03 ± 1.75 b | ||
Tyrosine | 0.67 ± 0.40 e | 1.07 ± 0.37 d | 3.27 ± 0.57 c | 6.48 ± 0.28 a | 5.35 ± 0.06 b | ||
Alanine | 1.06 ± 0.39 d | 1.94 ± 0.57 c | 2.48 ± 0.27 b | 3.25 ± 0.49 a | 2.30 ± 0.18 b | ||
Asparagine | 1.96 ± 0.44 f | 2.81 ± 1.68 e | 3.22 ± 0.98 c | 5.06 ± 1.48 a | 4.29 ± 0.37 b | ||
Total amino acids | 23.79 ± 0.61 e | 91.30 ± 0.64 d | 143.38 ± 0.68 c | 193.53 ± 0.53 a | 172.97 ± 0.60 b | ||
Protein content (mg/g) | 0.80 ± 0.56 e | 1.15 ± 0.42 d | 1.24 ± 0.55 c | 1.46 ± 0.72 b | 2.18 ± 0.23 a |
Parameters | Extraction Time (h) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | ||||
Amino acid content (µg/g DW) | Essential amino acids | Phenylalanine | 0.12 ± 0.25 e | 0.36 ± 0.67 d | 0.52 ± 0.44 c | 1.49 ± 0.50 a | 0.75 ± 0.32 b | |
Valine | 0.73 ± 0.36 e | 2.02 ± 0.11 d | 2.43 ± 0.51 c | 2.61 ± 0.55 bc | ||||
Tryptophan | 0.07 ± 0.31 e | 0.41 ± 0.37 d | 0.50 ± 0.35 c | 0.95 ± 0.20 a | 0.63 ± 0.47 b | |||
Threonine | 1.31 ± 0.69 d | 2.08 ± 0.39 c | 3.52 ± 0.19 b | 4.53 ± 0.51 a | 3.37 ± 0.49 b | |||
Isoleucine | 0.11 ± 0.57 e | 0.46 ± 0.77 d | 0.53 ± 0.38 c | 0.87 ± 0.76 a | 0.62 ± 0.42 b | |||
Methionine | 0.23 ± 0.60 e | 0.57 ± 0.30 d | 0.68 ± 0.37 c | 0.86 ± 0.42 a | 0.72 ± 0.49 b | |||
Histidine | 0.11 ± 0.32 e | 0.21 ± 0.36 d | 0.54 ± 0.79 c | 0.76 ± 0.36 a | 0.57 ± 0.67 b | |||
Arginine | 0.18 ± 0.45 d | 0.28 ± 0.62 c | 0.39 ± 0.37 b | 0.54 ± 0.46 a | 0.43 ± 0.25 b | |||
Lysine | 1.64 ± 0.62 e | 2.31 ± 0.35 d | 3.08 ± 0.32 c | 4.71 ± 0.64 a | 2.58 ± 0.48 b | |||
Leucine | 1.02 ± 0.61 e | 1.56 ± 0.44 d | 2.07 ± 0.92 c | 3.65 ± 0.38 a | 2.54 ± 0.47 b | |||
Total essential amino acids | 5.52 ± 0.51 e | 10.26 ± 0.63 d | 14.26 ± 0.86 c | 21.23 ± 0.72 a | 14.82 ± 0.53 b | |||
Non-essential amino acids | Glycine | 1.44 ± 0.65 e | 11.03 ± 0.38 d | 19.36 ± 0.43 c | 28.66 ± 0.51 a | 27.32 ± 0.38 b | ||
Glutamic acid | 2.51 ± 0.41 e | 8.53 ± 0.69 d | 12.09 ± 0.53 c | 14.03 ± 0.42 a | 13.98 ± 0.37 b | |||
Aspartic acid | 0.54 ± 0.32 e | 10.21 ± 0.86 d | 10.42 ± 0.73 c | 12.87 ± 0.47 a | 12.23 ± 0.32 b | |||
Glutamine | 0.79 ± 0.37 e | 1.08 ± 0.56 d | 1.32 ± 0.29 c | 1.57 ± 0.39 a | 1.09 ± 0.75 b | |||
Serine | 1.24 ± 0.55 e | 11.76 ± 0.32 d | 13.87 ± 0.43 c | 17.62 ± 0.73 a | 15.42 ± 1.49 b | |||
Tyrosine | 1.97 ± 0.53 e | 2.37 ± 0.43 d | 4.08 ± 0.72 c | 5.64 ± 0.43 a | 2.79 ± 0.38 b | |||
Alanine | 0.94 ± 0.47 e | 1.09 ± 0.39 cd | 1.27 ± 0.44 c | 1.46 ± 0.37 a | 1.17 ± 0.45 b | |||
Asparagine | 1.07 ± 0.56 f | 1.50 ± 0.79 e | 1.84 ± 0.37 d | 2.10 ± 0.96 b | 1.97 ± 0.54 c | |||
Total amino acids | 16.10 ± 0.58 e | 57.98 ± 0.69 d | 78.73 ± 0.62 c | 105.96 ± 0.68 a | 90.86 ± 0.62 b | |||
Protein content (mg/g) | 0.81 ± 0.36 e | 1.02 ± 0.22 d | 1.16 ± 0.31 c | 1.21 ± 0.30 b | 1.87 ± 0.43 a |
Strain | Extraction Time (h) | Total Phenolic Content (mg GAE/g DW) | Total Flavonoid Content (mg RE/g DW) | Dpph Radical-Scavenging Activity (% inhibition) | ABTS+• (% Inhibition) | FRAP Assay (mg FeSO4/g DW) |
---|---|---|---|---|---|---|
Nangsew | 0 | 10.51 ± 1.48 e | 5.94 ± 1.63 e | 10.51 ± 1.48 d | 2.81 ± 0.08 e | 1.24 ± 0.13 d |
2 | 43.03 ± 1.05 f | 35.74 ± 1.25 d | 43.03 ± 1.05 e | 7.86 ± 0.15 d | 3.16 ± 0.24 c | |
4 | 58.23 ± 1.05 c | 43.03 ± 1.05 c | 58.23 ± 1.05 c | 15.99 ± 0.26 c | 4.59 ± 0.32 b | |
6 | 78.89 ± 1.82 a | 47.29 ± 1.11 a | 78.89 ± 1.82 a | 23.94 ± 0.24 a | 5.01 ± 0.22 a | |
8 | 76.28 ± 1.05 b | 45.06 ± 1.10 b | 76.28 ± 1.05 b | 22.87 ± 0.31 b | 4.53 ± 0.13 b | |
Eri | 0 | 10.22 ± 1.11 e | 1.57 ± 1.01 e | 1.03 ± 0.14 e | 1.58 ± 0.11 d | 1.02 ± 0.17 e |
2 | 18.12 ± 1.20 d | 8.98 ± 1.17 d | 2.28 ± 0.18 d | 3.25 ± 0.20 c | 2.11 ± 0.24 d | |
4 | 22.54 ± 1.03 c | 10.43 ± 1.32 c | 5.21 ±0.2c c | 4.20 ± 0.26 b | 2.68 ± 0.16 c | |
6 | 32.06 ± 1.14 a | 12.67 ± 1.13 a | 12.36 ± 0.19 a | 4.88 ± 0.17 a | 3.45 ± 0.22 a | |
8 | 30.08 ± 1.07 b | 11.85 ± 1.21 b | 11.33 ± 0.13 b | 4.19 ± 0.28 b | 3.37 ± 0.19 b |
Strain | Extraction Time (h) | Inhibitory Activity against Enzyme α-Amylase (% Inhibition) | Inhibitory Activity against Enzyme α-Glucosidase (% Inhibition) | Anti-AGEs Formation Activity (% Inhibition) |
---|---|---|---|---|
Nangsew | 0 | 2.81 ± 0.08 e | 1.24 ±0.13 d | 2.17 ± 0.12 e |
2 | 7.86 ± 0.15 d | 3.16 ± 0.04 c | 4.68 ± 0.11 d | |
4 | 15.99 ± 0.26 c | 4.59 ± 0.02 b | 14.66 ± 0.09 c | |
6 | 24.94 ± 0.24 a | 5.51 ± 0.02 a | 21.90 ± 0.07 a | |
8 | 22.87 ± 0.31 b | 4.53 ± 0.03 b | 18.88 ± 0.04 b | |
Eri | 0 | 1.06 ± 0.15 e | 0.69 ± 0.51 e | 1.58 ± 0.83 e |
2 | 3.60 ± 0.20 d | 1.15 ± 0.37 d | 3.46 ± 0.97 d | |
4 | 5.65 ± 0.19 c | 2.29 ± 0.26 c | 5.55 ± 0.48 c | |
6 | 7.91 ± 0.30 a | 3.63 ± 0.35 a | 9.30 ± 0.73 a | |
8 | 6.03 ± 0.27 b | 3.11 ± 0.41 b | 8.56 ± 0.69 b |
TPC | TFC | DPPH | ABTS+• | FRAP | Anti-α-Amylase | Anti-α-Glucosidase | Anti-Glycation | |
---|---|---|---|---|---|---|---|---|
TPC | 1 | 0.950 ** | 0.903 ** | 0.972 ** | 0.961 ** | 0.951 ** | 0.843 ** | 0.927 ** |
TFC | 1 | 0.839 ** | 0.865 ** | 0.948 ** | 0.848 ** | 0.777 ** | 0.828 ** | |
DPPH | 1 | 0.940 ** | 0.926 ** | 0.873 ** | 0.875 ** | 0.980 ** | ||
ABTS+• | 1 | 0.927 ** | 0.965 ** | 0.868 ** | 0.975 ** | |||
FRAP | 1 | 0.922 ** | 0.906 ** | 0.907 ** | ||||
Anti-α-amylase | 1 | 0.905 ** | 0.913 ** | |||||
Anti-α-glucosidase | 1 | 0.865 ** | ||||||
Anti-glycation | 1 |
TPC | TFC | DPPH | ABTS+• | FRAP | Anti-α-Amylase | Anti-α-Glucosidase | Anti-Glycation | |
---|---|---|---|---|---|---|---|---|
TPC | 1 | 0.923 ** | 0.965 ** | 0.925 ** | 0.982 ** | 0.994 ** | 0.977 ** | 0.974 ** |
TFC | 1 | 0.795 ** | 0.993 ** | 0.971 ** | 0.880 ** | 0.962 ** | 0.855 ** | |
DPPH | 1 | 0.804 ** | 0.909 ** | 0.986 ** | 0.909 ** | 0.980 ** | ||
ABTS+• | 1 | 0.973 ** | 0.888 ** | 0.973 ** | 0.874 ** | |||
FRAP | 1 | 0.963 ** | 0.990 ** | 0.946 ** | ||||
Anti-α-amylase | 1 | 0.961 ** | 0.986 ** | |||||
Anti-α-glucosidase | 1 | 0.959 ** | ||||||
Anti-glycation | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bungthong, C.; Siriamornpun, S. Changes in Amino Acid Profiles and Bioactive Compounds of Thai Silk Cocoons as Affected by Water Extraction. Molecules 2021, 26, 2033. https://doi.org/10.3390/molecules26072033
Bungthong C, Siriamornpun S. Changes in Amino Acid Profiles and Bioactive Compounds of Thai Silk Cocoons as Affected by Water Extraction. Molecules. 2021; 26(7):2033. https://doi.org/10.3390/molecules26072033
Chicago/Turabian StyleBungthong, Chuleeporn, and Sirithon Siriamornpun. 2021. "Changes in Amino Acid Profiles and Bioactive Compounds of Thai Silk Cocoons as Affected by Water Extraction" Molecules 26, no. 7: 2033. https://doi.org/10.3390/molecules26072033
APA StyleBungthong, C., & Siriamornpun, S. (2021). Changes in Amino Acid Profiles and Bioactive Compounds of Thai Silk Cocoons as Affected by Water Extraction. Molecules, 26(7), 2033. https://doi.org/10.3390/molecules26072033