Effect of Substituents of Cerium Pyrazolates and Pyrrolates on Carbon Dioxide Activation
Abstract
1. Introduction
2. Results and Discussion
2.1. Homoleptic Ceric Pyrazolates
2.2. Cerium Pyrrolates and Carbazolates
2.3. Reactivity toward CO2
2.4. Difference between Pyrazolates and Pyrrolates/Carbazolates
3. Materials and Methods
3.1. General Procedures
3.2. Synthesis of Ce(Ph2pz)4∙tol (2)
3.3. Synthesis of [Ce(tBuMepz)4]n (3)
3.4. Synthesis of [Ce2(pyr)6(µ-pyr)2(thf)2][Li(thf)4]2 (4)
3.5. Synthesis of [Ce(cbz)4(thf)2][Li(thf)4] (5)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hou, Z.; Wakatsuki, Y. Reactions of Ketones with Low-Valent Lanthanides: Isolation and Reactivity of Lanthanide Ketyl and Ketone Dianion Complexes. In Lanthanides: Chemistry and Use in Organic Synthesis; Kobayashi, S., Ed.; Topics in Organometallic Chemistry; Springer: Berlin/Heidelberg, Germany, 1999; pp. 233–253. ISBN 978-3-540-69801-2. [Google Scholar]
- Bayer, U.; Anwander, R. Carbonyl Group and Carbon Dioxide Activation by Rare-Earth-Metal Complexes. Dalton Trans. 2020, 49, 17472–17493. [Google Scholar] [CrossRef] [PubMed]
- Martín, C.; Fiorani, G.; Kleij, A.W. Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catal. 2015, 5, 1353–1370. [Google Scholar] [CrossRef]
- Grice, K.A. Carbon Dioxide Reduction with Homogenous Early Transition Metal Complexes: Opportunities and Challenges for Developing CO2 Catalysis. Coord. Chem. Rev. 2017, 336, 78–95. [Google Scholar] [CrossRef]
- Huang, J.; Worch, J.C.; Dove, A.P.; Coulembier, O. Update and Challenges in Carbon Dioxide-Based Polycarbonate Synthesis. ChemSusChem 2020, 13, 469–487. [Google Scholar] [CrossRef] [PubMed]
- Bresciani, G.; Biancalana, L.; Pampaloni, G.; Marchetti, F. Recent Advances in the Chemistry of Metal Carbamates. Molecules 2020, 25, 3603. [Google Scholar] [CrossRef]
- Falkowski, P.; Scholes, R.J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S.; et al. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science 2000, 290, 291–296. [Google Scholar] [CrossRef]
- Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible Climate Change Due to Carbon Dioxide Emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef]
- Haszeldine, R.S. Carbon Capture and Storage: How Green Can Black Be? Science 2009, 325, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
- Keith, D.W. Why Capture CO2 from the Atmosphere? Science 2009, 325, 1654–1655. [Google Scholar] [CrossRef] [PubMed]
- von der Assen, N.; Voll, P.; Peters, M.; Bardow, A. Life Cycle Assessment of CO2 Capture and Utilization: A Tutorial Review. Chem. Soc. Rev. 2014, 43, 7982–7994. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon Dioxide Capture: Prospects for New Materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-H.; Huang, C.-H.; Tan, C.-S. A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef]
- Sumida, K.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.-H.; Long, J.R. Carbon Dioxide Capture in Metal–Organic Frameworks. Chem. Rev. 2012, 112, 724–781. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Pérez, E.S.; Murdock, C.R.; Didas, S.A.; Jones, C.W. Direct Capture of CO2 from Ambient Air. Chem. Rev. 2016, 116, 11840–11876. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Kong, C.; Zhang, Q.; Chen, L. Metal-Organic Frameworks for Carbon Dioxide Capture and Methane Storage. Adv. Energy Mater. 2017, 7. [Google Scholar] [CrossRef]
- Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of Carbon Dioxide. Chem. Rev. 2007, 107, 2365–2387. [Google Scholar] [CrossRef] [PubMed]
- Centi, G.; Perathoner, S. Opportunities and Prospects in the Chemical Recycling of Carbon Dioxide to Fuels. Catal. Today 2009, 148, 191–205. [Google Scholar] [CrossRef]
- Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W.A.; Kühn, F.E. Transformation of Carbon Dioxide with Homogeneous Transition-Metal Catalysts: A Molecular Solution to a Global Challenge? Angew. Chem. Int. Ed. 2011, 50, 8510–8537. [Google Scholar] [CrossRef] [PubMed]
- Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem. Rev. 2014, 114, 1709–1742. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Using Carbon Dioxide as a Building Block in Organic Synthesis. Nat. Commun. 2015, 6, 5933. [Google Scholar] [CrossRef]
- Artz, J.; Müller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem. Rev. 2018, 118, 434–504. [Google Scholar] [CrossRef] [PubMed]
- Modak, A.; Bhanja, P.; Dutta, S.; Chowdhury, B.; Bhaumik, A. Catalytic Reduction of CO2 into Fuels and Fine Chemicals. Green Chem. 2020, 22, 4002–4033. [Google Scholar] [CrossRef]
- Vitanova, D.V.; Hampel, F.; Hultzsch, K.C. Rare Earth Metal Complexes Based on β-Diketiminato and Novel Linked Bis(β-Diketiminato) Ligands: Synthesis, Structural Characterization and Catalytic Application in Epoxide/CO2-Copolymerization. J. Organomet. Chem. 2005, 690, 5182–5197. [Google Scholar] [CrossRef]
- Cui, D.; Nishiura, M.; Hou, Z. Alternating Copolymerization of Cyclohexene Oxide and Carbon Dioxide Catalyzed by Organo Rare Earth Metal Complexes. Macromolecules 2005, 38, 4089–4095. [Google Scholar] [CrossRef]
- Lazarov, B.B.; Hampel, F.; Hultzsch, K.C. Synthesis and Structural Characterization of β-Diketiminato Yttrium Complexes and Their Application in Epoxide/CO2-Copolymerization. Z. Anorg. Allg. Chem. 2007, 633, 2367–2373. [Google Scholar] [CrossRef]
- Cui, D.; Nishiura, M.; Tardif, O.; Hou, Z. Rare-Earth-Metal Mixed Hydride/Aryloxide Complexes Bearing Mono(Cyclopentadienyl) Ligands. Synthesis, CO2 Fixation, and Catalysis on Copolymerization of CO2 with Cyclohexene Oxide. Organometallics 2008, 27, 2428–2435. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, D.; Liu, X. Alternating Copolymerization of Cyclohexene Oxide and Carbon Dioxide Catalyzed by Noncyclopentadienyl Rare-Earth Metal Bis(Alkyl) Complexes. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 6810–6818. [Google Scholar] [CrossRef]
- Decortes, A.; Haak, R.M.; Martín, C.; Belmonte, M.M.; Martin, E.; Benet-Buchholz, J.; Kleij, A.W. Copolymerization of CO2 and Cyclohexene Oxide Mediated by Yb(Salen)-Based Complexes. Macromolecules 2015, 48, 8197–8207. [Google Scholar] [CrossRef]
- Xu, B.; Wang, P.; Lv, M.; Yuan, D.; Yao, Y. Transformation of Carbon Dioxide into Oxazolidinones and Cyclic Carbonates Catalyzed by Rare-Earth-Metal Phenolates. ChemCatChem 2016, 8, 2466–2471. [Google Scholar] [CrossRef]
- Yasuda, H. Organo-Rare-Earth-Metal Initiated Living Polymerizations of Polar and Nonpolar Monomers. J. Organomet. Chem. 2002, 647, 128–138. [Google Scholar] [CrossRef]
- Ion, A.; Parvulescu, V.; Jacobs, P.; de Vos, D. Sc and Zn-Catalyzed Synthesis of Cyclic Carbonates from CO2 and Epoxides. Appl. Catal. Gen. 2009, 363, 40–44. [Google Scholar] [CrossRef]
- Qin, J.; Wang, P.; Li, Q.; Zhang, Y.; Yuan, D.; Yao, Y. Catalytic Production of Cyclic Carbonates Mediated by Lanthanide Phenolates under Mild Conditions. Chem. Commun. 2014, 50, 10952–10955. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Dai, Z.; Sun, Y.; Tang, N.; Wu, J. Yttrium Complex Supported by a Sterically Encumbering N-Anchored Tris-Arylphenoxide Ligand: Heteroselective ROP of Rac-Lactide and CO2/Epoxide Coupling. Inorg. Chem. Commun. 2015, 56, 69–72. [Google Scholar] [CrossRef]
- Martínez, J.; Fernández-Baeza, J.; Sánchez-Barba, L.F.; Castro-Osma, J.A.; Lara-Sánchez, A.; Otero, A. An Efficient and Versatile Lanthanum Heteroscorpionate Catalyst for Carbon Dioxide Fixation into Cyclic Carbonates. ChemSusChem 2017, 10, 2886–2890. [Google Scholar] [CrossRef]
- Zhao, Z.; Qin, J.; Zhang, C.; Wang, Y.; Yuan, D.; Yao, Y. Recyclable Single-Component Rare-Earth Metal Catalysts for Cycloaddition of CO2 and Epoxides at Atmospheric Pressure. Inorg. Chem. 2017, 56, 4568–4575. [Google Scholar] [CrossRef] [PubMed]
- Sodpiban, O.; Gobbo, S.D.; Barman, S.; Aomchad, V.; Kidkhunthod, P.; Ould-Chikh, S.; Poater, A.; D’Elia, V.; Basset, J.-M. Synthesis of Well-Defined Yttrium-Based Lewis Acids by Capturing a Reaction Intermediate and Catalytic Application for Cycloaddition of CO2 to Epoxides under Atmospheric Pressure. Catal. Sci. Technol. 2019, 9, 6152–6165. [Google Scholar] [CrossRef]
- Bayer, U.; Werner, D.; Maichle-Mössmer, C.; Anwander, R. Effective and Reversible Carbon Dioxide Insertion into Cerium Pyrazolates. Angew. Chem. Int. Ed. 2020, 59, 5830–5836. [Google Scholar] [CrossRef] [PubMed]
- Bayer, U.; Liang, Y.; Anwander, R. Cerium Pyrazolates Grafted onto Mesoporous Silica SBA-15: Reversible CO2 Uptake and Catalytic Cycloaddition of Epoxides and Carbon Dioxide. Inorg. Chem. 2020, 59, 14605–14614. [Google Scholar] [CrossRef] [PubMed]
- Bordwell, F.G. Equilibrium Acidities in Dimethyl Sulfoxide Solution. Acc. Chem. Res. 1988, 21, 456–463. [Google Scholar] [CrossRef]
- Bochkarev, M.; Fedorova, E.A.; Radkov, Y.F.; Ya, S.; Kalinina, G.S.; Razuvaev, G.A. Carbon Dioxide Fixation by Lanthanide Complexes. J. Organomet. Chem. 1983, 258, C29–C33. [Google Scholar] [CrossRef]
- Radkov, Y.F.; Fedorova, E.A.; Khorshev, S.Y.; Kalinina, G.S.; Bochkarev, M.N.; Razuvaev, G.A. Reactions of Carbon Dioxide with Bis(Trimethylsilyl)Amino Derivaties of Lanthanides. Zhur. Obshchei Khimii 1986, 56, 386–389. [Google Scholar]
- Yin, H.; Carroll, P.J.; Schelter, E.J. Reactions of a cerium(iii) amide with heteroallenes: Insertion, silyl-migration and de-insertion. Chem. Commun. 2016, 52, 9813–9816. [Google Scholar] [CrossRef] [PubMed]
- Jenter, J.; Gamer, M.T.; Roesky, P.W. 2,5-Bis{N-(2,6-Diisopropylphenyl)Iminomethyl}pyrrolyl Complexes of the Divalent Lanthanides: Synthesis and Structures. Organometallics 2010, 29, 4410–4413. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Cui, D. NNN-Tridentate Pyrrolyl Rare-Earth Metal Complexes: Structure and Catalysis on Specific Selective Living Polymerization of Isoprene. Organometallics 2012, 31, 6014–6021. [Google Scholar] [CrossRef]
- Johnson, K.R.D.; Hannon, M.A.; Ritch, J.S.; Hayes, P.G. Thermally Stable Rare Earth Dialkyl Complexes Supported by a Novel Bis(Phosphinimine)Pyrrole Ligand. Dalton Trans. 2012, 41, 7873–7875. [Google Scholar] [CrossRef]
- Kaneko, H.; Dietrich, H.M.; Schädle, C.; Maichle-Mössmer, C.; Tsurugi, H.; Törnroos, K.W.; Mashima, K.; Anwander, R. Synthesis of Rare-Earth-Metal Iminopyrrolyl Complexes from Alkyl Precursors: Ln→Al N-Ancillary Ligand Transfer. Organometallics 2013, 32, 1199–1208. [Google Scholar] [CrossRef]
- Levine, D.S.; Tilley, T.D.; Andersen, R.A. Evidence for the Existence of Group 3 Terminal Methylidene Complexes. Organometallics 2017, 36, 80–88. [Google Scholar] [CrossRef]
- Knott, J.P.; Hänninen, M.M.; Rautiainen, J.M.; Tuononen, H.M.; Hayes, P.G. Insights into the Decomposition Pathway of a Lutetium Alkylamido Complex via Intramolecular C–H Bond Activation. J. Organomet. Chem. 2017, 845, 135–143. [Google Scholar] [CrossRef]
- Sampson, J.; Choi, G.; Akhtar, M.N.; Jaseer, E.A.; Theravalappil, R.; Garcia, N.; Agapie, T. Early Metal Di(Pyridyl) Pyrrolide Complexes with Second Coordination Sphere Arene−π Interactions: Ligand Binding and Ethylene Polymerization. ACS Omega 2019, 4, 15879–15892. [Google Scholar] [CrossRef] [PubMed]
- McPherson, J.N.; Galan, L.A.; Iranmanesh, H.; Massi, M.; Colbran, S.B. Synthesis and Structural, Redox and Photophysical Properties of Tris-(2,5-Di(2-Pyridyl)Pyrrolide) Lanthanide Complexes. Dalton Trans. 2019, 48, 9365–9375. [Google Scholar] [CrossRef]
- Schumann, H.; Lee, P.R.; Dietrich, A. Organometallic Compounds of the Lanthanides, 57. Pyrrolyl Complexes of Yttrium and Lutetium. Molecular Structure of Dicyclopentadienyl(2,5-Dimethylpyrrolyl)(Tetrahydrofuran)Lutetium(III). Chem. Ber. 1990, 123, 1331–1334. [Google Scholar] [CrossRef]
- Arndt, S.; Trifonov, A.; Spaniol, T.P.; Okuda, J.; Kitamura, M.; Takahashi, T. Metalation of Aromatic Heterocycles by Yttrium Alkyl Complexes That Contain a Linked Amido-Cyclopentadienyl Ligand: Synthesis, Structure and Lewis Base Adduct Formation. J. Organomet. Chem. 2002, 647, 158–166. [Google Scholar] [CrossRef]
- Quitmann, C.C.; Müller-Buschbaum, K. [Sm(NH3)9][Sm(Pyr)6], ein komplexes Salz mit zwei homoleptischen Ionen aus der Synthese in flüssigem Ammoniak. Z. Anorg. Allg. Chem. 2005, 631, 564–568. [Google Scholar] [CrossRef]
- Arnold, P.L.; Cadenbach, T.; Marr, I.H.; Fyfe, A.A.; Bell, N.L.; Bellabarba, R.; Tooze, R.P.; Love, J.B. Homo- and Heteroleptic Alkoxycarbene f-Element Complexes and Their Reactivity towards Acidic N–H and C–H Bonds. Dalton Trans. 2014, 43, 14346–14358. [Google Scholar] [CrossRef]
- Deacon, G.B.; Forsyth, C.M.; Gatehouse, B.M. Organoamido- and Aryloxo-Lanthanoids. I. The Preparation and Characterization of Some Lanthanoid(II) Organoamides, and the X-Ray Crystal Structure of Cis-Bis(Carbazol-9-Yl)Tetrakis(Tetrahydrofuran)Europium(II). Aust. J. Chem. 1990, 43, 795–806. [Google Scholar] [CrossRef]
- Abrahams, C.T.; Deacon, G.B.; Gatehouse, B.M.; Ward, G.N. Cis-Bis(9-Carbazolyl)(1,2-Dimethoxyethane)-Cis-Bis(Tetrahydrofuran)Ytterbium(II). Acta Crystallogr. C 1994, 50, 504–507. [Google Scholar] [CrossRef]
- Evans, W.J.; Rabe, G.W.; Ziller, J.W. Stereochemical Variability in Samarium(II) Reagents Using Carbazole as an Alternative to Iodide: Synthesis and Structure of Cis-(C12H8N)2Sm(THF)4 and Trans-(C12H8N)2Sm(N-MeIm)4. Organometallics 1994, 13, 1641–1645. [Google Scholar] [CrossRef]
- Quitmann, C.C.; Müller-Buschbaum, K. Verdrängung von η6-π-Wechselwirkungen durch N-Donor-Liganden: Von ein-dimensionalen Samarium- und Ytterbium-Carbazolaten zu monomeren Einheiten mit N-Phenylpiperazin. Z. Anorg. Allg. Chem. 2005, 631, 350–354. [Google Scholar] [CrossRef]
- Müller-Buschbaum, K.; Zurawski, A. On the Mechanisms of Electride Induced Synthesis of Ytterbium Carbazolates, Formation of Coordination Polymers by Condensation and Polymer Degradation by Chemical Scissors. Z. Anorg. Allg. Chem. 2007, 633, 2300–2304. [Google Scholar] [CrossRef]
- Basalov, I.V.; Roşca, S.C.; Lyubov, D.M.; Selikhov, A.N.; Fukin, G.K.; Sarazin, Y.; Carpentier, J.-F.; Trifonov, A.A. Divalent Heteroleptic Ytterbium Complexes – Effective Catalysts for Intermolecular Styrene Hydrophosphination and Hydroamination. Inorg. Chem. 2014, 53, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Selikhov, A.N.; Mamontova, E.; Lyssenko, K.A.; Guari, Y.; Larionova, J.; Trifonov, A.A. Single-Molecule Magnet Behavior in Luminescent Carbazolyl Dy(III) Octahedral Complexes with a Quasi Linear N–Dy–N Angle. Dalton Trans. 2020, 49, 4039–4043. [Google Scholar] [CrossRef]
- Eppinger, J.; Spiegler, M.; Hieringer, W.; Herrmann, W.A.; Anwander, R. C2-Symmetric Ansa-Lanthanidocene Complexes. Synthesis via Silylamine Elimination and β-SiH Agostic Rigidity. J. Am. Chem. Soc. 2000, 122, 3080–3096. [Google Scholar] [CrossRef]
- Fraser, R.R.; Mansour, T.S.; Savard, S. Acidity Measurements on Pyridines in Tetrahydrofuran Using Lithiated Silylamines. J. Org. Chem. 1985, 50, 3232–3234. [Google Scholar] [CrossRef]
- Werner, D.; Deacon, G.B.; Junk, P.C.; Anwander, R. Pyrazolates Advance Cerium Chemistry: A CeIII/CeIV Redox Equilibrium with Benzoquinone. Dalton Trans. 2017, 46, 6265–6277. [Google Scholar] [CrossRef]
- Werner, D.; Deacon, G.B.; Junk, P.C.; Anwander, R. Cerium(III/IV) Formamidinate Chemistry, and a Stable Cerium(IV) Diolate. Chem. Eur. J. 2014, 20, 4426–4438. [Google Scholar] [CrossRef] [PubMed]
- Bayer, U.; Bock, L.; Maichle-Mössmer, C.; Anwander, R. A Facile Route toward Ceric Silylamide [Ce{N(SiHMe2)2}4]. Eur. J. Inorg. Chem. 2020, 101–106. [Google Scholar] [CrossRef]
- Evans, W.J.; Lee, D.S.; Rego, D.B.; Perotti, J.M.; Kozimor, S.A.; Moore, E.K.; Ziller, J.W. Expanding Dinitrogen Reduction Chemistry to Trivalent Lanthanides via the LnZ3/Alkali Metal Reduction System: Evaluation of the Generality of Forming Ln2(μ-η2:η2-N2) Complexes via LnZ3/K. J. Am. Chem. Soc. 2004, 126, 14574–14582. [Google Scholar] [CrossRef] [PubMed]
- Williams, U.J.; Schneider, D.; Dorfner, W.L.; Maichle-Mössmer, C.; Carroll, P.J.; Anwander, R.; Schelter, E.J. Variation of Electronic Transitions and Reduction Potentials of Cerium(iv) Complexes. Dalton Trans. 2014, 43, 16197–16206. [Google Scholar] [CrossRef] [PubMed]
- Hausen, H.-D.; Locke, K.; Weidlein*, J. Die Molekül- und Kristallstruktur von (CH3)2InNC4H4. J. Organomet. Chem. 1992, 423, C1–C4. [Google Scholar] [CrossRef]
- Hausen, H.-D.; Tödtmann, J.; Weidlein, J. [(CH3C)4N-(CH3)2Al⋯Cl⋯Al(CH3)2-N(CCH3)4]Li-Ein Ungewöhnlicher Sandwich-Komplex Des Lithiums. J. Organomet. Chem. 1994, 466, C1–C4. [Google Scholar] [CrossRef]
- Hsueh, L.-F.; Chuang, N.-T.; Lee, C.-Y.; Datta, A.; Huang, J.-H.; Lee, T.-Y. Magnesium Complexes Containing η1- and η3-Pyrrolyl or Ketiminato Ligands: Synthesis, Structural Investigation and ϵ-Caprolactone Ring-Opening Polymerisation. Eur. J. Inorg. Chem. 2011, 5530–5537. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, Y.; Chao, J.; Wei, X. Lithium Organoaluminate Complexes as Catalysts for the Conversion of CO2 into Cyclic Carbonates. Eur. J. Inorg. Chem. 2020, 2835–2841. [Google Scholar] [CrossRef]
- Crozier, A.R.; Bienfait, A.M.; Maichle-Mössmer, C.; Törnroos, K.W.; Anwander, R. A Homoleptic Tetravalent Cerium Silylamide. Chem. Commun. 2013, 49, 87–89. [Google Scholar] [CrossRef]
- Schneider, D.; Spallek, T.; Maichle-Mössmer, C.; Törnroos, K.W.; Anwander, R. Cerium Tetrakis(Diisopropylamide)—A Useful Precursor for Cerium(iv) Chemistry. Chem. Commun. 2014, 50, 14763–14766. [Google Scholar] [CrossRef] [PubMed]
- Gauld, R.M.; Kennedy, A.R.; McLellan, R.; Barker, J.; Reid, J.; Mulvey, R.E. Diverse Outcomes of CO2 Fixation Using Alkali Metal Amides Including Formation of a Heterobimetallic Lithium–Sodium Carbamato-Anhydride via Lithium–Sodium Bis-Hexamethyldisilazide. Chem. Commun. 2019, 55, 1478–1481. [Google Scholar] [CrossRef] [PubMed]
- Zelenin, K.N.; Tugusheva, A.R.; Yakimovich, S.I.; Alekseev, V.V.; Zerova, E.V. 5-Hydroxy-2-Pyrazolines and Some of Their 1-Substituted Analogs. Chem. Heterocycl. Compd. 2002, 38, 668–676. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayer, U.; Jenner, A.; Riedmaier, J.; Maichle-Mössmer, C.; Anwander, R. Effect of Substituents of Cerium Pyrazolates and Pyrrolates on Carbon Dioxide Activation. Molecules 2021, 26, 1957. https://doi.org/10.3390/molecules26071957
Bayer U, Jenner A, Riedmaier J, Maichle-Mössmer C, Anwander R. Effect of Substituents of Cerium Pyrazolates and Pyrrolates on Carbon Dioxide Activation. Molecules. 2021; 26(7):1957. https://doi.org/10.3390/molecules26071957
Chicago/Turabian StyleBayer, Uwe, Adrian Jenner, Jonas Riedmaier, Cäcilia Maichle-Mössmer, and Reiner Anwander. 2021. "Effect of Substituents of Cerium Pyrazolates and Pyrrolates on Carbon Dioxide Activation" Molecules 26, no. 7: 1957. https://doi.org/10.3390/molecules26071957
APA StyleBayer, U., Jenner, A., Riedmaier, J., Maichle-Mössmer, C., & Anwander, R. (2021). Effect of Substituents of Cerium Pyrazolates and Pyrrolates on Carbon Dioxide Activation. Molecules, 26(7), 1957. https://doi.org/10.3390/molecules26071957