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Abstract: Homoleptic ceric pyrazolates (pz) Ce(RR’pz)4 (R = R’ = tBu; R = R’ = Ph; R = tBu, R’ = Me)
were synthesized by the protonolysis reaction of Ce[N(SiHMe2)2]4 with the corresponding pyrazole
derivative. The resulting complexes were investigated in their reactivity toward CO2, revealing a
significant influence of the bulkiness of the substituents on the pyrazolato ligands. The efficiency
of the CO2 insertion was found to increase in the order of tBu2pz < Ph2pz < tBuMepz < Me2pz.
For comparison, the pyrrole-based ate complexes [Ce2(pyr)6(µ-pyr)2(thf)2][Li(thf)4]2 (pyr = pyrro-
lato) and [Ce(cbz)4(thf)2][Li(thf)4] (cbz = carbazolato) were obtained via protonolysis of the cerous
ate complex Ce[N(SiHMe2)2]4Li(thf) with pyrrole and carbazole, respectively. Treatment of the
pyrrolate/carbazolate complexes with CO2 seemed promising, but any reversibility could not be
observed.
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1. Introduction

Rare-earth–metal complexes are capable of efficiently activating carbonylic com-
pounds including carbon dioxide [1–6]. Due to its environmental impact, atmospheric CO2
management and, in particular, sustainable solutions for CO2 emission control evolved
as a top-priority issue in academic and industrial research [7–11]. On the one hand, this
can be realized by capturing and storing carbon dioxide with tailor-made surface-reactive
materials [12–16]. On the other hand, the use of CO2 as a cheap, abundant, and nontoxic C1
building block in the synthesis of higher-value chemicals is a main goal in sustainable chem-
istry [17–23]. For example, rare-earth metals have successfully been studied as catalysts
for the copolymerization of carbon dioxide and epoxides to yield polycarbonates [24–30].
Various rare-earth-metal-based (pre)catalysts are known to promote the catalytic cycload-
dition of carbon dioxide and epoxide-producing cyclic carbonates, which then, in case of
propylene carbonate, can be used as electrolyte solvent in lithium-ion batteries [30–37].
However, these complexes often lack the catalytic activity and superb performance of zinc
or cobalt-based systems [4].

We have recently described the application of homoleptic ceric pyrazolate [Ce(Me2pz)4]2
in the catalytic cycloaddition of carbon dioxide and epoxides as well as the reversible capture
of CO2 [38,39]. To study the scope and efficiency of such pyrazolate-promoted CO2 insertion
reactions, we extended our study with a broader comparison to differently substituted
pyrazole derivatives as ligands for cerium(IV). Since we hypothesized that the basicity of
the ligand plays a crucial role in any reversible CO2 uptake, we also envisaged different
N-proligands. Pyrroles feature a mono-aza five-membered ring, exhibiting a pKa value that
is larger than that of pyrazoles, but close to silylamines (Figure 1) [40]. Metal silylamides,
however, were shown to engage in a cascade of reactions with CO2, ultimately affording
metal siloxides [41–43]. Whereas pyrrole-derived pincer-type ligands are quite popular in
rare-earth–metal coordination chemistry [44–51], examples of pure pyrrolyl ligands have
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remained scarce [52–55]. Likewise, rare-earth–metal complexes bearing a carbazolyl ligand
have been reported [56–62]. As a pyrrole derivative, carbazole exhibits a pKa value that
matches that of pyrazole (Figure 1).
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b) determined in THF. 
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treatment of Ce[N(SiHMe2)2]4 with four equivalents of tBu2pzH as previously described 
(Scheme 1) [65]. Likewise, Ce(Ph2pz)4 (2) and Ce(tBuMepz)4 (3) were synthesized using 
the corresponding pyrazole (Scheme 1). The 1H NMR spectrum of 2 shows a singlet for 
the proton in the pyrazolato backbone at 7.11 ppm and two multiplets at 6.91 and 7.78 
ppm for the aromatic protons (Figure S1, Supporting Information). In contrast to the 
complexes bearing symmetric pyrazolato ligands, compound 3 with the asymmetric 3-
tert-butyl-5-methyl pyrazolato ligand could not be obtained as a crystalline material, but 
as a dark red sticky solid upon removing the volatiles in vacuo. The general composition 
of [Ce(tBuMepz)4]n was confirmed by 1H NMR spectroscopy showing singlets at 1.24 ppm 
for the tBu groups, at 2.22 ppm for the methyl groups, and at 6.15 ppm for the C−H proton 
of the five-membered pyrazole ring (Figure S2, Supporting Information). However, 
elemental analysis displayed some extent of impurification, indicated by an increased 
carbon value most likely stemming from retained solvent. 
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Crystals of complex 2 suitable for an X-ray diffraction (XRD) study could be obtained 
from a concentrated solution in toluene. The crystal structure revealed an eight-coordinate 
cerium center surrounded by four η2-coordinated diphenylpyrazolato moieties (Figure 2). 
The Ce1–N distances (2.3381(16) to 2.3790(16) Å) are comparable to other terminal CeIV–
N(pz) bonds (1: 2.322(4) to 2.365(4) Å; Ce(Me2pz)4: 2.319(3) to 2.384(2) Å) [65]. 

Figure 1. pKa values of the different N-proligands [40,63,64]. a) Determined in DMSO, b) determined
in THF.

2. Results and Discussion
2.1. Homoleptic Ceric Pyrazolates

Homoleptic cerium di-tert-butyl pyrazolate Ce(tBu2pz)4 (1) was synthesized by treat-
ment of Ce[N(SiHMe2)2]4 with four equivalents of tBu2pzH as previously described
(Scheme 1) [65]. Likewise, Ce(Ph2pz)4 (2) and Ce(tBuMepz)4 (3) were synthesized us-
ing the corresponding pyrazole (Scheme 1). The 1H NMR spectrum of 2 shows a singlet
for the proton in the pyrazolato backbone at 7.11 ppm and two multiplets at 6.91 and
7.78 ppm for the aromatic protons (Figure S1, Supporting Information). In contrast to
the complexes bearing symmetric pyrazolato ligands, compound 3 with the asymmetric
3-tert-butyl-5-methyl pyrazolato ligand could not be obtained as a crystalline material, but
as a dark red sticky solid upon removing the volatiles in vacuo. The general composition of
[Ce(tBuMepz)4]n was confirmed by 1H NMR spectroscopy showing singlets at 1.24 ppm for
the tBu groups, at 2.22 ppm for the methyl groups, and at 6.15 ppm for the C−H proton of
the five-membered pyrazole ring (Figure S2, Supporting Information). However, elemental
analysis displayed some extent of impurification, indicated by an increased carbon value
most likely stemming from retained solvent.
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Crystals of complex 2 suitable for an X-ray diffraction (XRD) study could be obtained
from a concentrated solution in toluene. The crystal structure revealed an eight-coordinate
cerium center surrounded by four η2-coordinated diphenylpyrazolato moieties (Figure 2).
The Ce1–N distances (2.3381(16) to 2.3790(16) Å) are comparable to other terminal CeIV–N(pz)
bonds (1: 2.322(4) to 2.365(4) Å; Ce(Me2pz)4: 2.319(3) to 2.384(2) Å) [65].
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Hydrogen atoms and lattice toluene are omitted for clarity. Selected interatomic distances (Å)
and angles (◦): Ce1−N1 2.3790(16), Ce1−N2 2.3381(16), Ce1−N3 2.3409(15), Ce1−N4 2.3575(16);
N1−Ce1−N3 113.41(6), N1−Ce1−N4 118.73(5), N2−Ce1−N3 96.05(6), and N2−Ce1−N4 87.76(5).

2.2. Cerium Pyrrolates and Carbazolates

As the synthesis pathway via protonolysis reaction of Ce[N(SiHMe2)2]4 with pyrazole
emerged as a feasible route for the synthesis of homoleptic ceric pyrazolates, the envis-
aged pyrrolates were accessed accordingly. Unexpectedly, treatment of the silylamide
with four equivalents of pyrrole did not yield any reaction. Therefore, we reacted the
cerous ate complex Ce[N(SiHMe2)2]4Li(thf) [66] with four equivalents of pyrrole (Hpyr)
and carbazole (Hcbz), yielding the complexes [Ce2(pyr)6(µ-pyr)2(thf)2][Li(thf)4]2 (4) and
[Ce(cbz)4(thf)2][Li(thf)4] (5), respectively (Scheme 2). The 1H NMR spectrum of 4 shows
two broadened singlets for the pyrrolato protons at 4.23 and 7.39 ppm (Figure S3, Sup-
porting Information). For complex 5, various broadened proton signals could be detected
as well but due to the paramagnetic CeIII center, assignment of the signals was inconclu-
sive (Figure S5, Supporting Information). The persistence of ion-separated intermolecular
ate complexes in THF-d8 was evidenced by 7Li NMR spectroscopy (4: δLi = 2.0 ppm;
5: δLi = −0.3 ppm; (Figures S4 and S6, Supporting Information)) [67].
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Crystallization from a concentrated THF solution gave 4 as colorless crystals. The
crystal structure of 4 revealed a separated ion pair featuring a dicerium dianionic entity
(Figure 3). Each cerium center is eight-coordinated and surrounded by three terminal
pyrrolato moieties (Ce1–N 2.475(2) to 2.515(2) Å), two bridging pyrrolato ligands connecting
the cerium centers in an η1 (Ce1–N4′ 2.622(2) Å) and η5 fashion (Ce1–Ct 2.575(16) Å), and
one THF donor molecule. The Ce–N distances are slightly elongated compared with
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other CeIII ate complexes like [Ce{N(SiHMe2)2}4][Li(do)x] (do, x = py, 4; tmeda, 2; 12-
crown-4, 1 and thf, 4; Ce–N 2.377(6) to 2.438(6) Å), KCe[N(SiHMe2)2]4 (2.3820(12) to
2.4379(12) Å), and [Ce{N(SiMe3)2}4][Na(thf)4(Et2O)] (Ce–N 2.434(6) to 2.448(6) Å), due to
the higher coordination number CN of 4 (CN 8 vs. 4) [67–69]. The σ,π-bridging motif of the
pyrrolato ligands has been detected previously, for example, in complexes [Me2In(µ-pyr)]n,
[Me2Al2(µ-Cl)](µ-Me4pyr)Li, [Mg{µ-C4H2N(2-CH2NHtBu)}{N(SiMe3)2}]2, and (AlMe3)(µ-
C4H3N)[2-CH2NH(tBu)Li(tmeda)] [70–73].

1 
 

 

 
2 
 

 
 
4 
 

 
 

Figure 3. Crystal structure of [Ce2(pyr)6(µ-pyr)2(thf)2][Li(thf)4]2 (4). Ellipsoids are shown at the
50% probability level. Hydrogen atoms and the second [Li(thf)4]+ counter ion are omitted for clarity.
Selected interatomic distances (Å) and angles (◦): Ce1−N1 2.512(2), Ce1−N2 2.475(2), Ce1−N3
2.515(2), Ce1−N4′ 2.622(2), Ce1−Ct1 2.575(16), Ce1−O1 2.5138(17); N1−Ce1−N2 97.21(7), N1−Ce1-
N3 153.53(8), N1−Ce1−N4 86.15(7), N1−Ce1−O1 78.80(7), and N4−Ce1′−Ct1′ 97.8(5).

Complex 5 was recrystallized from a 1:1 mixture of THF and Et2O to yield off-white
crystals suitable for XRD analysis. The crystal structure of 5 shows a six-coordinate cerium
center surrounded by four carbazolyl ligands, two THF donor molecules and a [Li(thf)4]+

counter ion (Figure 4). As seen before, the Ce1–N distances (2.480(4) to 2.531(4) Å) are
slightly elongated compared with other separated ion-pair type ate complexes due to the
higher coordination number of 6 compared with 4.

Targeted oxidations of the ate complexes 4 and 5 with p-benzoquinone led to an
immediate color change to dark green and dark purple, respectively. Although indicative
of a redox reaction, the isolation and characterization of a tetravalent cerium pyrrolate or
carbazolate was unsuccessful. Dissolving the resulting crude product in THF-d8 resulted
in the decolorization of the solution and the obtained 1H NMR spectrum showed only
paramagnetically broadened and shifted signals. This play of colors clearly indicated a
reduction in the putatively formed tetravalent species. The use of other solvents was not
possible due to the insolubility of the cerium pyrrolates and carbazolates in nondonating
solvents.



Molecules 2021, 26, 1957 5 of 12

1 
 

 

 
2 
 

 
 
4 
 

 
 

Figure 4. Crystal structure of [Ce(cbz)4(thf)2][Li(thf)4] (5). Ellipsoids are shown at the 50% probability
level. Hydrogen atoms and disordered atoms are omitted for clarity. Selected interatomic distances
(Å) and angles (◦): Ce1–N1 2.531(4), Ce1–N2 2.480(4), Ce1–N3 2.497(4), Ce1–N4 2.484(4), Ce1–O1
2.577(4), Ce1–O2 2.583(3); N1–Ce1–N2 128.14(14), N1–Ce1–N3 90.91(13), N1–Ce1–N4 92.69(13), and
O1–Ce1–O2 129.06(11).

2.3. Reactivity toward CO2

Preliminary studies on the reactivity of the silylamide Ce[N(SiHMe2)2]4 (red color) [74]
as well as Ce(NiPr2)4 (purple) [75] and Ce(NiPr2)4Li(thf) (orange) [75], bearing the very basic
diisopropylamido ligand (Figure 1), with CO2 resulted in an instant decolorization of the
solutions and the formation of colorless precipitates. 1H NMR spectroscopic measurements of
the reaction mixtures provided inconclusive results. As noted in the Introduction, for rare-
earth–metal silylamides, the formation of siloxide species and the elimination of isocyanates
via silyl migration has been previously described [41–43]. Therefore, we focused on cerium
pyrazolates and pyrrolates and their reactivity toward CO2. The possible insertion of CO2
into the Ce–N(pyrazolato) bond was examined via in situ IR spectroscopic measurements
in toluene. Because compounds 1 and 2 did not display any insertion of CO2 at ambient
temperature, the reactions were conducted at −20 ◦C. It was shown previously for dimethyl
pyrazolate [Ce(Me2pz)4]2 that the CO2 insertion is more efficient at lower temperatures [38].
These experiments revealed no (1), slow (2) and fast insertion (3), as indicated by an increasing
intensity of the characteristic C–O vibrations at around 1600 to 1750 cm−1 in the DRIFT
(diffuse reflectance infrared Fourier transform) spectra (Figure 5). However, the insertion
processes were slower and less efficient than observed previously for the dimethyl pyrazolate
[Ce(Me2pz)4]2 [38]. 1H NMR spectroscopic investigations revealed only minor insertion
of CO2 into the Ce–N(pyrazolato) bond of complex 1 (Figure S7, Supporting Information).
Notwithstanding, a new signal set appeared assignable to a tBu2pzCO2 ligand (Figure 6),
displaying two singlets at 1.02 and 1.50 ppm for the tBu-groups and one singlet at 5.97 ppm
for the C–H proton of the pyrazole backbone. For the reaction of compound 2 with CO2,
the respective 1H NMR spectrum showed a shift of all signals, indicating complete con-
version (Figure S8, Supporting Information). However, unlike what was expected for an
asymmetrically CO2-inserted pyrazolato ligand, a splitting of the phenyl signals was not
detected. For the reaction of compound 3 with CO2, the formation of two signal sets with a
ratio of 9:1 was observed (Figure S9, Supporting Information). Both sets displayed singlets
for the tBu and Me groups and one for the pyrazole C−H. This signal pattern might have
resulted from a favorable insertion of CO2 into the methyl site of the pyrazolato ligand due
to the lower steric hindrance (Figure 6). These results and previous findings clearly show
that the steric demand of the substituents on the pyrazolato ligands is the key factor in the
CO2-insertion reaction [38]. Therefore, the efficiency of the CO2 insertion with complexes
[Ce(RR’pz)4] increases in the order of tBu2pz < Ph2pz < tBuMepz < Me2pz. Unfortunately,
any crystallization and structural elucidation of a CO2-inserted product was not successful.
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 Figure 5. In situ IR spectroscopic measurements of the reaction of CO2 and (a) Ce(tBu2pz)4 (1), (b) Ce(Ph2pz)4 (2), and (c)

Ce(tBuMepz)4 (3) at −20 ◦C. The wavenumber of the C=O band is marked with a red box.
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Sch3 

Figure 6. Putative insertion products of the reaction of complexes 1 to 5 with CO2.

Similarly, pyrrole-derived complexes 4 and 5 were treated with CO2 resulting in a
shift of the signals in the 1H NMR spectra (Figures S10 and S11, Supporting Information).
For pyrrolate 4, two broadened singlets were observed at 6.82 and 9.99 ppm, indicating the
formation of a carbamato-like ligand CO2·pyr (Figure 6). Similar ligand formation was already
found in the reaction of nBuLi, pyrrole, and carbon dioxide [76]. The 1H NMR spectrum of the
reaction of carbazolate 5 with CO2 shows various paramagnetically broadened and shifted
signals ruling out any conclusive interpretation. Nevertheless, the DRIFT spectra of the crude
products, after removal of all volatiles under reduced pressure, clearly revealed an intense
band for the C−O vibrations at 1600 to 1750 cm−1 (Figure 7). This finding also indicated that,
unlike [Ce(Me2pz)4]2 [38], the CO2 insertion into the Ce−N(pyrrolato) bond is not reversible
at ambient temperature under reduced pressure. Regrettably, a structural elucidation of the
reaction products was not feasible.
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2.4. Difference between Pyrazolates and Pyrrolates/Carbazolates

Based on our findings, it can be hypothesized that CO2 insertion into the Ce−N(RR’pz)
bond is mainly affected by the sterics of the pyrazole substituents. This is clearly indicated
by the performance of [Ce(Me2pz)4]2 being far superior to that of Ce(tBu2pz)4. Accordingly,
any significant electronic effect caused by differently alkyl-substituted pyrazolato ligands
can be ruled out. However, our results suggest that the reversibility of the CO2 insertion is
most likely driven by the two adjacent N-donor atoms of the pyrazolato ligand, preserving a
Ce–N coordination also in the Ce−pz·CO2 fragments (Scheme 3). Apparently, the formation
of a five-membered heterocyclic ring with κ2(N,O) coordination mode is outperforming a
four-membered ring with terminal κ2(O,O) carboxylato coordination. The latter κ2(O,O)
coordination would result from the insertion of CO2 into the Ce−N(pyr) or Ce−N(cbz)
bonds (Scheme 3). Note that any reversible CO2 insertion has not yet been evidenced for
such simple carbamates.
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Scheme 3. Reversible and irreversible CO2 insertion into Ce−N(pz) and Ce−N(pyr)/Ce−N(cbz)
bonds, respectively.
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3. Materials and Methods
3.1. General Procedures

All manipulations were performed under an inert atmosphere (Ar) using a glovebox
(MBraun 200B; <0.1 ppm O2, <0.1 ppm H2O), or according to standard Schlenk techniques
in oven-dried glassware. The solvents were purified with Grubbs-type columns (MBraun
SPS, solvent purification system) and stored in a glovebox. Ce[N(SiHMe2)2]4Li(thf),
Ce[N(SiHMe2)2]4, and Ce(tBu2pz)4 (1) were synthesized according to published proce-
dures [65–67]. HMe2pz, HtBu2pz, pyrrole, and carbazole were purchased from Sigma
Aldrich (St. Louis, MO, USA) and used as received. HPh2pz and HtBuMepz were syn-
thesized according to the literature [77]. C6D6, toluene-d8, and THF-d8 were purchased
from Euriso-top (Saint-Aubin, France) and pre-dried over NaK alloy and filtered off prior
use; THF-d8 was re-condensed. NMR spectra were recorded at 26 ◦C on a Bruker AVII+400
(1H: 400.13 MHz) or a Bruker AVIIIHD-300 (1H: 300.13 MHz, 7Li 116.64 MHz) using J.
Young-valved NMR tubes. 1H NMR shifts are referenced to a solvent resonance and
reported in parts per million (ppm) relative to tetramethylsilane. 7Li NMR spectra are
reported relative to LiCl. Analyses of NMR spectra were performed with ACD/NMR
Processor Academic Edition (product version: 12.01). Infrared spectra were recorded on a
ThermoFisher Scientific (Waltham, MA, USA) NICOLET 6700 FTIR (ν̃ = 4000–400 cm−1)
spectrometer using a DRIFTS chamber with dry KBr/sample mixtures and KBr windows.
Elemental analysis (C, H, and N) was performed on an Elementar vario MICRO cube. In
situ IR spectra were recorded on a METTLER TOLEDO (Columbus, OH, USA) ReactIR 15.
For details on XRD analyses and crystallographic data, see Supporting information.

3.2. Synthesis of Ce(Ph2pz)4·tol (2)

Ce[N(SiHMe2)2]4 (0.40 g, 0.60 mmol) in n-hexane (2 mL) was added to a suspension
of HPh2pz (0.33 g, 2.4 mmol) in toluene (2 mL). After 1 h, all volatiles were removed under
reduced pressure. Crystallization from concentrated toluene solutions produced 2 as dark
purple crystals. Yield: 0.52 g (0.47 mmol, 79%). 1H NMR (C6D6, 400.13 MHz, 26 ◦C): = 7.78
(m, 16 H, C−H Ph), 7.11 (s, 4 H, C−H pz), 6.91 (m, 24 H, C−H Ph) ppm; IR (DRIFT):
ν̃ = 3064 (w), 3036 (w), 2916 (w), 1944 (w), 1883 (w), 1807 (w), 1755 (w), 1682 (w), 1602 (w),
1562 (w), 1489 (w), 1467 (s), 1421 (m), 1401 (m), 1335 (w), 1282 (w), 1254 (w), 1151 (w),
1103 (w), 1072 (w), 1018 (m), 999 (m), 965 (m), 914 (w), 837 (w), 809 (w), 760 (s), 731 (s),
700 (s), 692 (m), 678 (m), 666 (w), 537 (w), 481 (w), 465 (w), 429 (m), 422 (m), 405 (w) cm−1;
elemental analysis (%) calcd. for C67H52CeN8 (1109.33): C 72.54, H 4.73, N 10.10; found: C
72.40, H 4.52, N 10.68.

3.3. Synthesis of [Ce(tBuMepz)4]n (3)

Ce[N(SiHMe2)2]4 (0.40 g, 0.60 mmol) in toluene (2 mL) was added to a suspension
of HtBuMepz (0.53 g, 2.4 mmol) in toluene (2 mL). After 2 h, all volatiles were removed
in vacuo, producing 3 as a dark red sticky solid. Yield of the crude product: 0.41 g. 1H
NMR (C6D6, 400.13 MHz, 26 ◦C): = 6.15 (s, 4 H, C−H pz), 2.22 (s, 12 H, Me), 1.24 (s, 36 H,
tBu) ppm; IR (DRIFT): ν̃ = 3105 (w), 2961 (vs), 2924 (s), 2901 (s), 2862 (m), 1558 (w), 1508 (s),
1474 (m), 1458 (m), 1425 (s), 1387 (m), 1362 (m), 1291 (w), 1237 (s), 1210 (w), 1124 (w),
1084 (w), 1032 (w), 1020 (w), 994 (m), 962 (w), 819 (w), 797 (m), 718 (w), 700 (w), 686 (w),
567 (w), 507 (m) cm−1; elemental analysis (%) calcd. for C32H52CeN8 (688.94): C 55.79, H
7.61, N 16.26; found: C 57.17, H 7.49, N 16.29. The slightly increased carbon value might be
a result of retained solvent.

3.4. Synthesis of [Ce2(pyr)6(µ-pyr)2(thf)2][Li(thf)4]2 (4)

Pyrrole (141 mg, 2.11 mmol) in n-hexane (3 mL) was added to a stirred solution of
Ce[N(SiHMe2)2]4Li(thf) (394 mg, 0.526 mmol) in n-hexane (5 mL). Immediately, a colorless
precipitate was formed. After 1 h, all volatiles were removed under reduced pressure. The
resulting solid was recrystallized from THF, producing 4 as colorless crystals. Yield: 189 mg
(0.122 mmol, 46%). 1H NMR (THF-d8; 400.11 MHz, 26 ◦C) δ = 7.39 (bs), 4.23 (bs) ppm; 7Li
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NMR (THF-d8, 116.64 MHz, 25 ◦C) δ = 2.0 ppm. DRIFTS: ν̃ = 3085 (w), 1441 (w), 1365 (w),
1213 (vw), 1200 (vw), 1140 (w), 1078 (m), 1048 (w), 1021 (s), 894 (w), 858 (w), 789 (vs), 751
(m), 670 (w), 660 (m), 416 (w) cm−1; elemental analysis (%) calcd. for C72H112Ce2Li2N8O10
(1543.85): C 56.02, H 7.31, N 7.36; found: C 46.96, H 3.90, N 13.74. Calculated without THF
donor ligands for C42H54Ce2N8O2 (983.18): C 51.31, H 5.54, N 11.40. On multiple attempts,
no better elemental analysis could be obtained.

3.5. Synthesis of [Ce(cbz)4(thf)2][Li(thf)4] (5)

Ce[N(SiHMe2)2]4Li(thf) (406 mg, 0.557 mmol) in n-hexane (5 mL) was added to a
stirred suspension of carbazole (363 mg, 2.23 mmol) in n-hexane (5 mL). After 1 h, a yellow
precipitate formed, and volatiles were removed under reduced pressure. The resulting
solid was recrystallized from THF/Et2O (1:1), giving 5 as off-white crystals. Yield: 486 mg
(0.415 mmol, 74%). 1H NMR (THF-d8; 400.11 MHz, 26 ◦C) δ = 8.64 (d), 7.90 (bs), 7.70 (d),
7.32 (d), 7.02 (bs), 6.70 (bs) 6.28 (s), 6.04 (s), 5.30 (s), 4.22 (d), 3.62 (s, α-CH(thf)), 1.77 (s,
β-CH(thf)), 0.33 (bs), −10.16 (bs) ppm; 7Li NMR (THF-d8, 116.64 MHz, 25 ◦C) δ: −0.3 ppm.
DRIFTS: ν̃ = 3418 (vw), 3054 (w), 2979 (w), 2878 (w), 1635 (m), 1576 (m), 1541 (m), 1489 (m),
1479 (m), 1447 (s), 1395 (vs), 1329 (vs), 1312 (s), 1287 (m), 1216 (m), 1151 (w), 1121 (vw), 1043
(w), 934 (vw), 889 (vw), 826 (m), 797 (m), 753 (s), 725 (m), 684 (m), 658 (w), 617 (vw), 567
(vw), 526 (vw), 458 (w), 425 (m) cm−1; elemental analysis (%) calcd. for C72H80CeLiN4O6
(1244.51): C 69.49, H 6.48, N 4.50; found: C 68.42, H 6.42, N 3.97.

4. Conclusions

The feasibility of CO2 insertion reactions was further substantiated for homoleptic
ceric pyrazolates [Ce(RR’pz)4]. Crucially, with increasing bulkiness of the substituents R/R’
on the pyrazolato ligand, the insertion of carbon dioxide becomes increasingly hindered;
therefore, the least bulky dimethyl-substituted pyrazolato ligand performed best in CO2
insertions. En route to homoleptic CeIV pyrrolates and carbazolates, we were able to iso-
late cerous ate complexes [Ce2(pyr)6(µ-pyr)2(thf)2][Li(thf)4]2 and [Ce(cbz)4(thf)2][Li(thf)4].
Such Ce(III) pyrrolates and carbazolates are also capable of CO2 activation, but most likely
in an irreversible manner. Oxidation attempts to form ceric pyrrolate or carbazolate com-
pounds were conducted; however, the structural elucidation of any CeIV species was not
feasible.

Supplementary Materials: The following are available online. The 1H (2, 3, 4, and 5, and their
reactions with CO2) and 7Li (4 and 5). NMR spectra as well as selected crystallographic data for
compounds 2, 4, and 5 are available online. Complete crystallographic data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif,
Deposition Number 2069959-2069961.
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